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Abstract 
 
Geospatial datasets are typically available as distributed collections contributed by various government or 
commercial providers. Supporting the diverse needs of various users that may be accessing the same dataset 
for different applications remains a challenging issue. In order to overcome this challenge there is a clear 
need to develop the capabilities to take into account complicated patterns of preference describing user 
and/or application particularities, and use these patterns to rank query results in terms of suitability. This pa-
per offers a demonstration on how intelligent systems can assist geospatial queries to improve retrieval ac-
curacy by customizing results based on preference patterns. We outline the particularities of the geospatial 
domain and present our method and its application. 
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1. Introduction 
 
Geospatial information enjoys an increasingly important 
role in modern day societies, as it is used to support a 
variety of activities ranging from long-term planning and 
modeling, to emergency response and disaster manage-
ment. Geospatial datasets may be diverse in nature, rang-
ing from digital imagery and raster datasets to thematic 
layers of geographic information systems (GIS), vector 
data, and diverse sensor feeds. These datasets are col-
lected, stored, and distributed by a variety of federal (e.g. 
the National Geospatial-Intelligence Agency—NGA), 
state (e.g. various state GIS offices), or local (e.g. town 
records) agencies. In addition to these authoritative data-
sets we are now witnessing the emergence of volunteered 
and participatory GIS [1], with datasets collected and 
contributed by non-profit organizations (e.g. Ushahidi) 
or even individuals. Through advancements in sensor 
technology, computer hardware, and software we have 
now reached the point where massive amounts of diverse 
types of geospatial datasets are integrated in distributed 
petabyte-size archives.  

As the applications that use geospatial datasets are 
quite diverse, it is not rare to have the same dataset (e.g. 
a specific GIS layer) accessed by different users to sup-

port diverse applications (e.g. location-based services 
through cell phone apps), or decision-making activities 
(e.g. land use modeling, crisis monitoring). In order to 
support query-based information retrieval (IR), geospa-
tial datasets are indexed with metadata describing their 
essential properties (e.g. date, scale, accuracy, resolution, 
time, provider). Queries are typically performed by hav-
ing a user stating his/her preference in terms of these 
metadata, e.g. “retrieve satellite images of Fukushima, 
Japan after March 11 2011, with pixel resolution equal 
to or better than 1 meter”. The suitability of available 
datasets is then evaluated using standard distance metrics 
to compare them to the query request and rank them ac-
cording to their similarity to the query parameters [2]. 
However, standard IR approaches fail to capture pref-
erence differences among diverse users. For example, a 
transportation expert and an emergency responder may 
have different preference patterns as they aim to retrieve 
satellite imagery depicting an area of interest at a specific 
instance. In the above-provided example relating to the 
Fukushima earthquake and subsequent tsunami, the 
transportation expert would prefer the most recent image 
available after the earthquake (e.g. from May, 2011), as 
her task may be to update the road network maps and 
capture the current state of transportation infrastructure 
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in the area. On the other hand, the emergency responder 
may be interested in imagery showing the tsunami at its 
farthest location, before it started receding, to better as-
sess the full extent of the impact area. For this responder 
the most recent imagery may therefore be of lesser value 
than imagery captured one to two hours after the earth-
quake.  

The above is a simple example that shows potential 
variations in user-database interaction. Users that attempt 
to access collections of geospatial datasets have diversi-
fied information needs, reflecting differences in the ex-
perience and/or task at hand. As the user community of 
geospatial information is growing and becoming in-
creasingly more diverse, such preference variations are 
becoming the norm rather than an exception. Standard IR 
techniques fail to take into account such complex pref-
erence patterns. In order to overcome this shortcoming 
we need to support the customization of user query exe-
cution by taking into account the particularities of a 
user’s preferences. In this paper we present our approach 
to model user preferences in geospatial applications in 
order to improve the performance of geospatial queries. 
Before we proceed to the specifics of our method, we 
address trends in the generation, storage, and delivery of 
geospatial information.  

 
2. Geospatial Dataset Availability 
 
Authoritative geospatial datasets have been traditionally 
generated, used, and delivered by a variety of local, state, 
and federal government agencies. They are typically 
available as distributed collections through correspond-
ing portals. 

A representative example of a federal collection of 
geospatial datasets is the National Atlas (http://www. 
nationalatlas.gov/), offering map coverage across the US, 
with various themes (e.g. agricultural and transportation 
data overlaid on basic maps). The National Geospa-
tial-Intelligence Agency (NGA, www.nga.mil) is offer-
ing access to charts and images. Users can access this 
information through its Raster Roam interface. Users 
can access a specific file either by selecting an area in a 
map display, or by using geographic names in a gazet-
teer-like approach. Furthermore, the Federal Geographic 
Data Committee (FGDC) (www.fgdc.gov) of the US 
Geological Survey (USGS) offers a distributed discovery 
mechanism comprising regional clearinghouses for digi-
tal geospatial dataset delivery. The Environmental Pro-
tection Agency (EPA) offers a wide variety of geospa-
tially-referenced information (e.g. water quality and haz-
ardous waste data), queried through a zip-code based 
system (http://www.epa.gov/enviro/html/qmr.html). In an 
effort to address the particular needs of disaster response, 

government agencies have set up dedicated portals that 
aggregate specific types of information. For example the 
Geospatial Multi-Agency Coordination Group effort 
(GeoMAC) (http://www.geomac.gov) aggregates fire- 
related information (incl. fire perimeter, terrain, and 
MODIS satellite datasets) across the continental United 
States. The Natural Hazards Support System (NHSS) 
( http://nhss.cr.usgs.gov) is another example of an inte-
grative portal, offering information on various natural 
hazards, e.g. volcanic, earthquake, and flooding informa-
tion, together with satellite imagery. These federal-level 
datasets are complemented by countless regional collec-
tions of geospatial datasets collected and distributed 
through states, cities, and municipalities.  

This early model of government-driven geospatial 
dataset collection and administration evolved through the 
proliferation of commercial remote sensing and geospa-
tial analysis endeavours. For example, TerraServer 
(www.terraserver.com) is a collaboration of commercial 
(Microsoft, Compaq) and federal (USGS) partners, that 
offers a collection of digital imagery from numerous 
providers, arranged by location (e.g. coordinates, city 
name, street address, zip code), in various time instances. 
USGS photography comprises few terabytes of data, and 
is accessible through several host servers. Another nota-
ble commercialized collection of geospatial datasets is 
Mapquest (www.mapquest.com), using maps of the 
complete US in a variety of scales (e.g. 1:100,000, 
1:25,000), 1-meter resolution aerial photography, and 
detailed street maps. Probably the most popular com-
mercial implementation is the adaptation of Keyhole 
technology to build Google Earth (earth.google.com), 
aggregating a massive collection of satellite and field 
data. 

The latest evolution of geospatial dataset availability is 
the on-going emergence of volunteered and participatory 
geographic information (VGI). Crisis mapping is a par-
ticularly relevant example, with the aggregation of au-
thoritative datasets with contributed multimodal infor-
mation to capture the consequences and evolution of a 
catastrophic situation [3,4]. Ushahidi (http://ushahidi. 
com) and its utilization during the Haiti 2010 earthquake 
disaster is by now a classic example of VGI at work. In 
addition to these examples, where the general public is 
contributing information, we also have services like 
Google MapMaker (http://www.google.com/mapmaker), 
where citizens are given the opportunity to perform in-
formation extraction tasks, like road centerline delinea-
tion, thus contributing directly geospatial information. 

Thus we see that geospatial datasets are made avail-
able in numerous distributed collections of terabyte-sized 
archives of government, commercial, or non-profit agen-
cies, each following established standards and specifica-
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4) Based on user request an indexing mechanism is 
used to return all potentially similar objects, in essence 
filtering dissimilar ones to accelerate the retrieval proc-
ess. One filtering example is to temporary identifying all 
buildings larger than 2000 m2 and ignores all other build-
ings. 

tions in terms of a variety of parameters, including accu-
racy, format, metadata, scale, organization. Users access 
these datasets through the corresponding agency portals, 
either by browsing collections, or by forming meta-
data-based queries as mentioned in the previous section. 
The challenge faced by applications employing geospa-
tial databases is to support the diverse needs of various 
users that may be accessing the same dataset for differ-
ent applications. In order to do so we need to be able to 
take into account the complicated patterns of preference 
that correspond to a user and/or application, and use 
these patterns to rank existing datasets in terms of suit-
ability.  

5) On this filtered object collection a similarity algo-
rithm with properties extracted from a knowledge base is 
applied. The output is either a certain number of best 
answers (e.g. 10 best datasets) or answers within a spe-
cific similarity range (e.g. higher than 80%). For further 
information see section 6 of this paper. 

6) The results are presented to the users to assess their 
similarity accuracy. To help our paper readability, here are the definitions 

of three important terms as presented within the context 
of this paper: 

In the above information flow there are several areas 
of interest that the database community is working on. 
Various disciplines are involved in the process and many 
different approaches have been proposed. Specifically, 
large distributed information source repositories are cre-
ated and issues related to storing and accessing these 
databases are investigated. Ontologies are introduced to 
compensate for different field descriptions, as well as 
multi-node architectures and theoretical database models 
to support them. Query languages and indexing mecha-
nisms for faster information retrieval are developed. 

 Similarity refers to how appropriate is a given re-
sponse to a geospatial information request. 
 Preference relates to users expressing their indi-

vidual suitability metrics for similarity. 
 Similarity learning is the process of identifying and 

expressing in mathematical terms user preference on 
suitability. 
 
3. Similarity in Geospatial Information 
 Our work concentrates on step five on the previous list. 

The goal is to develop a similarity algorithm that will 
rank the results in an accurate way. In order to do so, 
when a user is performing a geospatial information re-
quest, some identification information of user prefer-
ences is forwarded to a knowledge base (dotted arrow on 
the graph) and the appropriate similarity profile is ex-
tracted and incorporated in the query process. 

Before we get into the specifics of our similarity learning 
approach, let us first examine the information retrieval 
process and the corresponding steps involved. Every 
request for geospatial information involves a collection 
of methods, some of which have been addressed exten-
sively in the literature and some others are newly inves-
tigated. In Figure 1, a schematic representation of the 
query process is shown. The following steps take place: The current methodologies used for similarity assess-

ment of geospatial information have a common charac-
teristic: they are non-adaptable to specific user prefer-
ences, instead they are expressed as pre-defined similar-
ity measures and remain the same independently of 
task/user requirements. Similarity calculation is per-
formed by storing geospatial information metadata as 
points in the feature space and using a distance metric to 
measure correlation to these points [5-7]. As mentioned 
above, commonly used metadata information includes 
expressions of resolution, accuracy, spatial extent, scale, 
date, and source. Usually a Minkowskian p-distance [8] 
is employed to define the similarity measure and is de-
fined as: 

1) Users request an information object from the data-
base (or more than one). For example a user may request 
all buildings within a given area that are larger than 2000 
m2 and within 1 km from a highway exit. 

2) Their request is translated into a structured query 
that the system understands and that is compatible with 
the database collection. In this step the user-provided 
information is matched to specific database fields and 
content. For example, ontology may be used to match the 
query for “buildings”, a non-existent term in the database, 
to “single-family detached houses”, an existent field in 
the database and therefore resolve ambiguity.  

3) A query language is used as a mediator between 
user and database. This step is essential to convert user 
preferences into an automated executable code for in-
formation retrieval. One predominant example of such 
programming language is Structured Query Language 
(SQL). 
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For p = 2 we have the traditional Euclidean distance 
metric. If p = 1 then the Minkowskian distance expresses 
the Manhattan distance function. Another function is the
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Figure 1. Query processing for geospatial information access. 
 
Quadratic distance that is a weighted form of the 
multi-dimensional Euclidean. Other functions and corre-
sponding mathematical expressions can be found in [9]. 
The above functions provide a simple model that allows 
efficient indexing by dimensionality reduction tech-
niques. On the other hand though, this simplicity makes 
it impossible for these functions to take into account 
complex patterns of preference of diverse users, and use 
them to rank query responses accordingly.  

So why not develop adaptable similarity methods spe-
cifically designed for geospatial databases? After all, this 
has been an active field of research for decades in other 

domains (e.g. text retrieval, web mining). The benefits of 
such work are obvious, but are the task simple enough to 
undertake? A major reason why adaptable similarity mod-
els for geospatial information have not yet progressed sig-
nificantly comes from the considerable challenges im-
posed by the nature of the problem.  

 
4. Similarity Modeling for Geospatial Data: 

Not that Easy after All 

Adaptable similarity models for geospatial data impose a  
dual difficulty. The first comes from the multiple disci-
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plines involved in the similarity learning task and it is 
not unique to geospatial datasets. The second difficulty 
rises from the particularities of the geospatial domain 
and corresponding user needs. This uniqueness of the 
geospatial domain is the focus of our attention. 
 
4.1. The Interdisciplinary Nature of Similarity 

Learning 
 
Three general areas of research have been suggested in 
[10], namely psychology, data mining and machine 
learning. Briefly discussed here, the psychologists have 
concentrated on the human understanding and expression 
of similarity. Their research verifies that there is an ob-
jective parameter (i.e. user dependent), which has to be 
addressed for successful similarity modeling. Building 
on that, several tasks from the data mining field can be 
borrowed to accomplish our goal, tasks such as classifi-
cation, regression, time series analysis and others. As 
expected, similarity learning naturally also falls under 
the general category of machine learning methods. The 
influence from multiple disciplines such as statistics, 
databases and artificial intelligence in machine learning 
is well-documented in the literature. From the similarity 
learning perspective an important distinction of machine 
learning algorithms is between supervised and unsuper-
vised methods. Since most similarity learning algorithms 
learn from example, in other words they need a supervi-
sor (teacher) to provide them some reference output val-
ues, they belong in the supervised category. 
 
4.2. Particularities of the Geospatial Domain 
 
Similarity learning in database queries is intrinsically 
connected with the data types stored. Geospatial data 
have important differences to online analytical process-
ing data, general multi-dimensional data, traditional rela-
tional data or transactional data [11]. This uniqueness is 
partially attributed to the integrative nature of GIS. Many 
of the issues arise from the fact that geographic data span 
a wide range of perspectives and interests from the social 
to the physical aspects of the problem [12]. This mixture 
of perspectives coupled with the growing infrastructure 
for gathering information pose the following challenges: 

1) Diverse data types. The wide variety of digital geo-
graphic data imposes a number of constraints/demands to 
similarity learning algorithms. Distributed datasets are 
becoming increasingly prevalent and important as a source 
of geographically referenced data [13] and thus tend to 
comprise a variety of geo-referenced multimedia data 
types, such as still and video imagery, text, graphics, and 
even audio and animations [14].  

2) Dimensionality grouping and dependencies. Geo-

spatial databases tend to be high-dimensional, as for 
example location information is accompanied by radio-
metric content, elevation data, ownership information, 
and temporal records. It is important to note that among 
these multiple dimensions we can recognize groups that 
are highly related among themselves, but remain quite 
different from other groups. For example, there exists a 
high conceptual affinity among the three spatial dimen-
sions (x,y,z) as they are represented by similar structures 
and often have comparable values, while there is an ob-
vious lack of such affinity among them and an alphanu-
meric ownership record. Accordingly, dimensions tend 
to be grouped together in conceptual features (e.g. spatial 
information, thematic attributes).  

However, regardless of conceptual affinity, heteroge-
neous features may display high dependency among 
them (e.g. space and time). This dependency needs to be 
exploited when querying a database in order to recognize 
for example complex spatiotemporal events and patterns. 
Querying space and time separately would fail to ade-
quately address this inherent spatiotemporal complexity. 
Similarly, the radiometric content of satellite imagery 
may be highly correlated to sensor information. This 
grouping of dimensions and the need to exploit 
cross-grouping dependencies is another issue that differ-
entiates geospatial databases from other high-dimensio- 
nal ones.  

3) Data volume. Like many disciplines where learn-
ing algorithms are applied, GIS is rich in data. In addi-
tion to traditionally considered geospatial databases (e.g. 
maps, photographs), numerous other databases (e.g. 
consumer, medical, and financial records) are now incor- 
porating spatial and temporal attributes and hence offer 
the possibility of discovering or confirming geographical 
knowledge [15]. As mentioned above, geospatial dataset 
collections are now terabyte-sized, and traditional re-
trieval methods have a hard time to keeping up. Further-
more, maintaining and evaluating these large amounts of 
information is a major challenge, leading to frequent oc-
currence of incomplete or missing data. 

4) Complexities due to local variation. Earth systems 
are so intrinsically interconnected that it is difficult to 
isolate an analysis conducted on some part of a system 
from the affects of other unmodeled aspects [8]. This 
translates into potential generalization problems of simi-
larity algorithms. Measured geographic attributes often 
exhibit the seemingly contradictory properties of spatial 
correlation and spatial heterogeneity. The former (corre-
lation) refers to the tendency of attributes at some loca-
tions in space to be related, also known as Tobler’s first 
law of geography [16]: “Everything is related to every-
thing else but nearby things are more related than distant 
things”. However, and despite the effect of spatial corre-
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lation on the major trends of spatial information, geo-
graphic phenomena are often highly localized. Spatial 
heterogeneity describes this non-stationarity of most 
geographic processes, and expresses the fact that global 
parameters do not necessarily describe well the localized 
nature of some geographical phenomena.  

5) Granularity. In most non-geographic domains, 
data objects are meaningfully represented discretely 
within the information space without losing important 
properties [17]. But this does not seem to extend to geo-
graphic objects [18]: size, shape and boundaries can af-
fect geographic processes, therefore generalization can-
not be achieved without information loss in both raster 
and vector representations. Scales and granularities for 
measuring time are also complex, preventing a simple 
“dimensioning up” of space to include time. Moreover 
micro data, observations on individual observational 
units, might not always be accessible, e.g. due to dis-
semination, confidentiality or cost constraints. Macro 
data (aggregates of micro data) are used instead. Exam-
ples of macro data include counts, frequencies, sums, 
averages and other statistics characterizing micro data.  

 
5. Geospatial User Profiles 
 
5.1. Motivation 

 
Until now we defined desired characteristics for a simi-
larity learning algorithm. Similarity is typically calcu-
lated by comparing a stored set of values to the ones the 
users query for. First each query value (attribute) is 
compared to the corresponding stored one, for example 
the time of a stored aerial photograph to the correspond-
ing query value for time, the scale of the stored aerial 
photograph to the query and so on for every requested 
attribute. Then results from this comparison expressing 
similarity within every attribute (similarity in time, scale, 
etc) are aggregated to provide an overall similarity met-
ric, a metric showing the overall similarity between the 
query and the stored aerial photograph based on these 
individual metrics from every attribute. 

Existing methodologies concentrate on multi-attribute 
(i.e. multi-dimensional) similarity aggregation to provide 
an overall similarity metric. In some cases though prob-
lem complexity relies on the similarity calculation within 
each dimension separately rather than on their combined 
aggregation. This is frequently the case when querying 
for GIS datasets. The information retrieval process might 
fail because the individual similarity metrics in every 
dimension may not be able to capture user similarity 
preferences.  

A common example of such similarity preference in 
GIS is when asymmetric, non-linear user behavior is 

exhibited during the direct comparison of attributes. For 
example, let us consider a geospatial database and a user 
request for an aerial image of specific ground pixel size 
for building extraction. User interest decreases gradually 
(but not necessarily linearly) as pixel size increases to the 
degree that buildings would not be identifiable. Further-
more, the user may have cost considerations (e.g. cost, 
storage and processing time) associated with a higher 
resolution acquisition. This translates to a similarity rela-
tion that can also be non-linear as resolution improves. 
So it is easily understood that we need asymmetrical, 
non-linear relations to model user preference within each 
attribute comparison. Thus, in geospatial queries user 
preferences may be significantly more complex than 
general queries (e.g. text queries), while the diversity of 
users and applications is further emphasizing the need 
for efficient modeling. Therefore, modeling user similar-
ity preference within each attribute can substantially help 
geospatial queries. Motivated by these observations, the 
focus of our work is to investigate the application of 
complex functions for user preference within each attrib-
ute. The integration of similarity results from multiple 
attributes is part of our future work. 
 
5.2. A User Preference-Based Approach 
 
In order to adapt similarity models to user preferences 
we developed a relevance feedback algorithm. Users are 
presented with a variety of pairs of requested and re-
turned values and are asked to provide a preference met-
ric for each pair. The corresponding training dataset is 
created and used as input for our preference learning 
method. Figure 2 shows a typical training session, where 
the user is given the Query (X axis), and Database value 
(Y axis) and is requested to provide a similarity assess-
ment of these two. 

The result corresponds to the Similarity value (Z axis). 
The problem can easily be seen as a surface-fitting one, 

 

 

Figure 2. Training example. 
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where it is attempted to substitute the provided three- 
dimensional points with a surface (function). For training 
several preference models are used of as expressed 
through a variety of fuzzy membership functions (FMFs). 
The approach is simple yet effective: gradually increase 
the complexity of the underlying FMF until an accept-
able solution is reached. The process begins by interpo-
lating a set of planes to the training dataset [19]. We 
examine the resulting accuracy and if it is within the 
predefined specifications we end the process. These pre-
defined specifications are in essence thresholds describ-
ing the maximum acceptable error between the interpo-
lated functions and the training points. They can be pre-
set by the database designer or adjusted in real-time by 
the user. If the results are not within these thresholds, we 
examine the obtained plane parameters. This analysis 
leads to a decision whether similarity is dependent on the 
query value, their difference metric or the actual database 
and query values. We continue by interpolating two sig-
moidal functions whose initial approximations are calcu-
lated from the plane properties. If required accuracy is 
not achieved, we provide further modeling capabilities 
by parameterizing further the FMFs parameters. At the 
last stage we obtain the best possible set of FMFs that 
express user preference as presented through the training 
set. If accuracy is not yet achieved, we trigger a neural 
network process to correct local errors. More information 
on the training mechanism and the corresponding mod-
eling capabilities can be found in [19]. 

After the best possible set of functions is identified, 
the mathematical properties of the model are stored in 
the form of a profile. This profile can also contain a User 

ID, and potentially comments/keywords that will allow 
usability of the same profile from other users to avoid 
retraining the system. For example, such keywords might 
be general such as “Photogrammetrist” or “Biologist”, or 
more task-specific such as “Airplane feature extraction”, 
“Wetland evaluation”. 

To further demonstrate the applicability of the method 
a representative example is presented below for a cadas-
tre/real estate application. More specifically, this sce-
nario investigates user preference of a geospatial attrib-
ute expressing parcel value per square meter. The func-
tion is composed of two sub-functions, each one applica-
ble in half of the input space (e.g. Xq > Xdb) to compen-
sate for asymmetrical cases. A result of this trained func-
tion can be seen in Figure 3. 

Figure 4 shows similarity isolines (0% to 100% at the 
graph floor) of the surface from Figure 3, in essence 
combinations of query and database values that would 
result in the same similarity value. In addition, two spe-
cific user queries are examined through the two slices, 
for parcel value per square meter (PVSM) of $500/m2 (in 
orange) and $3000/m2 (in green). Examination of these 
two sections leads to two remarks: 

1) The left side of each of the two sections examines 
the case where the returned PVSM value (Xdb) is smaller 
than the query PVSM value (Xq). Here the method is able 
to express the gradual decrease of user’s interest. Note in 
Figure 4 how user flexibility increases as the PVSM 
query value becomes larger.  

2) The right side of each of the two sections examines 
the case where the returned PVSM value (Xdb) is larger 
than the query PVSM value (Xq). From the two sections  

 

 

Figure 3. Example of a user preference function. 
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Figure 4. Contour plot and query examples of this preference function. 
 
it is evident that as the query PVSM value (Xq) increases 
so does the user flexibility on the obtained results. More 
specifically, when users request the retrieval of database 
objects with $500/m2 PVSM they are less flexible in ac-
cepting larger values than when querying for a $3000/m2 

one. 
 
6. Using Profiles in Queries  
 
In order to demonstrate the applicability of our method, 
let us consider the following scenario. The City of 
Tempe had cameras installed to monitor its downtown 
area. Numerous city agencies use this information for 
their various needs. For example, let’s consider that im-
agery from these cameras is accessed by both the Police 
and Transportation Departments. Let’s also assume that 
they perform similar queries, using last year’s New 
Year’s Eve imagery database to train personnel in an-
ticipation of this year’s celebrations. They are interested 
in recovering an image of the downtown area at 12 mid-
night, to get a snapshot of the situation, so they form a 
query to express this request. Even though they form the 
same query, the execution of this query proceeds differ-
ently for these two agencies, making use of their prefer-
ences as they are expressed through corresponding pro-
files. Algorithm training is performed based on estab-
lished similarity preferences, and the corresponding 
similarity profiles are shown in Figures 6 and 7 for the 
Police and Transportation Departments, respectively. For 
comparison we also present a generic profile in Figure 5. 

By using these different profiles in the query process-
ing it is feasible to rank available imagery differently, 

taking into account their different needs. For example, the 
Police profile has the following main characteristics: 
 The time interval 11 pm - 12 am is of prime impor-

tance, as this is the instance with the highest crowd 
concentration and overall activity. 

 After 12 midnight interest begins dropping, as people 
start leaving, but remains high until 3 am.  

On the other hand, the Transportation profile has some 
other characteristics: 
 Its peak is around 12 am, when people (potentially 

intoxicated) start leaving the area, posing a higher risk 
of accidents.  

 Early on, interest is increasing as we move from the 
standard traffic patterns of 9 pm to higher traffic loads 
by 10:45 pm.  

 Interest drops between 10:45 pm and 11:15 pm, as by 
that time people have already arrived, and thus vehicle 
traffic is limited. It starts picking up again after 11:30 
pm as few people may be leaving earlier.  

A sample of 5 images has been ranked, to demonstrate 
the effects of user preferences. This is shown in Figure 8. 
For example, that imagery from 11:20 pm is ranked first 
for the police department, even though it deviates from 
the query request (midnight) by 40 minutes, when there 
is an image with only 15 minutes away from the query 
time (12:15 am). However, for the above mentioned rea-
sons the 11:20 pm is more suitable for this department’s 
needs than the 12:15 am snapshot. Other rankings have 
similar explanations based on the above mentioned spe-
cial preference characteristics as expressed through the 
corresponding profile. It is obvious that generic profiles 
could not express such diverse similarity preference pat 
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Figure 5. Generic similarity profile. 
 

 

Figure 6. Police surveillance similarity profile. 
 
terns, limiting the effectiveness of query-based informa-
tion retrieval. 
 
7. Conclusions  
 
Geospatial datasets are becoming increasingly multifunc-
tional, as different users may be using the same dataset 
for different applications. Accordingly, the successful 
functional integration such datasets in federated geospa-
tial databases depends upon the ability to meet the needs 
of expanding and diverse user communities. Therefore, 
the development of efficient information retrieval meth-
ods to support the diverse and complicated preference 
patterns of different users and/or applications is a crucial 
task for the geoinformatics community. 

In this paper we presented an approach to meet this  

 Time

Figure 7. Traffic monitoring similarity profile. 
 
need through the introduction of user profiles of varying 
complexity to model the requirements of different classes 
of users when attempting to recover specific geoinforma-
tion. Intelligent systems can assist geospatial queries to 
improve retrieval accuracy by customizing results based 
on preference patterns. The profiles may vary in their 
complexity, thus capturing the underlying preference in-
tricacies that differentiate user groups (e.g. the needs of a 
transportation expert versus the ones of a police author-
ity). 

As presented in this paper, our method emphasizes 
preference modeling within specific attributes (e.g. pref-
erences in time, scale, resolution). Our future plans in-
clude the extension of this work to aggregate these indi-
vidual components into composite multidimensional user 
profiles. Depending on the application range of a specific 
government agency, these composite profiles may reflect 
preferences of a single analyst or of a broader unit with a 
specific mission and modus operandi.  

While user preference profiles were introduced in this 
paper as a tool to support information retrieval tasks, 
they also encapsulate operational knowledge: they are 
expressions of a user’s typical tasks and processes. Ac-
cordingly, we can recognize a very intriguing indirect 
benefit of our approach, namely the ability to identify 
similarities in user communities that may be operation-
ally different. For example, by comparing user profiles 
between groups of analysts from an environmental and 
an emergency response agency we may reach the con-
clusion that they have comparable preferences and tend 
to perform similar tasks. This information can be used 
for operational alignments across different units/agencies. 
Furthermore, preference profiles may be used to priori-
tize data collection and information acquisition needs. 
Types of datasets that exhibit high similarity preference  
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Figure 8. Effects of profiles on geospatial query results (images from www.tempe.gov). 
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across numerous profiles should be updated more fre-
quently than others with lower priority. Combined with 
the above mentioned capability to identify across agen-
cies clusters of users with similar needs and preferences, 
this would provide crucial support for the reconfiguration 
of government resources to best address evolving needs 
and emerging challenges. 
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