
Journal of Geographic Information System, 2011, 3, 18-49 
doi:10.436/jgis.2011.31003 Published Online January 2011 (http://www.SciRP.org/journal/jgis) 

Copyright © 2010 SciRes.                                                                                 JGIS 

Adjusting Second Moment Bias in Eigenspace Using  
Bayesian Empirical Estimators, Dirichlet Tessellations  

and Worldview I Data for Predicting Culex  
Quinquefasciatus Habitats in Trinidad 

Models for West Nile Vectors 

Benjamin G. Jacob1, Dave D. Chadee2, Robert J. Novak1 
1School of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham,  

Birmingham, Alabama, USA  
2Department of Life Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies  

E-mail: bjacob@uab.edu, dave.chadee@sta.uwi.edu, rjnovak@uab.edu 
Received October 24, 2010; revised November 12, 2010; accepted December 23, 2010 

Abstract 
 
Temporally weighted regression models with a spatial autoregressive component may estimate nonlinearities 
in spatiotemporal-sampled data of Culex quinquefasciatus, a major vector of West Nile Virus (WNV) which 
can help implement control strategies by determining optimal predictors associated to prolific habitats. The 
design of this kind of mixed model can specifically incorporate spatial autocorrelation whilst including the 
influence of other aspatial predictor variables. Currently, the lack of an estimation theory that allows for het- 
eroscedasticity and corresponding joint hypothesis testing in the presence of spatial dependence in georefer- 
enced Cx. quinquefasciatus habitat data is a serious shortcoming in WNV research. In this paper we used 
spatially lagged and simultaneous autoregressive models based on multiple predictor variables of immature 
Cx. quinquefasciatus and Worldview 1 (WV-1) data to help implant a remote habitat-based surveillance sys- 
tem in Trinidad. Initially, we used Geomatica Ortho Engine® v. 10.2 for extracting a Digital Elevation Model 
(DEM) from the WV-1 raw imagery. Results of the DEM analyses indicated a statistically significant inverse 
linear relationship between total sampled Cx. quinquefasciatus data and elevation (m) (R2 = −0.439; p < 
0.0001), with a standard deviation of 10.41. Additional field-sampled information was derived using data 
from an orthogonal grid-matrix constructed in an ArcInfo 9.3® and overlaid onto the WV-1 data. A unique 
identifier was placed in the centroid of each grid cell. Univariate statistics and Poisson regression models 
were then generated using the georeferenced covariates in SAS/GIS®. Coefficient estimates were also used to 
define expectations for prior distributions in a Bayesian estimation matrix using Markov Chain Monte Carlo 
(MCMC) specifications. A spatial residual trend analyses was then performed using autocorrelation indices 
which linked tabular data in SAS PROCLMIXED® with the egg-raft count data in ArcInfo®. The estimation 
matrix identified prolific habitats based on the covariate distance to the nearest house. An Ordinary 
kriged-based interpolator was then constructed in Geostatistical Analyst Extension of ArcGIS 9.3® based on 
the adjusted Bayesian estimates. For total Cx. quinquefasciatus egg-raft count, first order trend was fitted to 
the semivariogram at a partial sill of 5.931 km, nugget of 6.374 km, lag size of 7.184 km, and a range of 
31.02 km using 12 lags. We assessed the performance accuracy of the interpolation procedures based on the 
magnitude and distribution of errors between observed and model-predicted values using Voroni tessella- 
tions. These residuals divided the space between the individual georeferenced Cx. quinquefasciatus habitats 
by XY coordinates in 2-dimenisional space which revealed that the geophysical parameter error residuals in 
the interpolation model were within normal statistical limitations. Newer GIS software and WV-1 data can 
generate highly accurate predictive Cx. quinquefasciatus habitat distribution models which can target prolific 
habitats of based on field-sampled count data. Our results suggest it may be unnecessary to manage all Cx. 
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quinquefasciatus habitats to obtain significant reductions in incidence and prevalence of WNV in Trinidad. 
 
Keywords: Culex Quinquefasciatus, Trinidad, West Nile Virus, Worldview 1, ArcGIS® 

1. Introduction 
 
West Nile virus (WNV) is among the Culex-borne en- 
cephalitides in the Flavivirus genus. The virus cycles 
between birds and mosquitoes, while horses, humans, 
and a number of other vertebrates are considered inci- 
dental hosts. Since WNV first appeared in the Western 
Hemisphere in New York in 1999, it has spread rapidly 
across the North American continent, causing large 
numbers of human cases with neurologic disease and 
death and even greater amounts of milder disease char- 
acterized principally by fever and rash [1]. West Nile 
Virus has been spreading southward into the Caribbean 
Basin and Latin America as well, where its public health 
impact remains poorly understood [2]. The virus was 
first detected in 2001, in Jamaica and the Cayman Is- 
lands. Thereafter, serological evidence of WNV trans- 
mission has been accumulating. Cross-reactive WNV 
antibodies in humans have been detected from Mexico, 
the Bahamas, and Cuba, in horses from Guadalupe, 
Mexico, Central America, Puerto Rico, Colombia, and 
also in resident birds from the Dominican Republic and 
Venezuela. In November 2006, 4 serologically confirmed 
human WNV encephalitis cases were reported in Argen- 
tina. West Nile Virus may be following the same patterns 
of southward dissemination as other arboviruses into the 
Caribbean and Central and South America via migratory 

birds. 
There have been attempts to develop and implement 

WNV surveillance in the Caribbean but, unfortunately 
present systems in the region are unprepared to track 
WNV spread. For example, in Guadeloupe, extensive 
surveillance for WNV infection demonstrated a high 
seroprevalance in equines in 2003, despite no human or 
equine case being reported. A protocol for epidemiol- 
ogical surveillance for WNV has been developed through 
a collaborative electronic working tool posted on the 
Caribbean Animal Health Network (CaribVET) website 
(www.caribvet.net). CaribVET is a collaboration of vet- 
erinary services, diagnostic laboratories, research insti- 
tutes, universities, and regional/international organiza- 
tion to improve animal health in the Caribbean through 
exchange of information and data management. Improv- 
ing collaborations and information dissemination for 
understanding WNV epidemiology is vital; however, 
WNV surveillance and diagnostics in the Caribbean re- 
quires tools for regional data analyses. Unfortunately, to 
date there have been virtually no significant findings in 
any established WNV surveillance programs in tropical 

America. In september 2007, WNV infection detected by 
polymerase chain reaction (PCR) in post-mortem brain 
tissue taken from an encephalitic horse and by virus iso-
lation from a dead bird confirmed WNV transmission in 
southwest Puerto Rico but, since then there have been no 
isolates reported from other areas in Central and South 
America or the Caribbean. 

The explanation for the paucity in WNV detection in 
tropical America may be the lack of active WNV sur- 
veillance. One would hypothesize that the likelihood of 
identifying WNV cases would be maximized in the Car- 
ibbean Basin, given its location in the flight paths of in- 
fected migratory birds. However, due to cross-immunity 
of WNV with other tropically endemic Flaviruses such 
as St. Louis encephalitis, it is possible that WNV has not 
been able to establish persistent enzootic foci in the re- 
gion, so that reported serological evidence may be caused 
by frequent but unsuccessful virus reintroductions. Re- 
gardless, presently a WNV mosquito habitat-based in- 
tervention surveillance system using a vigorous quantita- 
tive assessment of field and remote-sampled data is war- 
ranted for countries of the Caribbean. 

A main challenge in devising an effective West Nile 
surveillance program in regions of the Caribbean; how- 
ever, is the lack of sufficient empirical knowledge on the 
spatiotemporal patterns of Culex quinquefasciatus larval 
habitats and their underlying contribution to the adult 
population. The main tropical vector for WNV in birds 
and people is Cx. quinquefasciatus in the Southeastern 
United States and the Caribbean [3]. Previous research 
has revealed that Cx. quinquefasciatus abundance will 
vary significantly in different areas due to hydrologic 
regime and the proximity to habitats and blood-meal 
hosts [4-7]. These factors are not evenly distributed spa- 
tiotemporally, so it is logical to expect a variation in ab- 
undance and distribution of virus-positive mosquitoes 
within different ecosystems in the Caribbean. 

Recently, the use of remote sensing (RS) and GIS for 
the quantitative prediction of geographical distributions 
of agent, reservoir, and vector species has been advo- 
cated to augment traditional WNV mapping methods 
[4,5,8]. For example, the United States Geological Sur- 
vey (USGS) and Center of Disease Control (CDC) have 
employed GIS and RS to prepare interpretive maps 
showing WNV activity in many regions of North America 
(http://www.cdc.gov/ncidod/dvbid/westnile/resources/wn
vguidelines1999.pdf). Common GIS/RS technology for 
WNV data analyses include: 1) time series overlay 
analyses of thematic data and spatial intersection, 2) 
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buffer generation and neighborhood analysis, 3) vec- 
tor-based grid generation and network analysis; and, 4) 
surface modeling [9]. Once an area has been imaged, 
associations between risk variables and environmental- 
sampled covariates can be quantified using the spatial 
data analysis capabilities of GIS for implementing a 
WNV mosquito surveillance system [9-11]. 

Quantification of vector-host interactions incorporated 
on Land Use Land Cover (LULC) maps generated in GIS 
time series overlay analyses suggest that Culex habitat 
productivity vary greatly over short distances, depending 
on the space and time at which field measurements are 
made [5,12-15]. For example, Jacob et al. (2009a) gener- 
ated a land use land cover (LULC) classification in Erdas 
Imagine based on Landsat-7 ETM+ data acquired July 
2003 and Landsat-5 TM data acquired July 1991 for 
examining two ornithophillic mosquito vector species 
Culex pipiens and Culex restuans in residential areas of 
Urbana-Champaign, Illinois [4]. A maximum likelihood 
unsupervised classification and LULC detection was 
performed using a cross-tabulation detection method and 
a grid-based algorithm stratified by drainage for detection 
of environmental predictors associated to field-sampled 
egg-raft abundance count data. The resulting LULC 
change matrix revealed that between 1991 and 2003 
there was a total of 12.1% LULC change in the study site. 
Of 20,166 egg-rafts sampled, 76.7% was in land cover 
classified as maintained urban followed by 14.8% in 
maintained non-urban. The well-drained stratum har- 
bored 56.4% of the total sampled data. Additionally, a 
remote stratification of the urban land cover site based on 
QuickBird visible and near infrared (NIR) data revealed 
that 83.3% of the egg-raft distribution was in LULC 
classified as residential high canopy coverage. In another 
study, Jacob et al. (2009b) constructed multiple geospa- 
tial models based on LULC and meteorological variables 
to predict adult abundance of the same Culex species in 
Des Planes mosquito abatement district in northern Cook 
County, Illinois [5]. An ecological database of the study 
site was constructed in ArcGIS 9.2® also using multitem- 
poral QuickBird visible and NIR data overlaid with total 
adult Culex abundance and WNV infection rates from 15 
georeferenced gravid traps sampled weekly from May 
2002 to October 2005. A regression analyses of LULC 
parameters revealed that adult Culex abundance in the 
georeferenced gravid traps was positively associated with 
temperature and negatively associated with precipitation. 
In 2002, the overall accuracy of the model was 73.3%, 
65.1% in 2003, 47.2% in 2004 and 60.0% in 2005. 
Temperature and precipitation explained > 80.1% of the 
variation in each of the models. Estimates from the mul- 
tivariate analysis also revealed that land cover that was 
classified as forest LULC along with middle range built 

environment (< 40.1%) predicted heightened infected 
vector activity. Because abiotic factors such as LULC are 
measurable in GIS using submeter resolution data, these 
pre-epidemic abiotic signatures may be quantified for 
predicting arboviral epidemic transmission in isolated 
areas of the Caribbean. These epidemic signatures may 
be tracked, measured, quantified, and presented visually 
to help forecast human arboviral epidemics. While re- 
mote models of the observed spread of WNV have been 
used to evaluate potential vector and host mechanisms of 
dispersal and to define the suitability of the various 
landscape features and meteorological variables for 
mosquito transmission of WNV in many portions of the 
US, there is no literature using LULC and high resolu- 
tion satellite data for evaluating ecologically sampled Cx. 
quinquefasciatus habitats in any region of the Caribbean. 

Recently, digital elevation models (DEMs) have 
become popular with the use of GIS for surface modeling 
flood and swamp water mosquito abundance in many 
different geographic regions [16-18]. A digital elevation 
model (DEM) is a digital file consisting of terrain 
elevations for ground positions at regularly spaced 
horizontal intervals. It is a digital representation of 
ground surface topography which is usually represented 
as a raster or as a triangular irregular network. DEMs 
include a number of production strategies for determining 
terrain-related parameters associated to prolific Cx. 
quinquefasciatus habitats such as manual profiling from 
photogrammetric stereo models, digitizing of contours, 
digitizing topographic map contour plates, converting 
hypsographic and hydrographic tagged vector files and 
also for performing autocorrelation via automated 
photogrammetric systems. To obtain DEMs from satellite 
images for determining vector amplification and host 
population dynamics for mapping the spatiotemporal 
distribution of WNV from high resolution data two 
methods are possible: along-track stereoscopy from the 
same orbit using fore and aft images and across-track 
stereoscopy from two adjacent orbits [16]. The four 
possibilities of stereo image processing for DEM 
generation are Fore-Aft, Fore-Nadir, Aft-Nadir and 
Fore-Aft-Nadir images as a pair [19]. The simultaneous 
acquisition of along-track stereo data has a strong 
advantage in terms of radiometric variation versus the 
multi-date acquisition of across-track stereo data which 
has been traditionally employed in past research for 
identifying terrain-related explanatory covariates of 
floodwater mosquito habitats [20]. The across-track 
approach has been applied frequently since 1980, first 
with Landsat from two adjacent orbits, then with SPOT 
using across-track steering capabilities and finally with 
IRS-I C/D. But these satellite data were limited due to 
spatial resolution. Fortunately, along-track stereoscopy 
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has recently gained renewed popularity using higher 
resolution satellite data systems including JERS-i’s 
optical sensor(OPS), German Modular Opto-electronic, 
Multi-Spectral Stereo-Scanner (MOMS), ASTER, IKON- 
OS, QuickBird, Orthoview, SPOT-5, FORMOSAT II, 
Cantosat and the latest addition of Digitalglobe’s 
Worldview (WV)-1. These data can define georeferenced 
terrain covariates associated with prolific Cx. quinque- 
fasciatus habitats. For example, Jacob et al. (2010) used 
multispectral QuickBird data and DEM-based GIS 
methods to evaluate stream flow direction for determining 
satellite-derived characteristics of drainage basin physio- 
graphic predictors associated with Culex erraticus, a 
mosquito vector of eastern equine encephalitis virus 
(EEEV) and Northern Cardinals, an avian host associated 
with WNV and EEEV in Tuskegee, Alabama [16]. 
Eastern equine encephalitis virus is a virulent arbovirus 

maintained in an enzootic cycle between local avian 
fauna and ornithophilic mosquitoes in coastal regions of 
the eastern United States [1,14,16]. Euclidian distance- 
to-nearest hydrological body was calculated as the 
distance in geo-space from a grid cell to a stream grid 
cell defined by a Stream Raster Grid. A Terrain Analysis 
using a DEM (i.e., TauDEM) was then performed in 
ArcGIS 9.2® to retrieve multiple geomorphological 
parameters. Additionally, a three-dimensional model of 
the study area was constructed based on the DEM using 
ArcScene extension of ArcGIS®. A Pearson correlation 
analyses computed the ratio of covariance between the 
sampled variables to the product of their standard 
deviations. Substituting estimates of the covariances and 
variances based on the Cx. erraticus samples provided 
the sample correlation coefficient which revealed 
significant inverse linear relationships between the total 
field-sampled adult count data and elevation (R2 = 
−.4711; p < .0001) with a standard deviation (SD) of 
11.16. The analyses of the Northern Cardinal data and 
elevation also revealed a similar statistical relationship 
(R2 = −.5831; p < .0001) with a SD of 11.42. Even 
though the usefulness of selected static catchment 
predictor covariates (e.g., stream, density, and slope) in 
assessing Culex habitats has been verified in previous 
research, characteristics of drainage networks and basin 
physiographic parameters have not been applied in 
modeling WNV mosquito abundance and distribution in 
any country of the Caribbean. 

Predictive interpolation algorithms have also not been 
used for forecasting productive Cx. quinquefasciatus 
habitats based on field and remote-sampled data in any 
country of the Caribbean. One of the most powerful and 
potentially valuable GIS/RS vector mosquito data mod- 
elling mechanisms is that of automated prediction. Gen- 
erally, given relevant spatiotemporal field and re- 

mote-sampled explanatory predictor variables with ap- 
propriate annotation, a WNV mosquito model can be 
constructed for making accurate forecasts of one or more 
dependent “target” quantities of interest. These quanti- 
ties of interest may be continuous real values (a scenario 
often referred to as regression” or “interpolation”), in 
vector mosquito data analyses or, it can be in the format 
of discrete labels (“aquatic habitat classification” or 
“habitat distribution pattern recognition”). Both these 
cases are referred to as “supervised learning” in the 
GIS/RS vector mosquito data learning vernacular. Pre- 
dictive interpolation algorithms can also map urban 
variation in vectors based on differentials in environ- 
mental-sampled parameters which can identify and vali- 
date models linking human ecological factors, while 
controlling for potential spatial autocorrelation in model 

residuals [21-25]. Spatial autocorrelation, the correlation 
among values of a single variable strictly attributable to 
their relatively close positions on a two-dimensional sur- 
face is frequently encountered in the analyses of spatio- 
temporal georeferenced vector mosquito data [4,8,21, 
26,27]. Autocorrelation violates the ordinary least 
squares (OLS) assumption that the error terms are un- 
correlated. While it does not bias the OLS coefficient 
estimates in a predictive vector mosquito habitat distri- 
bution model, the standard errors tend to be underesti- 
mated and the t-scores overestimated when the autocor- 
relations of the errors at low lags are positive [16]. 

Kriged-based interpolation may analyze spatiotempo- 
ral-sampled WNV mosquito data in the presence of 
fine-scale autocorrelation. Kriging is mathematically 
related to regression analyses. Both theories derive a best 
linear unbiased estimator based on assumptions of co- 
variance and make use of the Gaussian-Markov theorem 
to prove independence amongst georeferenced vector 
mosquito data exploratory parameters [26]. Kriging vec- 
tor mosquito data is commonly made by interpolation of 
a single realization of a randomized study area based on 
field and remote observations in multivariate environ- 
mental-sampled datasets. Under the regionalized as- 
sumption, local habitat variation is not generally un- 
structured but, it is spatially dependent at some scale as 
georeferenced points within a given habitat distance 
apart depend on one another in a statistical sense (16) 
Any variable is stationary when its distribution is invari- 
ant under translation, that is, the stationary region is the 
location to make estimates (26). Stationary variables 
provide a preliminary model decision for uncertainty 
about the sample value at a specific sampled habitat lo- 
cation z(x) (16). For any space lag (h) increment in a 
particular direction, the distribution of z(x1), z(x2) ... z(xn) 
habitat based observations is the same as that of z(x1 + h), 
z(x2 + h)...z(xn + h), where z(x) is regarded as the sum of 
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three terms: (1) mean, drift or trend, (2) random depend- 
ent variable plus (3) error (16) This, however, requires 
the first two moments (i.e., mean and variance) to be 
constant. This spatial homogeneous region in the distri- 
bution of the georferenced Cx. quinquefasciatus habitats 
then will make random functions homogeneous and 
self-repeating in space. The variance of the random spa- 
tial variable will equal covariance at zero lag habitat dis- 
tance (σ2 = C (0), while the covariance between z(x) and 
z(x + h) becomes σx,x+h = σ2f(h) = C (h) (16). This means 
that the stationary covariance only depends on the sam- 
pled habitat distance and direction between two sampled 
habitats and not on their georeferenced locations, or the 
second order stationary assumption. Hence, the expected 
difference between sampled values at two georferenced 
Cx. quinquefasciatus habitat locations separated by dis- 
tance h is zero. If E (μ(x)) = m then z(x) = m + e(x) and 
E (z(x) - z(x + h)) = 0 (23). Covariance at h lag habitat 
distance then will be E{(z(x) - m)(z(x + h)-m)} = E(z(x) 
x z(x + h)) - m2 = Cov(h), being that z(x) the value at x 
sampled habitat site, z(x + h) the value at x sampled 
habitat site plus h lag habitat distance is based on m rep- 
resenting the overall mean and E() symbolizing the ex- 
pected value (16). Although the covariance does not exist 
theoretically in a predictive vector mosquito habitat dis- 
tribution model, the variance of the difference between 
two sampled habitat locations will be assumed to be pre- 
sent, as it does not depend on the georeferenced location 
and Var (z(x + h) - z(x)) = E({z(x + h) - z(x)} = 2γ(h), 
being E(z(x) - z(x + h) = 0. That is, differences between 
sampled habitat sites are merely a displacement function 
between them (i.e, the intrinsic hypothesis). The γ(h) (i.e., 
dissimilarity average function) will be the key tool for 
the structural interpretation of the predicted Cx. Quin- 
quefasciatsus habitats as well as for uncertainty estima- 
tion parameters. Mathematically, the variogram is de- 
fined as γ(h) = 0.5xVar(z(x + h) - z(x) (26). Since, the 
mean of z(x + h) - z(x) is zero for intrinsic variables then 
the variance is just the mean square difference. Conse- 
quently, the variogram for a predictive vector habitat 
distribution model is as follows: γ(h) = 0.5xE{(z(x + h) - 
z(x))2}(16). These predictive interpolation vector mos- 
quito habitat distribution models can measure unknown 
local mean habitat values as having a local linear or 
quadratic trend by combining regression of the depend- 
ent variable (e.g., larval/pupal count data) based on aux- 
iliary variables, such as terrain-related parameters (i.e., 
slope), RS imagery, and thematic maps, with kriged re- 
siduals where auxiliary predictors are used directly to 
solve the weights. For instance, in our previous example 
of research conducted in Tuskegee, Alabama for exam- 
ining vector-host activities of Culex erraticus, a kriged- 
based interpolator was also constructed in Geo-statistical 

Analyst Extension of ArcGIS 9.2® for predicting prolific 
habitats based on adult abundance count data [16]. For 
total adult Cx. erraticus count, a first-order trend ordi- 
nary kriging process was fitted to the semivariogram at a 
partial sill of 5.764 km, nugget of 6.114 km, lag size of 
7.472 km, with a range of 32.62 km using 12 lags, sug- 
gesting that this species forage several kilometers beyond 
their habitats. The values that the semivariogram model 
attains at the range (i.e., the value on the y-axis) is called 
the sill, while the nugget or nugget variance, C0, occurs 
when a curve is fitted to the set of points that lie within 
the range and sill and the model used has a non-zero in- 
tercept [28]. 

Furthermore, to improve interpolation accuracy in a 
kriged-based algorithm, predictive mean standard error 
distributions can be quantified for attaining asymptoti- 
cally optimal predictors. Traditional kriging is motivated 
by an expected squared prediction error from a stochastic 
model [28]. Presently many algorthmitic paradigms of 
computational geometry have been applied efficiently in 
Geomatics and GIS using Dirichlet/Voronoi/Thiessen 
tessellation techniques for assessing interpolation models 
for quantifying the maximum error variance and the ex- 
tended prediction variance [28]. A Voronoi diagram is a 
special kind of decomposition of a metric space deter- 
mined by distances to a specified discrete set of objects 
in the space, (e.g., dataset of Culex habitat ground refer- 
ence coordinates). Generalization towards dynamic op- 
erations and kinematic motion have been investigated for 
about a decade using Dirichlet neighborhood analyses. 
Voroni residuals are amenable to assessment of good- 
ness-of-fit tests in a predictive vector mosquito habitat 
distribution models as they are approximately Gamma 
distributed and tend to be far less skewed than Pearson’s 
residuals and other residual diagnostic tests [16]. Such 
tessellations have been used in grid generation in vol- 
umes and surfaces, data compression, image segmenta- 
tion and edge detection, optimal allocation of resources, 
optimal quadrature rules, optimal representation, quanti- 
zation, finite difference tests and finite volume schemes. 
Unfortunately, there is no published literature using in- 
terpolation algorithms or Dirichlet tessellations for quan- 
tifying spatial error and predicting habitat locations using 
georeferenced spatiotemporal-sampled predictor vari- 
ables in WNV mosquito research for any country of the 
Caribbean. 

In this research, we generated multiple predictive 
geospatial models using field and remote-sampled ex- 
planatory variables of Cx. quinquefasciatus habitats in 
Trinidad. Elucidation of variability in mosquito produc- 
tivity requires spatial accounts of oviposition processes 
[29]. Indeed, this is important because of the recent iden- 
tification of sero-positive horses and domestic birds in 
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Trinidad [2]. Presently there is no remote habitat-based 
intervention for early detection of WNV activity in any 
regions of the Caribbean or Central and South America. 
A remote habitat-based intervention may provide early 
detection of arboviral activity by providing useful infor- 
mation for projection of the potential course of WNV 
transmission and also other arthropod-born viral diseases 
(e.g., St Louis encephalitis, Venezuelan equine encepha-
litis) later in the season while unraveling the environ-
mental factors associated with the maintenance and es- 
tablishment of enzootic cycles in Trinidad and in other 
countries of the neotropics. 

For mosquito larval control to be effective, however, it 
may be crucial to quantify individual sampled habitat 
variation to maximize control efforts. For example, the 
importance of variation in mosquito production among 
breeding sites in design of control programs is now 
broadly accepted in suppressing domestic container- 
breeding Aedes aegypti, a mosquito vector of Dengue in 
Trinidad. This research involved quantifying population 
densities of A. aegypti in four towns using standard 
house-to-house inspections of all water-holding contain-
ers to determine whether persistently positive containers 
and premises existed over a three-month period in the 
wet season, from May to July 2002. From a total of 
1,503 houses inspected, 15% were positive with 3% per- 
sistently positive over the three month period and classi- 
fied as ‘key premises’. From a total of 24,439 containers 
inspected, 1.3% were positive for A. aegypti larvae and 
pupae. Of 17 container types inspected, only water 
drums (54%), buckets (22%), tubs and basins (8%), wa- 
ter tanks (5%), brick holes (4%), and tires (2%) were 
significant larval habitats (P < 0.001) producers. The role 
that key premises play in the introduction and reinfesta- 
tion of A. aegypti-free communities was determined. The 
results suggested that A. aegypti control programs could 
be more cost effective and sustainable by targeting ef- 
forts on key premises and key containers to control 
mosquito densities and dengue transmission while re- 
ducing manpower needs and insecticide use. 

In this research, we constructed an autocovariate error 
matrix in SAS/GIS® for spatially targeting estimates 
generated from individual sampled Cx. quinquefasciatus 
habitat data. In our Bayesian model we did not assume 
that the georeferenced predictor variables were condi- 
tionally independent, as is commonly the case in hierar- 
chical generalized linear model (HGLM) construction 
practices for predicting WNV mosquito habitats. In our 
Bayesian network we assumed that the variables were 
conditionally independent. In practice, this assumption 
may not hold for WNV mosquito habitat models and 
may give rise to incorrect inferences. Violation of the 
assumption of statistical independence will give rise to 

incorrect model specifications [28]. Thus, we proposed 
the creation of a hidden node for modeling the depend- 
ency in the spatiotemporal-sampled parameters. In order 
to determine the conditional probability matrices for the 
hidden node, we used a gradient descent method. The 
objective function to be minimized was the squared-error 
between the measured and computed values of the in- 
stantiated nodes. Both forward and backward propaga- 
tion were used to compute the node probabilities for 
quantifying the dependence in the data. We also re- 
stricted our attention to the simultaneous autoregressive 
Gaussian spatial process and the autoregressive Gaussian 
response model (i.e., the spatial lag model), for quanti- 
fying latent autocorrelation error components in the 
Bayesian uncertainty estimates. We assumed that ob- 
served parameter error estimation patterns in the re- 
sponse variable decomposed into three statistically inde- 
pendent components: 1) a systematic spatial trend com- 
ponent that could be specified by a parsimonious set of 
exogenous variables; 2) a stochastic signal that reflects 
either an underlying spatial process and/or a set of miss- 
ing exogenous factors with an inherent spatial pattern; 
and, 3) independent white-noise disturbances. A specific 
subset of eigenvectors was then used to determine local 
and regional variation in the field and remote-sampled 
covariates by capturing dependencies among distur- 
bances generated from the Bayesian probabilistic model. 
Eigenvectors are a special set of vectors associated with 
a linear system of equations (i.e., a matrix equation) 
[4,5,8,10]. 

We constructed our remote habitat-based intervention 
by adoption of a landscape approach to elucidate mecha- 
nisms underlying Cx. quinquefasciatus productivity. Our 
landscape perspective was based on multiple georefer- 
enced explanatory variables of individual sampled habi- 
tats to determine their role in WNV disease transmission 
in Trinidad. Arguably, our framework evolved from the 
traditional concept of regression models generated from 
LULC covariates for identification of hot zones (i.e., 
cluster), but our remote habitat-based intervention also 
focused on critical spatial autoregressive modifications 
of the georeferenced predictors. We developed our mod- 
els to emphasize the role of oviposition foraging in Cx. 
quinquefasciatus in Trinidad. Habitat-based interventions 
should emphasize the link between foraging behaviors of 
egg-laying mosquitoes and the availability of breeding 
sites in evaluation of environmental management pro- 
grams [29]. The basic assumption in our models was that 
heterogeneity in immature productivity was substantially 

large among Cx. quinuefaciatus habitats and that the 
number of productive habitats was relatively fewer than 
that of unproductive ones in focal areas. Untargeted in- 
terventions are inefficient because habitats are randomly 
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selected without consideration of the distribution of pro- 
duction (29). Spatially targeting prolific breeding habitats 
using a remote habitat-based intervention may reduce Cx. 
quinuefaciatus populations in Trinidad and help imple- 
ment a cost-effective surveillance mechanism. Therefore, 
our objectives of this research were to: 1) construct a 
DEM to identify terrain-related explanatory covariates 
associated with spatiotemporal-sampled mosquito data; 2) 
generate regression models to determine statistical sig- 
nificance associated with the sampled covariates, 3) 
quantify latent autocorrelation components in model re- 
sidual variance estimates generated from an eigenfunc- 
tion decomposition spatial filter algorithm; and, 4) de- 
velop spatial interpolation models of potential prolific 
habitats site based on field-sampled count data. Although 
the discussion is centered on WNV vectors specifically in 
Trinidad, the framework and derived guidelines in this 
research may be applicable to integrated control pro- 
grams for other mosquito species and insect-borne dis- 
eases in other regions. 
 
2. Material and Methods 
 
2.1. Study Site 
 
The island of Trinidad is the most southerly part of the 
Lesser Antilles located at approximately 10° north lati- 
tude and 15 km from the eastern coast of Venezuela. The 
geology, flora and fauna are typical of the adjacent South 
American mainland [31,32]. Trinidad is approximately 
80 km from north to south and is on average 60 km wide, 
roughly rectangular in shape with large promontories on 
the northwest and southwest of the country. The climate 
of Trinidad is tropical with a “rainy” season between 
May and November and a “dry” season from December 
to May. Details about climate, physical features, vegeta- 
tion, and population size have been previously described 
[33,34]. 
 
2.2. Mosquito Egg Sampling 
 
The Cx. quinquefasciatus habitat population was sur- 
veyed by counting the number of egg-rafts deposited in 
oviposition traps. Field sampling was conducted from 
July 2008 to July 2009. One hundred and fifty two tem- 
porary, permanent, and semi-permanent mosquito larval 
habitats in the study site were mapped and classified, and 
recalibrated using a CSI-Wireless differential corrected 
global positioning systems (DGPS) Max receiver which 
yields a positional error of .179 m (+/− 392 m) [35]. Wa- 
ter bodies were inspected for Cx. quinquefasciatus egg- 
rafts. Oviposition traps were located in shady areas 
around residences and municipal buildings, as well as the 

edge of parks and woodlots. 
 
2.3. Habitat Base Mapping 
 
Initially, Landsat images were collected using SLC-off 
mode (http://edc.usgs.gov/#Find_Data/Products_and_ 
Data_Available/ETM). We used the USGS Global 
Visualization Viewer (GloVis) system (http://glovis.usgs. 
gov/) to search for images for performing a land cover 
classification. Path 233/row 53 covered the Trinidad 
study area. Unfortunately, the images acquired from 
GloVis, were all cloudy, due to the climate conditions of 
the island. Cloudy image is an issue for remote 
classification and change detection for identification of 
mosquito habitats [24]. We did find three Landsat 7 
passes of path 233/row 53 which were less than 10% 
cloud free. Theses collection periods were April 30, May 
16, and June 1, 2005. These data; however, were not able 
to discriminate the land cover due to poor resolution (i.e., 
30m resolution) associated with the overlaid geo- 
referenced Cx. quinquefasciatus habitats coordinates. 

We acquired WV-1 data (www.digitalglobe .com) for 
the study site on July 2010. Operating at an altitude of 
496 kilometers, WV-1 has an average revisit time of 1.7 
days and is capable of collecting up to 750,000 km2 per 
day of half-meter resolution imagery. The satellite is 
equipped with state-of-the-art geolocation accuracy 
capabilities and exhibits stunning agility with rapid 
targeting and efficient in-track stereo collection. Various 
collection sizes of surveying are available: frame mode, 
route survey (along coastline, roads and linear objects), 
areal survey (60 × 60 km), and stereoscopic areas on a 
single pass as well (www. digitalglobe.com). 

In this research, the WV-1 imagery was radiometrically 
and sensor corrected but was not projected to a plane using 
a map projection or datum. The sensor correction blended 
the pixels from all the detectors into synthetic arrays to 
form the image of the study site. The geolocation accu- 
racy specification of the data was 4.0 to 5.5 m CE 90 at 
nadir excluding terrain and off-nadir effects. The im- 
agery was delivered at full-swath cut into 14 km lengths. 
The WV-1 imagery was classified using the Iterative 
Self-Organizing Data Analysis Technique (ISODATA) 
unsupervised routine in ERDAS Imagine v.8.7™ (At- 
lanta, USA) which is commonly used to classify land 
covers associated with disease foci [18,26,29]. The im- 
ages were co-registered manually using ground control 
points (GCPs) and by applying a first order polynomial 
algorithm with a nearest neighbor re-sampling method. 
The Universal Transverse Mercator (UTM) Zone 20P 
datum WGS-84 projection was used for all of the spatial 
datasets. 

Base maps were prepared from the field-sampled Cx. 
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quinquefasciatus habitat data and WV-1 imagery for the 
study site using the DGPS ground coordinates. We gen-
erated GIS data layers in the vector shapefile format, 
ArcInfo® Coverage format and raster GRID format for 
use in the GIS software package ArcGIS v 9.3®. We 
constructed a discrete tessellation of the region using a 
digitized grid-based algorithm (Figure 1). For remote 
identification of vector mosquito habitats the first step is 
often to construct a discrete tessellation of the region 
[36]. A unique identifier was placed in each grid cell. 
Each Cx. quinquefasciatus habitat/polygon was assigned 
a unique identifier. Field attribute tables were then asso- 
ciated to the polygons. 
 
2.4. Environmental Data Analyses 
 
Base maps were also generated using the spatiotemporal- 
sampled Cx. quinquefasciatus habitat data which was 
stored in a Vector Control Management System® (VCMS) 
(Clarke Mosquito Control Products, Inc. 159 N. Garden 
Avenue, Roselle, IL 60172) database. The VCMS sup- 
ported the mobile field data acquisition in the study site 
through a PocketPC™. All two-way, remote synchroni- 
zation of data, geocoding and spatial display were proc- 
essed using the embedded GIS Interface Kit™ that was 
built using ESRI’s MapObjects™ 2 technology. The 
VCMS database plotted and updated the DGPS ground 
coordinates of the Cx. quinquefasciatus habitats and 
supported exporting data in spatial format in which any 
combination of the sampled habitats and explanatory 
covariates were described in ESRI shapefile format for 
use in GIS. The database displayed this information onto 
a user-defined field base map. 
 
2.4.1. Spatial Hydrological Model 
The latest version of PCI Geomatics Orthoengine® soft- 
ware was used to generate a DEM using the WV-1 data 
and the georeferenced Cx. quinquefasciatus habitat co- 
variates (Figure 2). OrthoEngine offers an industry- 
leading variety of control sources including, manual en- 
try, geocoded imagery, geocoded vectors, chip database, 
digitizing tablet, or a text file (www. pcigeomatics.com). 
We used the DGPS coordinates to orient the images to 
our map coordinate system. We used PCI Geomatics 
OrthoEngine to extract the DEM. PCI software sup- 
ports automatic GCP/tie point (TP) collection, using 
Toutins rigorous models, Rational Polynomial Coeffi- 
cient (RPC) model construction, automatic DEM genera- 
tion, orthorectification and automatic mosciaking (www. 
pcigeomatics.com). 

WV-1 stereo pairs were supplied by the full scene of 
the Trinidad study site using Basic 1B level data de- 

signed for the creation of the DEM. A set of WV-1 Basic 
1B stereo images were provided by Digitalglobe. The set 
of stereo data was in Basic 1B OR2A product format. 
Due to the 2 gigabyte limit of the TIFF data, WV-1 data 
was distributed in tile format. Each tile came with its 
own RPC file. Because our OR2A format was map pro- 
jected, the effects of any high frequency movements had 
already been removed from the scene resulting in a good 
fit for the RPCs. 

In order to leverage the WV-1 image for attaining to- 
pographic indices from the Cx. quinquefasciatus data, a 
geometric model was required. We generated an RPC 
model. The RPC model has proven to be the most popu- 
lar geometric model for high resolution images (www. 
digitalglobe.com). Since bias or errors may still have 
been present in the RPCs, our results were preprocessed 
with a polynomial adjustment using several accurate 
GCPs (Table 1). A zero order RPC adjustment is ade- 
quate to obtain an RPC model accuracy within 1m 
(www.digitalglobe.com). 

To generate a DEM for determining the terrain-related 
Cx. quinquefasciatus habitat parameters in the Trinidad 
study site, a pair of quasi-epipolar images were generated 
from the fore and aft stereo images to retain elevation 
parallax in the X-direction only. An automated image 
match procedure was then used to produce the DEM 
through a comparison of the respective gray values of 
these images. To find the corresponding pixels in the left 
and right quasi-epipolar images, we used a hierarchical 
sub-pixel mean normalized cross-correction matching 
method. The actual matching method employed gener- 
ated correlation coefficients between 0 and 1 for each 
matched pixel, where 0 represented a total mismatch and 
1 represented a perfect match. A second order surface 
was then fitted around the maximum correlation coeffi- 
cients. The difference in the georeferenced Cx. quinque- 
fasciatus habitats between the images gave the disparity 
 
Table 1. Rational polynomial coefficient results for the WV- 
1 digital elevation model. 

CP RMS  
error 

CP RMS 
error 

Product
Number 
of GCPs

Number  
of CPs 

X Y X Y

Fore 0 19 0.4 .1 0.3 2.5

 1 17 0.4 0.5 0.6 0.7

Aft 0 16 0.4 1.3 1.0 2.2

 1 17 0.5 1.1 1.3 2.7

GCP: Ground Control Points, CP: Control Point, RMS: Root Mean Square      
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Figure 1. Gridded area of urban land cover in the Trinidad study site using WV-1 with georeferenced Cx. quinquefasciatus 
habitats. 
 

 

Figure 2. A digital elevation model (DEM) based on georeferenced Cx. quinquefasciatus habitats for the Trinidad study site. 
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or parrallex arising from terrain relief which was then 
converted to absolute elevation values above the WGS- 
84 absolute ellipsoid using a 3-d space interaction solu- 
tion. Digital elevation model statistics were then gener- 
ated employing the Pearson’s correlation to find if an 
association existed between the georeferenced Cx. Qui- 
nuefasciatus habitats and any of the sampled covariates 
(Table 2). 
 
2.4.2. Regression Analyses 
Variable selection for the multiple regression models was 
carried out by a combination of automatic (stepwise) 
procedures and goodness-of-fit criteria, and by selecting 
cluster covariate measurements that explained WNV 
prevalence. Routinely, the Analysis of Variance (ANOVA) 
are used to provide calculations about spatio-temporal 
sampled WNV habitat data regarding levels of variability 
within a regression model while forming a basis for tests 
of significance for the parameter estimates [18]. Analysis 
of variance is a collection of statistical models and their 
associated procedures in which the observed variance is 
partitioned into components due to different sources of 
variation. 

In this research, the regression line concept we used 
was: ( ) ( ) ( )ˆ ˆi i i iy y y y y y− = − + − , where the first term 
was the total variation in the response y (egg-raft count 
of Cx. quinquefasciatus habitats ), the second term was 
the variation in mean response based on the sampled 
parameters and the third term was the residual value in 
the model estimates. Squaring each of these terms and 
adding over all of the sampled observations gave the  

equation ( ) ( ) ( )2 2 2
ˆ ˆi i i iy y y y y y− = − + −   . This  

equation was then written as SST = SSM + SSE, where 
SS was notation for sum of squares and T, M, and E 
were the notation for total, model and error, respectively. 
The square of the sample correlation was equal to the 
ratio of the estimates while the sum of squares was re- 
lated to the total sum of squares: r² = SSM/SST. This 
formalized the interpretation of r² as explaining the frac- 
tion of variability in the sampled egg-raft Cx. quinque- 
fasciatus habitat population in the Trinidad study site 
explained by the regression-based parameters. The sam-  
ple variance sy² was equal to ( ) ( )2

1iy y n− − , which 
in turn was equal to the SST/DF (degrees of freedom), 
the total sum of squares divided by the total DF. A linear 
regression equation was constructed using the mean 

square model (MSM) = ( ) ( )2
ˆiy y l− , which was  

equal to the SSM/DF. The corresponding mean square 

error (MSE) was ( ) ( )2
ˆ 2i iy y n− − , which was also 

equal to SSE/DF and also the estimate of the variance 
about the regression line (i.e.,σ²). The MSE is an esti- 

Table 2. Pearson correlation for Cx. quinquefasciatus 
aquatic habitat egg-raft count data and the sampled pre- 
dictor variable elevation in the Trinidad study site. 

Predictor  
variables 

Statistical 
 tests 

Significance 
 level 

Elevation 
(m) 

Pearson  
Correlation 

1 -0.438 

Sig. (2-tailed) <0.0001 <0.0001

Total  
egg-raft  

count data 

N 152 114 

 
mate of σ² for determining whether or not the null hy- 
pothesis is true [25]. The null hypothesis for the ANO- 
VA analyses was based on the average value of the de- 
pendent variable (i.e., egg-raft count of Cx. Quinquefas- 
ciatus). The ANOVA calculations for multiple regres- 
sion are nearly identical to the calculations for simple 
linear regression, except that the degrees of freedom are 
adjusted to reflect the number of explanatory variables 
included in the model [25]. 

For the spatiotemporal-sampled explanatory variables, 
(p) the DFM was equal to p and the error degrees of 
freedom (DFE), which was equal to (n - p - 1) and the 
total degrees of freedom (DFT) which was equal to (n - 
1), the sum of DFM and DFE. The corresponding 
ANOVA table generated from the field and remote- 
sampled Cx. quinquefasciatus habitat parameters is 
shown below: 
 

Source 
Degrees of 
Freedom 

Sum of  
squares 

Mean Square

Model p MSM/MSE ( )2
ˆ

iy y−  SSM/DFM 

Error n – p – 1 ( )2
ˆ

i iy y−  SSE/DFE 

Total n – 1 ( )2

iy y−  SST/DFT 

 
In the multiple regression analyses, the test statistic 

MSM/MSE had an F (p, n - p - 1) distribution. In this re- 
search, the null hypothesis stated that  

1 2 p 0β β β= = = = , and the alternative hypothesis 
simply stated is that at least one of the sampled Cx. quin- 
quefasciatus habitat parameters j 0, j 1,2, pβ ≠ =  . 
Large values of the test statistic can provide evidence 
against the null hypothesis [25]. The F test did not indicate 
which of the parameters jβ ≠  was not equal to zero, only 
that at least one of them was linearly related to the re- 
sponse variable (i.e., total egg-raft count of Cx. Quinque- 
fasciatus habitat parameters). The ratio SSM/SST = R2 
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(i.e., squared multiple correlation coefficient) was the pro- 
portion of the variation in the response variable that was 
explained by the field and remote-sampled Cx. quinque- 
fasciatus habitat data. The square root of R² (i.e., the multi- 
ple correlation coefficient) was the correlation between the 
sampled observations yi and the fitted values ˆiy . 

The relationship between WNV prevalence and each 

individual potential predictor variable sampled in the 
Trinidad study site was also investigated by single vari- 
able regression analysis using PROC MIXED. Since 
parasite prevalence data are binomial fractions, a regres- 
sion model was used, as is standard practice for the anal- 
ysis of the spatiotemporal-sampled WNV mosquito data 
[4]. Poisson regression analyses were also constructed in 
PROC MIXED to determine the relationship between Cx. 
quinquefasciatus habitat egg-raft count data and the 
sampled habitat characteristics. These regression models 
were generalized linear models with the logarithm as the 
(canonical) link function, and a Poisson distribution 
function. 

The regression analyses assumed independent counts 
(i.e., ni), taken at sampled habitats I = 1, 2… n. The field- 
sampled count data were described by a set of explana- 
tory variables denoted by matrix Xi, a 1 × p vector of co- 
variate measurements for a sampled habitat i. The ex- 
pected value of these data was given by μi (Xi) = ni (Xi) 
exp (Xi β), where β was the vector of non-redundant pa- 
rameters and the Poisson rates parameter was given by λi 
(Xi) = μi (Xi)/ni (Xi) [37]. The rates parameter λi (Xi) was 
both the mean and the variance of the Poisson distribu- 
tion for each sampled Cx. quinquefasciatus habitat loca- 
tion i. The dependent variable was total field-sampled 
egg-raft count data. The Poisson regression model as- 
sumed that the data was equally dispersed, meaning that 
the conditional variance equaled the condition mean. The 
procedure used maximum likelihood estimation to find 
the regression coefficients. The data was log-transformed 
before analyses to normalize the distribution and mini- 
mize standard error. The predictor variables used in the 
regression analyses are listed in Table 3. 
 
2.4.3. Bayesian Analyses 
In the Bayes formulation, the specification of the Cx. 
quinquefasciatus habitat model was completed by as-
signing priors to all unknown parameters. We used our 
dataset of spatiotemporal-sampled Cx. quinquefasciatus 
observations X = [x1, , xn] where each xi for i = 1   
n was assumed to be distributed according to some dis-
tribution p(xi|θ). In this research, θ was a parameter that 
was unknown and had to be inferred from the data. Our 
Bayesian procedure began by assuming that θ was dis-
tributed according to some prior distribution p (θ|α), 
where the parameter α was a hyperparameter.  

Table 3. Ecological variables collected in the Trinidad study 
site. 

Variable Description Units 

EGG-RAFT 
COUNT 

count data 
(dependent variable) 

Number collected 

STUDY SITE Trinidad 10 × 10 m grid cells 

DISHOUSE
Distance to house from 
sampled aquatic habi-

tats 
Meters 

DHABITAT
Distance to house from 

sampled aquatic  
habitats 

Meters 

SHADE Amount of shade 
Percent of grid cell  

that is shaded (nearest 10%)

DRAINAGE
Drainage status  

of soils 
0 = poorly drained,  

1 = well drained 

CANOPY 
Canopy cover above 

larval habitat 
Percent of grid cell with 

canopy cover (nearest 10%)

Elevation 
The geographic height 

above a habitat  
reference point, 

Meters 

 
The joint of the Cx. quinuefasciatus data was then 

generated using: 

( ) ( ) ( )1 1
1

, ,
n

n
i

p p x x p xθ θ
=

θ = = ∏X  ; whereby,  

( ) ( ),p a pθ = θX X  and ( ) ( ),i ip x a p xθ = θ  were  

conditionally independent of the hyperparameter. Bayes- 
ian inference then determined the posterior distribution 
of the parameter ( ),p aθX  using : 

( ) ( )
( )

( )
( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1

1

, , , ,
,

, , ,

,

,

n

ii

n

ii

p p
p

p p d

p p p p

p p d p p d

p x p

p x p d

θ

θ θ

θ

θ α θ α
θ α

α θ α θ

θ α θ α θ θ α
θ α θ α θ θ θ α θ

θ θ α

θ θ α θ
=

=

= =


= =
 

 
 =
   

∏
∏

X X
X

X X

X X

X X
 

For the fixed regression parameters, a suitable choice 
was the diffuse prior, i.e., p (γ) ∝ const, but a weakly 
informative Gaussian prior was also possible. A second- 
order Gaussian random walk prior was used to allow 
enough flexibility while penalizing abrupt changes in the 
function [17]. The prior was expressed as: 

( )
2

2
2

t t 1 t 23
( ) exp f 2f f

2
tf

f t
p f

τ
τ α − −=− − +

 
  
 

  where  
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( )1, pf f f=   and 2
fτ  was the variance, with diffuse 

priors 1f ∝  const, 2f  ∝  const. 
For additional spatial effects in the sampled Cx. quin- 

quefasciatus data, smoothness priors were assigned 
whose joint distribution, s, was given by:  

( )
2

22
t 11 t12

( ) exp s s
2

f
f t

p s
ττ

τ α −=

 
− +…+  
 

 . 

Again, assuming diffuses priors, the variance that con- 
trolled the degree of smoothness in the model was 1s  , 

11s , and 2
fτ . The unstructured spatial heterogeneity term, 

ui, was assumed to follow an exchangeable Gaussian prior 
with zero mean and variance, ( )2 2, . ., ~ 0,u i ui e u Nτ τ . A 
similar prior was then assigned to the heterogeneity term 
for the sampled predictor variables, i.e., ( )2~ 0,i uh N τ . 

Finally, for the spatial components, vi, a Markov 
random field (MRF) prior was assigned. The conditional 
distribution of vi, given an adjacent covariate, vj, was a 
univariate normal distribution with mean equal the 
average vj coefficient values of vi’s neighboring sampled 
site and variance equal to 2

vτ  divided by the number of 
total adjacent sampled Cx. quinquefasciatus predictors. 
This lead to a joint density of the form:  

( ) ( )
2

22
i~jexp

2
v

v i jp v v v
ττ α

 
− − 
 

  where i ~ j denoted  

a sampled site i adjacent to j, and where the parameter 
estimates vi and vj in the adjacent sampled sites were similar. 
The degree of uncertainity in the spatiotemporal-sampled 
data was determined by the unknown precision parameter 

2
vτ . 
By writing j j jf z β= , k kh z β= , l lu z β= , and 

m mv z β=  for a well defined design matrix Z, a vector of 
regression parameters β, with all different priors, was 
expressed in a general Gaussian form using the expression:  

( )2 '
j j2

1
exp β

2j j j
j

p Kβ τ α β
τ

 
  
 

 

with an appropriate  

penalty matrix Kj. The model structure was dependent on 
the sampled explanatory variables and smoothness of the 
function. In most cases, Kj is rank deficient and, hence, the  

prior for βj is improper [18]. For the variances 2
jτ  inverse  

Gamma priors IG (aj, bj) was assumed, with hyper- 
parameters aj, bj chosen such that this prior was weakly 
informative. 

The Bayesian framework in this research was defined 
by conditional probabilities constructed from environ- 
mental-sampled Cx. quinquefasciatus habitat data. The 
observation nodes in the Bayesian estimation model were 
denoted by a vector ( )1 2, , , Nx x x x=  , and the set of 
states of the observation node x j generated from the 
sampled data that was represented by { }1,2, ,j jx Y∈  . 
In this research the hidden nodes were denoted by 

{ }1, 2, ,k kz T∈  . The probability that the state of the 
hidden node kz  was I, 1 ki T≤ ≤ , was expressed as  

( ) ( ), : kk i P z iα = = . Because ( ){ }, , 1, 2, , kk i i Tα =   is a 

probability distribution, ( ),1
1kT

k ii
α= = , holds for 

1, 2, ,k K=   [10]. The conditional probability in this 
research was that the jth observation node xj was l, 
1 ji Y≤ ≤ , which was based on the condition that the 
states of hidden nodes were ( )1 2, , , Nz z z z=  , gener- 
ated by ( )( , | ) |j l z jb P x l= = . We defined ( ),: { }k iα α− , 

( ){ }, |: j l zβ β= , and let { },ω α β=  be the set of all the 
spatiotemporal-sampled Cx. quinquefasciatus habitat 
parameters in the study site. Then the joint probability 
that the states of observation nodes were  

( )1 2, , , Nx x x x=   and the states of hidden nodes were 
( )1 2, , , Nz z z z=   based on  

( ) ( ) ( )1 1
, , ,

k N

k jk j
P x z k z j x zω α β= ==∏ ∏ . 

The marginal probability that the states of observation 
nodes were x was generated using 

( ) { } ( ) ( )11 1 1
, , , |kK K NT

k jkk k j
P x z k z j x zω α β== = == ∏ ∏ ∏ , 
and we used the notation  

{ }{ }1 2

1 2 21 1 1 11
:k K

K

K T T T T

zk z z zk
z

= = = === =   ∏   

for the summation over all states of hidden nodes. We 
assumed the sampled Cx. quinquefasciatus habitat pre- 
dictor variables { }1 2, , ,n nX X X X=   were independ- 
ently and identically taken from the true distribution 

( )op x . In Bayesian learning, the prior distribution ϕω  
on the parameter ω  is set [18]. As such, the posterior 
distribution ( )np Xω  was computed from the spatio- 
temporal-sampled Cx. quinquefasciatus habitat dataset 
and the prior by 

( ) ( ) ( )( ) ( )n

1
exp nH ω φ ωn

n
p X

Z X
ω = −   

which was generated using the expression  

( ) ( )1 1
H 1 1 log( { ) | )on n i n p X iω ω↑

↓= = ≡ , 

and ( )nZ X  (i.e., the normalization constant). The 
Bayesian predictive distribution ( )np x X  was pro- 
vided by averaging the model over the posterior distribu- 
tion as follows,  

( ){ ( ) ( ){ }n np x X p x p x X dω ω ω=  .  

The Bayesian stochastic complexity ( )nF X  was de- 
fined by ( )nF X  = –logZ ( )nX  which was used as a 
criterion by which the model was selected and the hy- 
perparameters in the prior were optimized. We let 

[ ]nx
E


 

be the expectation over all the sampled Cx. quinquefas- 
ciatus parameters. The Bayesian stochastic complexity 
had the following asymptotic form using 
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( ) ( ) ( ) ( )[ log 1 log log log 1E X n F X n n m n Oλ↑ ↑
↓ ≈ − − +  

where λ and m were the rational number and the natural 
number respectively, and the two were determined by the 
singularities of sampled predictor variables. In regular 
models, 2λ is equal to the number of parameters and m = 
1, while in non-identifiable models, 2λ is not larger than 
the number of parameters and m ≥ 1 [38]. However, 
Bayesian frameworks using field and remote-sampled 
vector mosquito data requires integration over the poste- 
rior distribution, which typically cannot be performed 
analytically [4].  

In this research, we let { },n nX Z  be the sampled Cx. 
quinuqefasciatus parameter estimates corresponding to 
the hidden error variables in the equation nZ =  
{ }1 2, , , nZ Z Z . The variational Bayesian framework 
approximated the Bayesian posterior ( ),n np Z Xω  of 
the hidden variables and the Cx. quinuqefasciatus pa- 
rameters using the variational posterior ( ),n nq Z Xω , 
which was factorized using  

( ) ( ) ( ),n n n n nq Z X Q Z X r Xω ω= ,  

where ( )n nQ Z X  and ( )nr Xω  were posteriors 
based on the inconspicuous error variables and the sam- 
pled data respectively. The variational posterior 
( ),n nq Z Xω  was chosen to minimize the functional 

F  [q] defined by 

[ ]
( ) ( ) ( )( )

( )
, log ,

, ,n

n n n n n

n n
Z

q Z X q Z X po X
q d

p X
F

Z

ω ω
ω

ω
= , 

which was then further defined by the equation 
( ) ( )( )( , | ) || , |s F X n K q Z n X n p Z n X nω ω↑ ↑ ↑ ↑ ↑= +   

using the sampled parameters, where  
( ) ( )( ), | || , |K q Z n X n p Z n X nω ω↑ ↑ ↑ ↑  and the true Bay- 

esian posterior was ( ), |n np Z Xω  and the variational 
posterior was ( ),n nq Z Xω . This led to the functional 
[ ]F q  being minimized under the constraint and then the 

variation posteriors, ( )nr Xω , and ( )n nQ Z X  which 
was computed using the equations  

( ) ( ) ( )1
expn n n

r

r X logp X Z Q
C

ω ϕ ω ω= < >  and  

( ) ( )1
exp ,n n n n

Q

Q Z X logp X Z r
C

ω= < >   

where rC  and QC  were the normalization constants. It 
is important to note that these equations gave only nec- 
essary conditions for the functional [ ]F q  to be mini- 
mized in the Cx. quinuqefasciatus habitat model. The 
variational posteriors were computed by an iterative al- 
gorithm. We defined the variational stochastic complex-  

ity ( )nF X  by the minimum value of the functional  

[ ]F q  which was ( ) [ ]min
r,Q

nF X F q= , based on the dif-  

ference between ( )nF X  and the Bayesian stochastic 

complexity ( )nF X .  
We then generated variational posterior for the esti- 

mation matrix. We assumed that the prior distribution 
( )ϕ ω  of the Cx. quinquefasciatus habitat parameters 
{ },a bω =  was the conjugate prior distribution. Then 

( )ϕ ω  was generated by the equation 

( ) ( )
( ) ( )

0 10

1 ,
0

Γ
, 1,2, ,

Γ

k

k k k

Tk
k T z k z

T
a a k K

φφ
ϕ

φ

−

=
= =∏  ,  

and covariates estimates were provided by  

( ) ( )
( ) ( )

0
0 ξ 1

( | ) 1

0

Γ ξ
, 1, 2, ,

Γ ξ

j

n nj j

j Y

j z j zY x

Y
b b j Nϕ −

== =∏  ,  

which were Dirichlet distributions with hyperparame-
ters generated using 0φ > 0 and 0ξ  > 0. The Dirichlet 
distribution [i.e., Dir(α)] is a family of continuous multi- 
variate probability distributions parameterized by the 
vector α of positive reals which can generate the multi- 
variate generalization of the beta distribution and conju- 
gate prior of the categorical distribution and multinomial 
distribution in Bayesian statistics for predictive vector 
mosquito habitat models [4]. The Dirichlet distribution is 
the multinomial extension to the beta distribution for a 
binomial process which can also be used in quantifying 
probabilities in predictive vector mosquito habitat prob- 
ability models [39]. 

We then let ( )nδ  be 1 when n = 0 and 1 otherwise, 
and then defined the sampled parameter uncertainty es-  

timates using ( )
( )( )( ), 1

:
k

n kz
i kk z i

Q
n Z zδ== − . In this re-  

search we also used  

( )
( )( )( ) ( )( )( )1 1,

:
j

Kn j kx
i j i ki kj x z Q

n X x Z zδδ= =−= −∏ . 

In these equations, ( )j
iX  was the state of the jth ob-

servation node and ( )k
iZ  was the state of the kth hidden 

node. The variational posterior distribution of parameters 
{ },a bω =  was given by using the equation  

( )
( )( ) ( )

( ) 0

k

, 10
,1z

0k,z1

Γ(n )
|

Γ n

x
k k

kkk

k

T n k zn k
k k zzT

z

T
r a X a φφ

φ
+ −

=

=

+
=

+
∏

∏
 

where each of the spatiotemporal-sampled Cx. Quinqe- 
fasciatus habitat covariates were generated using the 
equation  

( ) ( )

( ) ( )( )( )( )
: 1

1

n z x i n

k K Z i k Z k Q

↑↑
↓

↓

↑
↓ ↓ ↓ ↓

= = ≡

= ≡ −



∏
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It then followed that 
1 ( , | )j

j

j

xyx
zz jx xn n

=
=  for 1, ,j N=    

and ( ), k k

z x
zk z z

n n
−

=  denoted the sum over ( )iz i k≠ . 

In this research we evaluated the statistical efficiency 
of the MCMC sequence in WinBUGS® using the fol- 
lowing steps: 
Step1: Sample S(m) from f(S|X,Z(m-1))  
Step2: Sample P(m) from f(P|X,S(m),Z(m-1))  
Step3: Sample Z(m) from f(Z|X,P(m),S(m),Φ(m-1))  
where X was the field and remote-sampled Cx. Quinque- 
fasciatus habitat data and Z was randomly assigned a 
starting value Z(1) using a uniform prior distribution. 

Step 1 was performed by drawing from an inverse 
Wishart distribution. In Bayesian statistics inverse Wi- 
shart distribution is used as the conjugate prior for the 
covariance matrix of a multivariate normal distribution 
[9]. The probability density function of the inverse Wi- 
shart was:  

( ) ( )1ψB /21 2/2

2

ψ | | |

2
2

tracem pm

mp

p

B e

mτ

−−− + +

 
 
 

 

where B and ψ  were positive definite matrices, and 

pτ (·) was the multivariate gamma function. In this re- 
search the distribution of the inverse of a Wishart-distrib- 
uted matrix was generated from ( )~ ,A W m  and 

 , which was of size of the matrix constructed from 
the field and remote-sampled Cx. quinquefasciatus habi- 
tat parameters. Under these circumstances 1B A−=  had 
an inverse Wishart distribution, ( )11~ ,B W m

−−  . We 
calculated the probability density function:  

( ) ( )
1

/2 12

2

| | | exp tr B 2
| ,

2
2

m p
m

mp

p

B
p B m

m

ψ ψ
ψ

τ

+ +− −−
=

 
 
 

 

where 1ψ −= and pτ (·) was the multivariate gamma 
function of the sampled data. A probability density func- 
tion or density of a continuous random variable is a func- 
tion that describes the relative likelihood for this random 
variable to occur at a given point [25]. 

The marginal and conditional distributions from the 
inverse Wishart-distributed matrix was quantified using 

( )1~ ,A W mψ− . We then partitioned the matrices for 

determining if ψ  was conformable with each other 

using:  

11 12

21 22

A A
A

A A

 
=  
 

, 11 12

21 22

ψ ψ
ψ

ψ ψ
 

=  
   

where Aij  and ijψ  were Pi x Pj matrices. We then 

determined if: 
1) 11A  was independent of 1

11 12A A−  and 22 1A ⋅ , when 

1
22 1 22 21 11 12A A A A A−
⋅ = −  which was the Schur com- 

plement (i.e., a submatrix within a larger matrix) of 11A  
in A ; 

2) 11A ~ ( )1
11 2,W m pψ− − ; 

3) 
1 2

1 1 1
11 12 22 1 x 11 12 22 1 11A A | A ~ ( ,A )p pMN ψ ψ ψ− − −

⋅ ⋅ ⊗  , 

where ( , )pxqMN ⋅ ⋅  was a matrix normal distribution gen- 
erated from the spatiotemporal-sampled Cx. quinque- 
fasciatus habitat parameters; 

4) ( )1
22 1 11A ~ ,W mψ−
⋅ . 

We used the Conjugate distribution to make inference 
about a covariance matrix  whose prior ( )p   
had a ( )1

11,W mψ−  distribution. If the observations 

1, , nX x x=   are independent p-variate Gaussian vari- 
ables drawn from a ( )0,N  distribution, then the con- 
ditional distribution pX  has a ( )1 ,W n mψ− + +A  
distribution, where A  =XXT is n times the sample co- 
variance matrix [3]. Because the prior and posterior dis- 
tributions are the same family, the inverse Wishart dis- 
tribution was the conjugate to the multivariate Gaussian 
generated from the georeferenced Cx. quinquefasciatus 
habitat parameters. 

Due to its conjugacy to the multivariate Gaussian it 
was possible to “integrate out” the Gaussian’s parameter 
  using: 

( ) ( ) ( )
2

2 2

X , X ,

2

A
2

m

p

np m n

p

P m P P m d

m n

m

ψ ψ

ψ τ

π ψ τ
+

=

+ 
 
 =

 +  
 

  

 

This task was simplified by assuming that the spatio- 
temporal-sampled Cx. quinquefasciatus habitat data 
analyses had covariance matrices with common eigen- 
vectors. If covariance’s differ among sources, the inverse 
Wishart draws often produce invalid, especially for 
sources that are small components of the mixture [9]. In 
this research we developed a different approach, noting 
that a covariance matrix S can be decomposed into a 
vector of standard deviations, V, and a correlation matrix, 
R using: S = diag(V)Rdiag(V) where diag(V) was a ma- 
trix with diagonal elements V and zeros elsewhere. This 
decomposition permitted the independent sampling of V 
and R. We simulated the standard deviations, V, from an 
inverse gamma distribution: 

( )( )
2

1 ,2
, , ~ ,

2 2
m k l kk

k l

s nn
p V X Z IG α β−  

+ +  
 

, where nk  

was the number of individual habitats assigned to cluster 
k by Z(m-1) (i.e., an estimate of the Cx. quinquefasciatus 
habitat sample size), s2

k,l was the sample variance of 
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element l in cluster k as assigned by Z(m-1), and α and β 
were constants, both set to the non-informative prior 
value of 1. Quasi-likelihood techniques in a logistic re- 
gression equation and Bayesian prior distributions can 
enumerate intra-cluster correlations in urban vector 
mosquito aquatic habitats [4]. 

We simulated the elements of the correlation matrices, 
R, from a hyperbolic-tangent transformed distribution 
using : 

( ) ( )( ) ( )( )1
, , , ,

1
tanh | , ~ ˆtanh ,m

k i j k i j
k

p R X RZ N
n

−  

where , ,
ˆ

k i jR  was the current estimate of the correlation 
between the ith and jth elements (i ≠ j) in a cluster k given 
Z(m-1), and nk was the same. After sampling values for 
both V and R, we reassembled the covariance matrix, Sk, 
for each Cx. quinquefasciatus habitat cluster, thus, com- 
pleting Step 1. 

Step 2 required drawing values for the elemental 
means, P. The field and remote-sampled data X had an 
approximate multivariate normal distribution as such 
Step 2 was performed using the vector of mean concen- 
trations for cluster k. The multivariate normal distribu- 
tion using the Cx. quinquefasciatus habitat parameters 
was given by the sample means calculated from X, gen- 
erated from the cluster assignments, Z(m-1)) and the co- 
variance Sk from Step 1. If cluster k was empty at m-1 
(that was, no individual sampled habitat parameters were 
assigned to k by Z(m-1)), then the grand mean and covari- 
ance matrix of X were used as the sample mean and co- 
variance matrix of k. 

Step 3 involved drawing new cluster assignments us- 
ing each individual sampled Cx. quinquefasciatus habitat 
in the Trinidad study site. To do so, it was necessary to 
calculate Pr(zi = k) for every i, k combination (zi was the 
ith element of Z). Again we assumed multivariate normal 
distributions where Z(m) was simulated from: 

( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )

,

1

Pr | , , ,

| , ,

| , ,
k k

i m m m

m mi i
k k k

K m mi i
kK

z k X P S

f X P S z k

f X P S z k

φ

φ

φ
′ ′′−

=

=
=

′=

 

and where the ( )f ⋅  terms on the right-hand side were 
multivariate normal likelihoods. Thus, the likelihood that 
the ith element of X was present in the Cx. Quinquefas- 
ciatus habitat population k, sampled in the study site 
normalized by the sum of likelihoods was quantified for 
all potential sources influencing presence of immatures. 
Finally, the sample Φ(m) from f(Z|X, P(m), S(m), Z(m)) was 
used to generate asymptotically efficient estimates from 
the spatiotemporal-sampled data. 

2.6. Eigenvector Mapping 
 
We conducted a residual analyses using a misspecification 
perspective for the error estimation models generated in 
SAS/GIS® assuming that the basic regression model 

*y X β ε= +  had autocorrelated disturbances *ε , which 
was decomposed into a white-noise component, ε , and a 
set of unspecified and/or misspecified models that  
had the structure 

*

y XB E

ε

γ ε
=

= + + . In this research, 

the misspecification term was Eγ . Quantification of 
topographic patterns generated from the distribution of 
the georeferenced Cx. quinquefasciatus habitat covari- 
ates was required to describe independent key dimen- 
sions and underlying spatial processes for defining a pat- 
tern in the misspecification term. This was accomplished 
by expanding the matrix term:  
( ) 1

0
k k

k
I V Vρ ρ− ∞

=− = , as an infinite power series, 
which was feasible under the assumption that the under- 
lying spatial process in the data was stationary; note that 
in this research 0 0Vρ  gave the identity matrix I . The 
simultaneous autoregressive error model was then re- 
written as y Vy X VXρ β ρ β ε− = − + . Substituting these 
transformation gave: 

( ) ( )1
y I V X V Xρ β ρ β ε−= − − +    

( )
0

k k

k

y V X VXρ β ρ β ε
∞

=
= − +  

( )1 1

0 0 0

k k k k k k

k k k

y V X V X Vρ β ρ β ρ ε
∞ ∞ ∞

+ +

= = =
= − +    

( )
1 1 0

0

1

k k k k k k

k k k

k k

k

misspecification term

y X V X V X V

y X V

β ρ β ρ β ρ ε

β ρ ε ε

∞ ∞ ∞

= = =

=
∞

=

⋅

= + − +

= + +

  







 

The misspecification term ( )1, ,k kV kρ ε = ∞   re- 
mained uncorrelated with the exogenous variable, X , as 
the standard OLS assumption of the disturbances, ε , 
were uncorrelated with the predictor variables generated 
from the model. The spatial lag model was expressed as: 
( )I V y Xρ β ε− = + . Substituting the transformation 
gave: 

( )

( )
0

1

k k

k

k k

k

misspecification term

y V X

y X V X

ρ β ε

β ρ β ε ε

∞

=
∞

=

⋅

= +

= + + +






 

The misspecification term  
( )( )1, ,k kV X kρ β ε+ = ∞   included the exogenous 
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variables X . Consequently, the exogenous variables 
were correlated with the misspecification term. Under 
this condition, standard OLS results for the basic regres- 
sion model *y X β ε= + , generated from the spatiotem- 
poral-sampled covariates provided biased estimates β̂  
of the underlying regression parameters β . 

The correlation, or lack thereof, between the exoge- 
nous variables and the misspecification terms of both 
habitat models were used to design spatial proxy vari- 
ables, so that the properties of either model could be sat- 
isfied. We considered two different projection matrices. 
Different sets of eigenvectors were established using a 
spatial regression model. This model feature enabled us 
to also use the eigenvector spatial filtering approach for 
predictions of the endogenous variable y . 

We selected an evaluation criterion using the stan- 
dardized Moran’s statistic. The standardized Moran’s 
coefficient (MC) for regression residuals *ε̂  was de- 
fined as 

( )( )
( )2

i ij i jj

i ijj ii

w X X X XN
I

w X X

− −
=

−

 
  

, where N  

was the number of sampled habitats and their respective 
parameter estimates indexed by i and j respectively; X 
was the spatiotemporal-sampled egg-raft count data; X  
was the mean of X; and wij was a matrix of spatial 
weights. The expected value of Moran’s I under hy- 
pothesis of no spatial autocorrelation was:  

( ) 1

1
E I

N

−=
−

. Its variance equaled: 

( )
( )( )( )( )

4 3 5
2

1 2 3 i ijj

NS S S
Var I

N N N w

−
=

− − −  
 where 

( )

( )

( )
( )( )

( ) ( )

( )

2

1

2

2

41

3 221

2
2

1 2

4

2

5 1 1

1

2

1

3 3 3

1

6
2

1

ij ji
i j

ij jii j j

ii

ii

i ijj

i ijj

S w w

w w
S

N x x
S

N x x

N N S NS w
S

w
S S NS

−

−

= +

+
=

−
=

−

− + − +
=

= − +



  




 

 

 

In this research, negative (positive) values indicated 
negative (positive) spatial autocorrelation. Values ranged 
from -1 (indicating perfect dispersion) to +1 (perfect 
correlation). A zero values indicated a random spatial 

pattern. For statistical hypothesis testing predictive WNV 
mosquito habitat modeling, MC values can be trans- 
formed to z-scores in which values greater than 1.96 or 
smaller than −1.96 indicate spatial autocorrelation that is 
significant at the 5% level [8,29]. 

Geary’s Contiguity Ratio (GC) another measure of 
spatial autocorrelation was also generated. GC is in- 
versely related to the Moran’s statistic but it is not iden- 
tical. Moran's indices are measure of global spatial auto- 
correlation, while Geary’s C is more sensitive to local 
spatial autocorrelation in vector mosquito data analyses 
[16]. In this research, the sampled Cx. quinquefasciatus 
habitat data was quantified by GC which was defined as  

( ) ( )
( )

2

2

1

2

i ij i jj

ii

N w X X
C

W X X

− −
=

−

 


 where  N was the  

number of the sampled habitats and explanatory parame- 
ters indexed by i and j respectively; X was the egg-raft 
count data; X  was the mean of X; wij was a matrix of 
spatial weights; and W was the sum of all wij. The value 
of GC lies between 0 and 2. 1 means no spatial autocor- 
relation while 0 refers to a chaotic random distribution. 
Smaller (larger) than 1 means positive (negative) spatial 
autocorrelation [8]. 

In this research, distance between sampled habitats 
was defined in terms of an n-by-n geographic weights 
matrix, C, whose cij values were; 1 if the sampled Cx. 
quinquefasciatus egg-raft count locations i and j in the 
Trinidad study site were deemed nearby, and 0 other- 
wise. Adjusting this matrix by dividing each row entry 
by its row sum gave C1, where 1 was an n-by-1 vector 
of one’s which converted this matrix to matrix W. The 
resulting autoregressive model specification with no 
sampled covariates present (i.e., the pure spatial auto- 
regression specification) took on the following form: 

( )  μ 1-ρ ρ  = + +Y 1 WY ε  (2.1), where μ  was the scalar 
conditional mean of Y and ε  was an n-by-1 error vec- 
tor residuals of the sampled data which in this research 
was represented as statistically independent and identi- 
cally distributed (iid) normally random variates. The 
spatial covariance matrix for equation (2.1), using the 
sampled covariates, was 

( ) ( ) ( )( ) 1 2E -μ ' -μ - ρ ' - ρ σ
−

= =      Y 1 Y 1 Σ I W I W , 

where E ( ⋅ ) indicated the calculus of expectations, I was 
the n-by-n identity matrix denoting the matrix transpose 
operation, and 2σ  was the error variance. 

Two different autoregressive parameters appeared in 
the spatial covariance matrix. When autocorrelation is 
present in residual data, a more explicit representation of 
both effects leads to a more accurate interpretation of 
empirical results [38]. Consequently, we used an SAR 
model specification  
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( )( ) 1
2

diag diag
 - ' - σ ,

−
 =
 

Σ I ρ W I ρ W   (2.2) 

where the diagonal matrix of autoregressive parameters, 

diag
ρ  contained two sampled habitat parameters: ρ+  

displaying positive spatial dependency, and -ρ  for 
those sampled habitat pairs displaying negative spatial 
dependency based on the aggregation of the Cx. Quin- 
quefasciatus egg-raft count data. For example, by letting 

2σ  = 1 and employing a 2-by-2 regular square tessella- 
tion, 

2
1 1
2 2

1 1
2 2
1 1
2 2

1 1
2 2

0 0ρ 0 0 01 0 0 0

0 00 ρ 0 00 1 0 0

0 00 0 ρ 00 0 1 0

0 00 0 0 ρ0 0 0 1

+

+

−

−

    
    
    = −    
            

Σ  

for the vector 

1

2

3

4

y

y

y

y

 
 
 
 
 
 

 enabled positing a positive rela-  

tionship between the sampled egg-raft count data and the 
explanatory covariates, y1 and y2, a negative relationship 
between covariates, y3 and y4, and, no relationship be- 
tween covariates y1 and y3 and between y2 and y4. This 
covariance yielded:  

( )
diag diag

diag diag

  μ( ρ  ρ )

ρ  ρ   

+ + − −

+ + − −

= − −

+ + +

Y I I I 1

I I WY ε
 

where I+ was a binary 0-1 indicator variable which de- 
noted those parameter estimates which displayed positive 
spatial dependency, and I- was a binary 0-1 indicator 
variable denoting those sampled covariates displaying 
negative spatial dependency, where I+ + I- = 1. Express- 
ing the preceding 2-by-2 example in terms of an equation 
yielded: 

1

2

3

4

y 1 0 0 0 1 0 0 0

y 0 1 0 0 0 1 0 0
μ ρ

y 0 0 1 0 0 0 0 0

y 0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 1 0 1 0 0
ρ ρ

0 0 1 0 1 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0

0 0 0 0
ρ

0 0 1 0

0 0 0 1

+

− +

−

     
     
     = −     
     
     

      
      
      − +      
      
       



+

1 1
1 12 2

1 1
2 22 2

1 1
3 32 2

1 1
4 42 2

0 0 y ε

0 0 y ε
 

0 0 y ε

0 0 y ε

      
      
       +      
              

 

if either ρ 0+ =  then I+ was = 0 and I- = I or if ρ 0− =  

then I- = 0 and I+ = I. 
In this research, this spatial structuring was achieved 

by constructing a linear combination of a subset of the 
eigenvectors of a modified geographic weights matrix, 
using (I - 11 ' / n )C(I - 11 ' / n ) that appeared in the nu- 
merator of the MC. Spatial filtering furnishes an ap- 
proach that incorporates spatial structuring into an inter- 
cept term that accounts for latent autocorrelation [38]. A 
subset of eigenvectors was selected with a stepwise re- 
gression procedure. Because (I - 11 ' / n )C(I - 11 ' / n ) = 

'EΛE , where E was an n-by-n matrix of eigenvectors 
and Λ  was an n-by-n diagonal matrix of the corre- 
sponding eigenvalues, the resulting egg-raft count model 
specification was given by: k  μ   = + +Y 1 E β ε , where μ  
was the scalar mean of Y, Ek was  an n-by-k matrix 
containing the subset of k < < n eigenvectors selected 
with a stepwise regression technique and β  was a k-by- 
1 vector of regression coefficients. 

A number of the eigenvectors were extracted from the 
matrix (I - 11 ' / n )C(I - 11 ' / n ) which were affiliated 
with geographic patterns of the sampled Cx. quinquefas- 
ciatus habitat covariates portraying a negligible degree of 
spatial autocorrelation. Consequently, only k of the n 
eigenvectors were of interest for generating a candidate 
set for a stepwise regression procedure. One way of con- 
structing a candidate set is to include an eigenvector in 
the set only when the vector’s corresponding MC repre- 
sents a minimum degree of spatial autocorrelation [38]. 
In this research, we used a spatial statistical threshold of 
|MC/MCmax| > 0.25 where MCmax was the maximum MC 
for a given surface partitioning, as then each candidate 
eigenvector represented a level of autocorrelation tend- 
ing to account for the redundant information in the data- 
set. As redundant information spatial autocorrelation 
represents pseudo-replicated data linking it to missing 
values estimation and interpolation, as well as to notions 
of effective sample size and degrees of freedom [38]. 
 
2.6.1. Spatial Analyses 
In this research, spatial linear prediction of the prolific Cx. 
quinquefasciatus habitat and its spatiotemporal sampled 
covariates was performed using an Ordinary kriged-based 
interpolator in ArcGIS 9.3® using Geostatistical Analyst. 
The Semivariogram Properties dialog box has several 
models to choose from. We set the Kriging method to 
Ordinary. A default value for lag size was initially set to 
the default output cell size. For Major range, Partial sill, 
and Nugget, a default value was calculated internally. The 
length of the longer axis to reach the sill is called the 
major range, and the length of the shorter axis to reach the 
sill is called the minor range; the angle of rotation of the 
line formed the major range [28]. The optional output 
variance of prediction raster contained the kriging variance 
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at each output raster cell. Assuming the kriging errors are 
normally distributed in a predictive vector mosquito 
habitat distribution model there is a 95.5 percent prob- 
ability that the actual z-value at the cell is the predicted 
raster value, plus or minus two times the square root of the 
value in the prediction raster [16]. Low values within the 
output variance of prediction raster indicated a high 
degree of confidence in the predicted estimates. High 
values in interpolation based algorithms may indicate a 
need for more data points (26). 

Geostatistical techniques were used to interpolate the 
value Z(x0) of a prolific Cx. quinquefacistus habitat site, 
Z(x) at an unobserved sampling site, x0, where zi was 
Z(xi), i = 1   n based on the dimensions of the sam-
pled habitat locations [i.e., (x1,  , xn)]. The Ordinary 
interpolator also computed the best linear unbiased esti-
mator, Ž(xo) of Z(x0), for the Cx. quinquefacistus data 
based on a stochastic model quantified by the variogram 
γ(x, y), by expectation μ(x) = E[Z(x)], and by the covari-
ance function c(x,y) of the random field. In this research, 
the kriging estimator was given by a linear combination 
of the sampled field and remote parameters using 
( ) ( ) ( )1

ˆ n
o i o i

i
Z x w x Z x== ; whereby, zi = Z(xi) was the 
weights wi (xo), and i = 1   n was the variance used to 
minimize any biased condition. The dependent variable 
was the spatiotemporal-sampled Cx. quinquefasciatus 
egg-raft count data, which were transformed to fulfill the 
diagnostic normality test prior to performing the kriging. 
The kriging weights of the algorithm were used to fulfill 
the unbiasedness condition in the spatial interpolation of 
the ecological-dependent variables using: 

1

n

ii
λ= =  
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The semivariogram generated described the depend- 
ence, between the Cx. quinquefasciatus parameters as a 
function of the distance between the sample sites. This 
allowed for abundance estimations at any point in the 
Trinidad study site. The value of prevalence, Z, at the 
coordinate (x0, y0) was estimated from the n nearest 
habitat sampling values using Zobs(x1, y1), Zobs(x2, y2). 

Zobs(xn, yn) and the linear formula which generated: 

( ) ( )0 0 1
ˆ ,   ,  

n

i obs i ii
Z x y a Z x y==  

The ai was found by the Lagrange multiplier λ and 
solving the system using:  

( ) ( ), ,01
,  1

n

i i j ii
a h h j nγ λ γ= + = =  under the con- 

straint. 
1

n

ia = , where hi,j denoted the distance between any 
two sampled Cx. quinquefasciatus habitat locations in 
the Trinidad study site at (xi, yi) and (xj, yj), and hj,0 was 
the distance between the two habitats (x0, y0). In the field 
of calculus of variations in mathematics, the method of 
Lagrange multipliers can be used to solve certain infi- 
nite-dimensional constrained optimization problems [26]. 
In this research the semivariance was defined as γ (h). 
The magnitude of the semivariance was dependent on the 
distance between sampling sites. Semivariance of the 
deviance residuals of the Cx. quinquefasciatus data was 
calculated and a variogram was constructed to determine 
if there was evidence of residual spatial correlation in the 
data. The plot of the semivariances as a function of dis- 
tance from a point is referred to as a semivariogram [26]. 

In this research, parameters of a fitted mathematical 
function (i.e., the semiovariogram model) included gen- 
erating a range, a nugget and a sill. Since our data was 
spatiotemporal, the square of the difference between ex- 
pected values at habitat points had to be added: 2γ(x,y) = 
C(x,x) + C(y,y) - 2C(x,y) - (E(Z(x)) - E(Z(y))2. If the co- 
variance function of a stationary process exists, it is re- 
lated to variogram by 2γ(x,y) = C(x,x) + C(y,y) - 2C(x,y) 
[26]. We checked for spatial dependence also in the 
sampled Cx. quinquefasciatus habitat data. We then de- 
termined the best fit variogram equation based on the 
number of lags (i.e., bins) and the lag distance (the mini- 
mum value of h) used in the calculation of experimental 
variogram equation. Lag size is the width (distance) of 
the bins into which these vectors are grouped (www. 
esri.com). In this research the lag size was dependent 
upon the minimum and maximum distances between sam- 
pled Cx. quinquefasciatus habitats in the study site. In an 
effort to uncover our variogram’s structure, similar lags 
were grouped together (i.e., pairs of habitat that points 
aligned in roughly the same direction and roughly the 
same distance from each other) into the bins.  

The semivariogram nugget coefficient allowed an in- 
terpretation of the required scale for defining spatial 
variability of the Cx. quinquefasciatus habitat data for 
providing minimized unbiased prediction error for re- 
siduals on the logit scale. Standard error in the models 
was calculated. Variations of kriging can produce noise- 
-free predictions (www.esri.com). The kriging interpola-
tor produced a map that was smooth and free of “jumps” 
at the sampled Cx. quinquefasciatus habitat locations. 
The algorithms incorporated in Geostatistical Analyst 



B. G. JACOB  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                 JGIS 

36 

provided exact filtered value predictions at the sampled 
habitat locations. This prevented discontinuities in the 
habitat predictions and their associated standard errors. A 
simple quantitative measure of the interpolation was de-
termined by using a root mean square error (RMSE) for 
the models.  

The kriging procedure returned the observed values at 
the sampled Cx. quinquefasciatus habitat locations and 
their interpolated values using the intensity and shape of 
the variograms. Using a neighborhood and/or distance 
search radius provided the standard errors of the interpo- 
lated values. Prediction errors have often been used to 
optimize sampling design by identifying areas where 
sampling effort should be increased or decreased [26]. In 
this research, prediction errors were generated as a func- 
tion of the variogram models. A simple quantitative 
measure of the uncertainty in the interpolation model 
was determined by generating the RMSE values for the 
models.  

Because we were working in two-dimensional space, 
the semivariogram and covariance functions changed not 
only with distance but with direction (i.e., anisotropy). 
We quantified sampled habitats points and the vector that 
separated them. This vector had a distance on the 
x-coordinate as well as the y-coordinate. Alternatively, the 
vector had a distance and an angle in polar coordinates. 
Anisotropy was then described for the semivariogram. 
The isotropic model was the same in all directions; 
whereas, the anisotropic model reached the sill more 
rapidly in some directions than others.  

In Geostatistical Analyst, an outline of the range was 
given over the empirical semivariogram surface. Having 
created a covariance function with which to form the 
kriging weights matrix, the next task was to tessellate the 
region into patches. Voronoi maps were used to explore the 
distribution of the sampled Cx. quinquefasciatus habitat 
data for global and local outliers and to quantify the 
covariation among the spatiotemporal-sampled data. 
Voronoi diagram is a special kind of decomposition of a 
metric space determined by distances to a specified discrete 
set of objects in the space [28]. Voronoi polygons were also 
used for interpolating neighborhoods and patches. 

A Voronoi diagram was constructed with the sample 
points as the centers of the polygons using the Weighted 
Voronoi Diagram Extension in ArcGIS 9.3®. Using the 
Generate tab, we generated a weighted Voronoi diagram 
from the geo-sampled point features. The Graphical User 
Interface (GUI) has two tabs: Generate and Update 
(www.esri.com).The Voronoi Diagram was generated 
whereby a sampled Cx. quinquefasciatus habitat was 
associated with pi (spatiotemporal-sampled covariate); 
whereby, P = {p1,  , pn}, where 2 ≤ n ≤ ∞ and xi ≠ xj 
for i ≠ j, i, j ∈  In. The region was given by V(pi) = {x: || 

x - xi || ≤ || x - xj || for j ≠ i, i ∈ In} was the ordinary Vo-
ronoi polygon associated with pi or the Voronoi polygon 
of pi and the set given by V = {V(pi),.., V(pn)} was the 
planar ordinary Voronoi diagram generated by P or sim-
ply Voronoi diagram of P. We also defined a planar or-
dinary Voronoi diagram with half planes as follows 
where we let P = {pi,  , pn} ⊆  R2, where 2 ≤ n ≤ ∞ 
and xi ≠ xj for i ≠ j, i, j ∈ In. We called the region 
( ) ( ) ( )ln ,i i jj iV p H p p= ∩   which was the ordinary Vo- 

ronoi polygon associated with pi and set V(P) = 
{V(p1), , V(pn)} the planar ordinary Voronoi diagram 
generated by P. 

A raster image showing normal Euclidean distance and 
adjusted Euclidean distance was generated, as well as a 
Voronoi polygon shapefile. The Cx. quinquefasciatus ha- 
bitat point attributes were then transferred to Voronoi 
polygons automatically by appending the spatial attrib- 
utes of one layer to another. Once a distance raster is 
generated, the user can use new points to update the dis- 
tance raster and create updated Voronoi polygons [28]. 

The Voronoi tessellation produced a set of polygons Vi 
with area f i (i=1,..., n). The (unknown) global mean zD 

was estimated by a weighted mean of the spatiotempo- 
ral-sampled Cx. quinquefasciatus habitat values using: 

1 1

n

g i ii i

n

im z ff= ==  . The extension error of each po- 
lygon was calculated by using a discrete version of 

( ) ( ) ( )2 2 , , ,E V V V vσ γ ν γ γ ν= − − . If the elementary 
error terms are uncorrelated, errors can be combined to  

an estimate of the global error:
 

2 2
2 1

1

i

n

E ii
g n

ii
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f

σ
σ =

=

= 
  

where  

the summation is over all polygons Vi [28]. By conven- 
tion we assumed a normal probability distribution for the 
global error D gz m−  and achieved a 90% confidence 
limits for DZ , 1.65* 1.65*g g D g gm z mσ σ− ≤ ≤ + . The 
global estimation error decreased with an increasing 
number of samples although some local deviation from 
this tendency did occur due to large polygons. As the 
number of samples increased the global estimation error 
converged to zero. 
 
3. Results 
 
The ANOVA used in data analyses tested the null hy- 
pothesis that the sampled parameters of the immature Cx. 
quinquefasciatus population in the Trinidad study site 
means were equal (i.e., H0: µ1 = µ2 =   = µa), by com- 
paring two estimates of variance. If the null hypothesis is 
false, then Mean Square Between (MSB) estimates gen- 
erated from a predictive vector mosquito habitat dis- 
tribution model is something larger than σ² [25]. In this 
research the MSE was an estimate of variance for deter- 
mining whether or not the null hypothesis was true, 



B. G. JACOB  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                 JGIS 

37

while the second estimate MSB was based on the vari- 
ance of the sample means. We tested the null hypothesis 
as follows: if the null hypothesis was true, then MSE and 
MSB would be about the same since they are both esti- 
mates of the same quantity (i.e., σ2); however, if the null 
hypothesis was false then MSB would have been ex- 
pected to be larger than MSE, since MSB is estimating a 
quantity larger than σ². The ANOVA model encom- 
passed all possible sources of variation in sampled Cx. 
quinquefasciatus habitat data which allowed further test- 
ing of our research hypotheses. In this research the sig- 
nificance test of spatiotemporal-sampled data involved 
the ratio of MSB to MSE: F = MSB/MSE. The F-statistic 
was used to calculate the p-value to determine deviations 
from normality. If the kurtosis is greater than 0, then the 
F tends to be too small and we cannot reject the null hy- 
pothesis even though it is incorrect; the opposite is the 
case when the kurtosis is less than 3 [25]. The skewness 
of the distribution in the Cx. quinquefasciatus data did 
not have a sizable effect on the F statistic. If the n per 
cell is fairly large, then deviations from normality do not 
matter much at all because of the central limit theorem, 
which implicitly states the sampling distribution of the 
mean approximates the normal distribution, regardless of 
the distribution of the variable in the population [25]. 
The P value was the estimated probability of rejecting 
the null hypothesis (H0). Traditionally for WNV mos- 
quito models, if p < .05 the null hypothesis is rejected 
[18]. If the null hypothesis is true in the estimation of a 
model then the F ratio should be approximately one, 
since MSB and MSE should be about the same [25]. In 
order to conduct a significance test using the prolific 
spatiotemporal-sampled Cx. quinquefasciatus habitats 
predictor variables, it was thus necessary to know the 
sampling distribution of F. 

Additionally, from the sampling distribution, gener- 
ated from the sampled t parameters, the probability of 
obtaining an F as large or larger than the one was also 
calculated. When there are only two means to compare, 
the t-test and the F-test are equivalent; the relation be- 
tween ANOVA and t is given by F = t2 [25]. If the prob- 
ability values were lower than the significance level, then 
the null hypothesis was rejected. Significant differences 
by ANOVA were noted for mean numbers of Cx. Quin- 
quefasciatus captured throughout the sampling frame (F = 
42.2, degrees of freedom [df] = 1). 

The Poisson regression modeled the spatiotemporal- 
sampled Cx. quinquefasciatus habitat count data and 
contingency tables. Poisson regression assumed the 
response variable Y had a Poisson distribution and 
assumed the logarithm of its expected value can be 
modeled by a linear combination of the spatiotemporal- 
sampled Cx. quinquesciatus parameters. A Poisson 

regression model is sometimes known as a log-linear 
model, especially when used to model contingency tables 
[25]. Our model with a single independent variable x, took 
on the form: ( )( )log E |Y x bxα= + . If Yi are independent 
observations with corresponding values xi of the sampled 
predictor variable, then a and b can be estimated by 
maximum likelihood if the number of distinct x values is 
at least 2 [25]. In this research the maximum-likelihood 
estimates lacked a closed-form expression and had to be 
quantified using numerical methods. The probability 
surface for maximum-likelihood Poisson regression was 
convex, making Newton-Raphson or other gradient-based 
methods appropriate estimation techniques for data 
analyses of the spatiotemporal-sampled Cx. quinquefas- 
ciatus habitat data. Linearized iteration scheme converges 
quickly and accurately using inversion equations solved 
through the Newton-Raphson method as each iteration, 
requires solving the finite difference equations and the 
linear adjoint equations only once, respectively [25]. 

OrthoEngine, PCI Geomatics’ Geocorrection and Ex- 
traction tools generated a DEM of the Trinidad study site. 
OrthoEngine included a number of automation tools to 
improve the efficiency of georeferencing the sampled Cx. 
quinquefasciatus data including Automatic GCP collec- 
tion from Chip Databases, and Automatic TP measure- 
ment. We stitched the image files. Stitching operation 
merged all the raster tiles and recalculated the image 
RPC from individual RPCs. Stitching automatically re- 
vealed the final RPCs as a binary segment in an output 
PIX file. Coefficients were reviewed using ‘Project Re- 
port Option’ in ‘Reports’ procedure step. We then se- 
lected geometric Model under the image information 
panel. The final step was the ‘Schedule Ortho Genera- 
tion.’ We proceeded to the ‘Orthogeneration’ processing 
step and selected the files to be processed. We selected 
an appropriate DEM file and set other processing options 
before generating the final orthorectified image. This 
allowed for the precise orthorectification of the WV-I 
imagery. The WV-1 over the Trinidad study site had 
look angles of approximately south at 30 degrees-off 
nadir and vertical. For simple corrections, polynomial, 
thin plate spline and rational functions were used. This 
allowed using image correlation from the stereo images. 
Once the images were geometrically corrected, they were 
mosaicked into a seamless image database, to form a 
conventional image map product and a GIS base layer 
for derivation of vector hypsographic and hydrographic 
covariates associated to the sampled Cx. quinquefascia- 
tus habitat data. The range of the elevation in the DEM 
had a minimum value of 0 m with a maximum value of 
425 m. 

The spatial autocorrelation analysis results are re- 
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ported in Table 4. Eigenvectors were extracted from the 
matrix (I−11′/n) C (I−11′/n) using the ecological-sam- 
pled predictor variables. Estimation results for these 
models appear in Table 5. Positive and negative spatial 
autocorrelation spatial filter component pseudo-R2 values 
are reported. Positive and negative spatial autocorrelation 
spatial filter component pseudo-R2 values are reported. 
These values did not exactly sum for the complete spatial 
filter; however, they are very close to their corresponding 
totals, suggesting that any induced multicollinearity was 
quite small. 

To summarize Table 5 results, the Trinidad study site 
had a random effects intercept with a near-zero mean and 
only trace spatial autocorrelation. The random effects 
term accounted for two-thirds or more of the variation in 
the spatiotemporal-sampled Cx. quinquefasciatus habitat 
count data. In addition, the random effects term resulted 
in the loss of a counterbalancing spatial autocorrelation 
component in the spatial filters. The spatial autocorrela- 
tion components revealed 17% redundant information in 
the Cx. quinquefasciatus habitat datasets. 

Table 6 lists the improvements of fit for all model 
specifications and random error in the spatial analyses. 
The unadjusted model compared the univariate model to 
a model containing only the intercept term. Improvement 
of fit was also calculated for the first-order interaction 
models to determine whether including significant inter- 
actions improved fit compared to the full main effects 
model. 

Table 7 presents the results of the regression for the 
interactions model. These results provided information 
for estimates of the prior distribution of main effect coef- 
ficients in the Bayesian analysis. The values for parame- 
ter estimates and standard were used as mean values and 
standard errors to parameterized prior expected values 
for quantifying the field and remote-sampled Cx. quin- 
quefasciatus habitat explanatory variables. The prior 
expected mean value for the error term was assumed to 
be zero (‘0’), with a standard deviation of 0.01. Initial 
values for the MCMC chains were generated. 

The difference in the deviances between a simple 
model and the more complex model provided the im- 
provement χ2 values listed in Table 8. We examined all 
interaction between the sampled predictor variables and 
found that an interaction model did not improve the fit; 
therefore, no interaction terms were included in the final 
model. We could not examine the improvement of fit 
between a saturated model and the full effects model, as 
the number of the sampled parameters that needed to be 
estimated exceeded the maximum number that could 
estimate. 

To derive the improvement of fit values listed in Table 
9, the posterior mean deviance values were obtained with 

Deviance Information Criterion (DIC) spatial analytical 
tools. Factors that did not improve fit were omitted from 
the final model. DIC tools were used to obtain mean 
posterior deviance values to construct improvement of fit 
tables and DIC statistics for identification of the best 
fitting model. In this research, this deviance was defined  

 
Table 4. Global spatial analyses of Cx. quinquefasciatus 
egg-raft count data in the Trinidad study site. 

Study Site n Transformation MI GR 

Trinidad 152 LN(count + 1) 0.069 0.898 

 
Table 5. Poisson spatial filtering model results for the sam- 
pled Cx. quinquefasciatus egg-raft count data in the Trini- 
dad study site. 

Spatial Statistics Trinidad 

SF: # of eigenvectors 5 

SF: MC 0.654 

SF: GR 0.402 

SF pseudo-R2 0.198 

Positive SA SF: # of eigenvectors 4 

Positive SA SF: MC 0.567 

Positive SA SF: GR 0.484 

Positive SA SF pseudo-R2 0.150 

Negative SA SF: # of eigenvectors 1 

Negative SA SF: MC −0.369 

Negative SA SF: GR 1.291 

Negative SA SF pseudo-R2 0.048 

Deviance statistic 1.168 

 
Table 6. Poisson SF GLMM random effects results for the 
Cx. quinquefasciatus egg-raft count data in the Trinidad 
study site. 

Statistics Trinidad 

Mean 0.056 

Standard deviation 0.492 

P(S-W) 0.0002 

MC −0.054 

GR 1.028 

Pseudo-R2 0.924 
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Table 7. Comparison of improvement of fit measured by likelihood ratio between unadjusted and adjusted effects models. 

Unadjusted effects Adjusted effects 

Variable Deviance Improvement χ2 df Deviance Improvement χ2 df 

Intercept 996.9673      

SHADE 981.9554 15.0119 1 901.4757 20.0341 1 

DISHOUSE 983.6985 13.2688 1 885.147 3.7054 1 

DHABITATS 981.6438 14.9832 1 897.139 19.4364 1 

CANOPY 988.6662 8.3011 1 890.101 8.6594 1 

DRAIN 986.8716 10.0957 1 901.9639 20.5223 1 

Full Main Effects       

1st Degree Interactions    844.8677 38.9132 5 

 
Table 8. Results of poisson regression used to estimate prior 
distribution of coefficients for the MCMC analysis 

Variable df Coefficient SE P 

Intercept 1 1.4020 0.1053 < 0.0001

SHADE 1 0.0357 0.0057 < 0.0001

DISHOUSE 1 0.0052 0.0066 0.4297 

DHABITATS 1 0.02991 0.0048 < 0.0001

CANOPY 1 0.0172 0.0044 < 0.0001

DRAIN 1 0.0521 0.1702 0.7596 

STSITE 1 –0.8438 0.1067 < 0.0001

DRAIN*STSITE 1 0.3731 0.1539 0.0154 

SHADE*DRAIN 1 −0.0402 0.0102 < 0.0001

DISHOUSE*STSITE 1 0.0594 0.0186 0.0014 

DHABITATS*STSITE 1 −0.0386 0.0163 0.0011 

 
Table 9. Improvement of fit of the WinBUGS Hierarchical 
Bayesian Model (HBM) model. 

Unadjusted effects Adjusted effects 

Variable df Improvement χ2 Improvement χ2 df

SHADE 1 −1.368 −0.353 1 

DISHOUSE 1 6.089 3.242 1 

CANOPY 1 1.187 1.432 1 

DRAIN 1 0.722 1.548 1 

 
as −2 * log (likelihood), where ‘likelihood’ was defined 
as p(y | and theta), including all the normalizing con- 
stants: y comprised all stochastic node values and theta 
comprised the immediate stochastic parents of y. The 
expectation ( )D Dθ θ= Ε     was used as a measure of 

model fitness based on the values of the predictor vari- 
ables of the habitats sampled. The effective number of 
parameters included in the Cx. quinquefasciatus habitat 
model was computed as ( )Dp D D θ= − , where θ  
was the expectation of θ . The DIC was calculated as: 

DDIC p D= + . The DIC value for the final model was 
930.3. The DIC value for the model was 933.4. 

Median parameter values, as well as the 95% credibil- 
ity intervals (2.5 percentile and 97.5 percentile values), 
are listed in Table 10. As the sampling sites increased 
based on the covariate distance from the nearest house, 
the median log-egg-raft count of count data changed. The 
adjusted model assumed independence among the sam- 
pled predictor variables of Cx. quinquefasciatus aquatic 
habitat egg-raft count data fit better that the model that 
adjusted for correlation within the study site based on the 
RMSE (Figure 3). 

The kriged-based model resulted in two images, a sur- 
face of estimates and a surface of estimated variances. 

The latter image was used to identify problems with 
the fit of the model to the sampled data by revealing 
relative differences in the model fit across the Trinidad 
study site. A measure of the degree of spatial dependence 
between samples was also generated (i.e., semivariance). 
The magnitude of the semivariance between any two 
sampled Cx. quinquefasciatus habitats was dependent on 
the distance between the georeferenced habitats. Thus, 
given two habitat locations x and (x + h), in the study site, 
a measure of one half of the mean square difference (i.e.,  
 
Table 10. Coefficient parameters estimates for WinBUGS 
Bayesian model. 

Variable Mean SD MC error 2.5% 50% 97.5%

Intercept 1.427 0.0804 0.0013 1.267 1.427 1.581

DISHOUSE 0.019 0.0093 0.0001 0.001 0.019 0.037
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Figure 3. Observed Cx. quinquefasciatus habitats egg-raft count data in the Trinidad study site using a a) non-spatially ad-
justed and b) in a spatially adjusted model. 
 
the semivariance) was produced by assigning the values 
z(x + h) to the value z(x), where h (i.e., the lag) was the 
inter-sample distance between the georeferenced Culex 
habitats. Semivariance is an average of the squared de- 
viations of values that are less than the mean [25]. In this 
research, plotting the semivariance versus the lag h gave 
a semivariogram. The summation was carried out over 
all distances h. The semivariance increased as the dis- 
tance increases until it reached a maximum at a certain 
distant away from a sampled Cx. quinquefasciatus habi- 
tat. When the semivariance equals the variance around 
the averaged values, and no longer increases, this causes 
a flat region to occur on the semivariogram, (i.e., the sill) 
[28]. The sill indicated that the semivariance values had 
been reached (i.e., the value of maximum variance was 
equivalent to the variance of the WV-1 0.5 m pixel 
value). A non-zero intercept value (i.e., nugget variance) 
of the variogram model was also generated which indi- 

cated the variability of the sampled Cx. quinquefasciatus 
data. We optimized the RMSE by minimizing the spatial 
structure in a Cx. quinquefasciatus habitat model which 
generated a pure nugget variogram. The level of nugget 
variance represented noise characteristics in the sampled 
explanatory variables. A neighborhood distance search 
radius provided the mean standard errors of the interpo- 
lated values. 

A kriged map of deviance residuals was then calcu- 
lated, which was added to the predicted values on the 
logit scale before transforming the result back to propor- 
tions. Spatial dependence displayed by these plots was 
modeled using the constructed semivariogram. The maps 
developed from the kriged uncertainty residuals allowed 
deviation from the model and incorporated the field 
sampled egg raft count values. The final maps were 
greatly improved in sensitivity and did not deviate too 
severely from the field-sampled Cx. quinquefasciatus 
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habitat data. The exponential model fitted to the semi- 
variogram at a partial sill 0 and nugget of 5.8 km, lag 
size 6.5 km number of lags 12 with a range of 73.6 km 
which formed the basis of the model to map predictions 
of residuals in an 73.6 km radius around each sampled 
Cx. quinquefasciatus habitat (Figure 4). 

Voronoi polygons were then modeled. An approxi- 
mation, based on the midpoints of the legs and center of 
the triangle were used to evaluate the area covered by 
each Voronoi polygon. A new sample point was calcu- 
lated using the importance metric (Gamma) of each 
pixel in the Voronoi polygons generated according to  
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 where (u, v) were the coordinates  

of a WV-I pixel in the polygon, Gamma(u, v) was the 
importance metric of that pixel, and C(p) was the coor- 
dinates of the new polygon center (i.e. the sampled Cx. 
quinuqefasciatus habitat). To do this calculation on each  

polygon we used a scan conversion. We ran a scan con- 
version and examined each pixel in the frame buffer for 
each polygon. The Voronoi tessellation provided a spa- 
tial trend analyses of the error in the model which re- 
vealed that all coefficients were within normal statistic- 
cal limitations (Figure 5). 
 
4. Discussion 
 
The ANOVA tested the significant differences between 
means in the Cx. quinquefasciatus habitat data. In re- 
peated measures ANOVA; however, containing factors 
such as spatiotemporal-sampled Cx. quinquefasciatus 
with more than two levels, additional special assump- 
tions may be required for quantification of sampled pre- 
dictor variables; specifically, the compound symmetry 
assumption and the assumption of sphericity. The com- 
pound symmetry assumption requires that the variances 
derived from the data (i.e., pooled within-group) and  

 

 

Figure 4. An ordinary kriged-based interpolation of egg-raft abundance of Cx. quinquefasciatus habitats in the trinidad study 
site. 
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Figure 5. Voroni tessellations generated from the predicted spatiotemporal-sampled Cx. quinquefasciatus habitats in the 
Trinidad study site. 
 
covariances of the different repeated measures be homo- 
geneous (25). This is a sufficient condition for the uni- 
variate F test for repeated measures to be valid (i.e., for 
the reported F values to actually follow the F distribu- 
tion); however, it is not a necessary condition in spa- 
tio-temporal Cx. quinquefasciatus habitat data analyses. 
When the compound symmetry or sphericity assump- 
tions have been violated, the univariate ANOVA table 
will give erroneous results (23). A remedy may be to 
stress the necessity of independent hypotheses testing in 
spatiotemporal Cx. quinquefasciatus data analyses. A 
general algorithm implemented can attempt to generate, 
for each effect, a set of independent (orthogonal) con- 
trasts. In repeated measures ANOVA, these contrasts 
specify a set of hypotheses about differences between the 
levels of the repeated measures factor. However, if these 
differences are correlated across subjects, then the re- 
sulting contrasts are no longer independent. In fact, in 
most instances where a repeated measures ANOVA is 
used, we would probably suspect that the changes across 
levels are correlated across the sampled Cx. quinquefas- 
ciatus habitat parameters. When this happens, the com- 
pound symmetry and sphericity assumptions have been 
violated, and independent contrasts cannot be computed. 

Thus, the problem of compound symmetry and sphericity 
in Cx. quinquefasciatus habitat data analyses pertains to 
the fact that multiple contrasts involved in testinsg re- 
peated measures effects with more than two levels are 
not independent of each other. However, they do not 
need to be independent of each other if we use multivari- 
ate criteria to simultaneously test the statistical signifi- 
cance of the two or more repeated measures contrasts. 
This insight is the reason why Multivariate Analysis of 
Variance (MANOVA) methods are increasingly applied 
to test the significance of univariate repeated measures 
factors with more than two levels. Multivariate analysis 
of variance is a generalized form of univariate ANOVA 
which is used in cases where there are two or more de- 
pendent variables (23). Analogous to ANOVA, MAN- 
OVA is based on the product of model variance matrix 
and error variance matrix inverse; thus, invariance con- 
siderations generated from spatiotemporal-sampled Cx. 
quiquefasciatus habitat predictors will imply the sta- 
tistic is a suitable measure of magnitude of a singular 
value decomposition from this matrix product. Thus, 
instead of a univariate F value, we would obtain a mul- 
tivariate F value (Wilks’ lambda) based on a comparison 
of the error variance/covariance matrix and the effect 
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variance/covariance matrix. The problem of compound 
symmetry and sphericity pertains to the fact that multiple 
contrasts involved in testing repeated measures of Cx. 
quinquefasciatus habitat effects with more than two lev- 
els are not independent of each other but, fortunately a 
multivariate criteria can simultaneously test the statistical 
significance of the two or more repeated measures con- 
trasts. We thus endorse a MANOVA approach for spati- 
otemporal data analyses of Cx. quinquefasciatus habitat 
parameters as it simply bypasses the assumption of 
compound symmetry and sphericity altogether. 

The spatial hydrological model generated from the en- 
vironmental-sampled Cx. quinquefasciatus covariates 
revealed that elevation was an important variable in the 
DEM model. Anderson et al. (2004) captured signify- 
cantly more Culex quinquefasciatus in a variety of traps 
(bird-baited, MMX mosquito magnet, CO2-baited CDC 
trap) in the canopy (7.6 m) than at near ground level (1.5 
m) [40]. In our research local differences among WV-1 
DEM grid cells were also analyzed to calculate slope and 
other land surface parameters using relative and absolute 
accuracy estimates for determining the statistical signifi- 
cance of terrain-related parameters associated to the Cx. 
quinquefasciatus habitats. In this research the slope gra- 
dient was defined as the maximum rate of change in alti- 
tude (i.e., tan (Θ), aspect (ψ) as the compass direction of 
this maximum rate of change). Slope is defined by a 
plane tangent to a topographic surface, as modeled by the 
DEM at a point, whereby, it is classified as a vector; as 
such it has a quantity (gradient) and a direction (aspect). 
More analytically, the slope gradient at a sampled Cx. 
quinquefasciatus habitat in the Trinidad study site was 
the first derivative of elevation (Z) with respect of the 
slope (S), where S was in the aspect direction (ψ). We 
calculated the first derivative of a function at a sampled 
habitat as the angular coefficient of the tangent to the 
function of a sampled habitat. The resolution of our 
WV-1 DEM quantified the georeferenced explanatory 
covariates at each 0.5m pixel (i.e., absolute accuracy). At 
the same time the relative accuracy of the sampled data 
generated a geometrically correct reference frame for 
validating the covariate elevation associated with the 
sampled Cx. quinquefasciatus habitats. WV-1 DEMs can 
allow for hydrologic modeling, view-shed determination, 
slope/aspect analyses, and 3-d surface visualization of 
georeferenced terrain-related parameters associated to 
spatiotemporal-sampled Cx. quinquefasciatus habitat 
data. 

In the regression model, PROC MIXED quantified 
correlations among error measurements using random 
effects estimates and random regression coefficients. 
PROC MIXED used three options for the method of es- 
imation including: 1) Maximum Likelihood (ML); 2) 

Restricted or Residual maximum likelihood (REML), 
which was the default method; and, 3) Minimum Vari- 
ance Quadratic Unbiased Estimation (MIVQUE). In this 
research, the ML was the regular maximum likelihood 
method as the Cx. quinquefasciatus parameter estimates 
maximized the likelihood function, while the REML was 
a variant of maximum likelihood. The sample mean was 
the maximum likelihood estimator of the sampled habitat 
population mean, based on the egg-raft count data. The 
sample variance was also a close approximation to the 
maximum likelihood estimator of the immature sampled 
variance. REML estimated the variance parameters using 
a marginal likelihood which produced unbiased estimates. 
REML estimators generated estimates from the spatio- 
temporal-sampled parameters by maximizing only that 
part of the likelihood function that was invariant to the 
fixed effects part of the linear model. The variance of a 
quadratic function of the random variables in the linear 
model was then minimized to obtain locally best unbi- 
ased estimators of the variance components. The matri- 
ces of these quadratics were computed from relationship 

matrices and from prior estimates of variances used in 
the model equations. 

In the Bayesian matrix we were able to instantiate the 
nodes directly which was equivalent to supplying, a 
measurement for a radius based on the distribution of the 
georeferenced Cx. quinquefasciatus habitats. We were 
able to quantify an uncertainty estimate in our likelihood 
information by supplying a probability distribution over 
a set of radii generated from the sampled data. We used a 
backward propagation to compute the node probabilities. 
The error gradients were then propagated in any direc- 
tion throughout the Bayesian framework. This type of 
probability propagation allowed choosing between the 
sampled predictor variables using the computed prob- 
ability of each sampled covariate value based on one or 
more of the nodes. 

Our Bayesian approach allowed flexible model fitting 
and estimation and geomapping of all “high risk” Cx. 
quinquefasciatus habitats based on sampled egg-raft 
count data in the study site. The MCMC algorithm for 
the Cx. quinquefasciatus egg-raft count model produced 
a sequence of parameter vectors that represented random 
draws from the posterior distribution. The DIC com- 
prised two goodness-of-fit measures and the posterior 
distribution of the deviance, which was the number of 
effective sampled habitat covariates for measuring com- 
plexity in our Cx. quinquefasciatus model. Habitats with 
high egg-raft counts were compared with the results of a 
Monte Carlo simulation, which established the probabili- 
ties and occurrences of these habitats. Our results indi- 
cated that likelihood weights influenced the resulting 
posterior distributions of the field and remote-sampled 
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Cx. quinquefasciatus egg-raft count parameters, which, 
in turn influenced the spatial trends in the variance un- 
certainty estimates for model prediction. Distance from 
the nearest house was a significant predictor associated 
with prolific habitats in the Trinidad study site. 

Environmental factors commonly associated with Cx. 
quinquefasciatus habitats include the distance from the 
nearest human habitation. The location of WNV cases at 
the place of residence can be based on the fact that Culex 
mosquitoes are crepuscular feeders, and are most likely 
to come in contact with people while they are at home 
during the evening hours. Because egg-laying is a spatial 
process dependent upon the location of the focal habitat 
relative to sources of gravid mosquitoes, habitats closer 
to human inhabitations tend to receive more eggs and 
thus are more productive if conspecific competition is 
negligible [29]. Furthermore, housing age can also play a 
big role in the explanation of the focal areas. This is ex- 
pected since older houses have poorer drainage systems 
and open foundations which may provide larval and 
adult habitats. For example, houses built in the post 
World War II era in the study site may suffer from a 
general inattention. These houses may contain catch ba- 
sins, rich with organic material which are breeding 
grounds for Culex mosquitoes. Most of the Culex species 
require organic-rich water for larval development and are 
commonly found in high numbers in artificial containers, 
unattended pools, retention ponds, storm drains, catch 
basins, sewage systems and treatment plants [41,42]. 
Furthermore, combined sewage and street runoff dis- 
charges into natural waterways are considered the main 
sources of urban stream pollution, which are associated 
to WNV as Culex mosquitoes proliferate in eutrophic 
hydrological networks. The identification of social fac- 
tors that characterize these focal areas in the Trinidad 
study site may also provide insight into human risk and 
can help to target control and prevention strategies. Fu- 
ture analyses should explicitly test whether enzootic and 
bridge transmission are related to human population fac- 
tors includeing household income, population age, age of 
housing, housing density, and population density. Since 
it can be assumed from this analysis that the WNV is 
transmitted near a person’s residence in the Trinidad 
study site, extensive engineering to improve the runoff of 
water in residential areas should be considered.  

A framework for assessing autocorrelation in residual 
error from the spatial analyses was constructed in SAS/ 
GIS®. We generated a  semiparametric filtering model 
using proxy variables constructed from the spatiotempo-
ral-sampled georeferenced explanatory variables. In our 
Cx. quinquefasciatus habitat model, the misspecification 
terms was replaced by the proxy vari- ables for imple-
menting a conditional covariance matrix employing the 

autoregressive specification. An unknown misspecifica-
tion term can be approximated by a set of spatial proxy 
variables [38]. After modeling the mis- specification 
terms, the remaining residuals ε̂  become white noise. 
This result implied that the estimated re- gression pa-
rameters β̂  were unbiased for the basic regression 
model, *y X β ε= + , where *ε  incorpo- rated the 
misspecification term and the white-noise dis- turbances. 
This allowed us to calibrate the autoregressive models. 
All of these eigenvectors exhibited weak posi- tively 
autocorrelated spatial patterns in the habitat pa- rameter 
estimates. Local weather patterns, mosquito con- trol 
programs and movement of hosts can have spatial ex-
pressions, which cause immature Culex mosquetoes to 
aggregate in geographic space rendering positive auto- 
correlation in sampled predictor variables [8,26].  

In this research, we used an Ordinary interpolation in 
ArcGIS® for identifying initial spatial structures in the 
sampled Cx. quinquefasciatus habitats and for quantify- 
ing the variance and autocorrelation in the data. The es- 
timation method determined the best linear unbiased es- 
timator. It was linear since the estimated values were 
weighted linear combinations of the spatiotemporal- 
sampled data and it was unbiased because the mean of 
the error was zero. For determining the optimal predict- 
tors, a semivariogram was constructed which expressed 
the spatial variation in the sampled data. In this research 
the variogram [i.e., 2γ(x,y)] was a function describing the 
degree of spatial dependence between the sampled Cx. 
quinquefasciatus habitats [i.e., Z(x)]. This was defined as 
the expected squared increment of the values between 
the sampled habitat locations x and y. Our semivariogram 
was nonnegative since it was the expectation of a square. 
The covariance function was related to variogram by 
2γ(x,y) = C(x,x) + C(y,y) - 2C(x,y). In this research, the 
γ(x,y) = E(|Z(x) − Z(y)|2) = γ(y,x) was a symmetric func- 
tion, consequently, γs(h) = γs(- h) was an even function. 
A function is a semivariogram if, and only if, it is a con- 
ditionally negative definite function, i.e. for all weights 
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sponded to the fact that the variance [i.e., var(X) of 
( )1

N

i ij
X w Z x==  generated from the sampled Cx. 

quinquefasciatus data was given by the negative of this 
double sum, which in this research was nonnegative. All 
spatial dependence was quantified in the model. If a sta- 
tionary random field has no spatial dependence (i.e. C(h) 
= 0 if 0h ≠  the semivariogram is the constant var(Z(x)) 
everywhere except at the origin, where it is zero [28]. 

Theoretically, at zero separation distance (lag = 0), the 
semivariogram value is zero in a predictive vector mos- 
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quito habitat distribution model; however, at an infini- 
tesimally small sampled habitat distances, the semi- 
variogram often exhibits a nugget effect (i.e., measure- 
ment errors or spatial sources of variation at distances 
smaller than the sampling interval), which is some value 
greater than zero [16]. Additionally, since the random field  
was stationary and ergodic, the ( ) ( )( )varlim s

h
h Z xγ

→∞
=  

corresponded to the variance generated by the Cx. quin- 
quefasciatus habitat data. We defined a practical range 
and defined the distance at which 95% of the sill was 
reached for the asymptotic variogram model. The semi- 
variogram calculated estimates of the surface at the dif- 
ferent habitat locations. The increase in the semivario- 
gram values with increasing lags diminished with dis- 
tance and leveled off, at around 70 km (i.e., the range or 
active lag distance). This was the approximate distance at 
which spatial autocorrelation between the Cx. Quinque- 
fasciatus habitat data point pairs ceased or became much 
more variable. In the future sampling variograms should 
be constructed using spatiotemporal-sampled Cx. Quin- 
quefasciatus habitat data. The sampling variogram, 
unlike the semivariogram, shows where a significant 
degree of spatial dependence in the sample space or 
sampling unit dissipates into randomness when the vari- 
ance terms of a temporally or in-situ ordered set are 
plotted against the variance of the set and the lower lim- 
its of its 99% and 95% confidence ranges [28]. Sam- 
pling variograms may quantify extraneous measurement 
variances before spatial dependence is verified in a pre- 
dictive Cx. quinquefasciatus habitat distribution model. 

In this research interpolation accuracy was also 
measured by the natural logarithm of the mean squared 
interpolation error and Voroni polygons which revealed 
all uncertainty effects while quantifying several covariate 
interaction terms in Euclidean space. The Voroni cells 
generated were a d-dimensional polytope (i.e., a convex 
hull of a finite set of georeferenced points). A set of 
hyperplanes were generated using the polygonal shapes 
around each sampled Cx. quinuqefasciatus habitat in the 
Trinidad study site. If S contains only two points, a and b, 
then the set of all points equidistant from a and b is a 
hyperplane-an affine subspace of codimension 1 [28]. The 
set of the polytopes covered the whole space and was the 
Voronoi tessellation corresponding to the georeferenced 
Cx. quinquefasciatus habitats. The convex Voronoi 
polygons were visualized as space-filling polygons 
constructed around the dataset of the sampled covariates 
(i.e.,Voronoi centers), such that each polygon contained 
all points closer to its Voronoi center than to the center of 
any other polygon. The relationship of the Voronoi 
centers to edges of polygons were used to test whether any 
convex tessellation existed in the polygons. This test 
amounted to finding Voronoi centers that best fit the given  
tessellation. In this research, Voronoi centers were found 

by solving two systems of linear equations. These 
equations represented 1) conditions on the slope of 
polygon edges relative to the slope of lines through 
Voronoi centers, and 2) conditions on the distance from 
edges to Voronoi centers. Least squares and constrained 
least-squares solutions were used to solve the two systems. 
In order to quantitatively characterize the error in the 
interpolation model, we examined normalized cell size 
distribution related to the homogenous and inhomogeneous 
fixation densities (i.e., Cx. quinquefasciatus habitat 
egg-raft count), which provided additional insight as to 
how the convex tessellations varied between the Voronoi 
polygons. A goodness-of-fit statistic was derived using the 
Voronoi tessellations which determined the error propa- 
gation in the multivariate model. The Voroni residuals 
reflected sampling errors and analytical errors based on the 
sampled Cx. quinquefasciatus habitat egg-raft count 
density. 

In the future new network nodes using Dirichlet 
tessellations in spatiotemporal-sampled Cx. quinque- 
fasciatus habitats should be analyzed. For example, 
Okabe and Satoh, (2008) have developed a software 
package, SANET, which can be installed as an ArcGIS 
add-in for “Spatial Analysis on a Network” for 
determining new network nodes [43]. The SANET 
software includes a network-based Voronoi tool, very 
similar to some of the network analysis tools provided in 
ArcGIS itself and in network-oriented packages such as 
TransCAD and Cube. The point set (i.e., off-network sites) 
can be linked to the nearest network edge, and then 
non-directed network Voronoi regions can be generated 
from georferenced Cx. quinquefasciatus habitat locations 
using shortest path distances. Separate inward and 
outward-directed Voronoi regions can then be computed 
and each habitat can be derived using unweighted 
calculations.  

For future research, the risk of WNV transmission in 
the Trinidad study site should also be investigated using 
wild bird roosting behavior and seasonal migratory pat- 
tern data. Quantifying WNV amplification at a local 
scale, with explicit attention to distances measurements 
from mosquito and hatch-year bird sites and human 
habitation areas may affect timing of infection in birds, 
mosquitoes, and humans. Seropositive resident and mi- 
gratory birds have been documented along the Atlantic 
and Mississippi flyways into the Caribbean [2]. While 
transient birds may suggest a means by which WNV has 
rapidly spread across North and Central America, resi- 
dent breeding birds may be more critical for zoonotic 
transmission in Trinidad [44-47]. In North America, high 
seroprevalence is associated with avian species that 
breed year-round and live close to humans (e.g. Ameri- 
can robin, House sparrow, Mourning dove, Northern 
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cardinal, Northern mockingbird), though other wild birds 
may be important [47-49]. In contrast to the urban avian 
species commonly associated as WNV hosts in North 
America, avian WNV hosts that occur in Trinidad are 
often non-urban, wild bird species [2]. Caribbean birds 
that have tested seropositive for WNV and are resident to 
Trinidad or breed seasonally in Trinidad include: Ba- 
nanaquits (Coereba flaveola), Palm-tanagers (Phaenico- 
philus palmarum), and Grossquit species [2]. Since the 
significance of avian species in WNV transmission may 
relate to their host competency, natural exposure to 
mosquito vectors and spatiotemporal availability, an 
avian GIS-based model using spatial filter eigenvectors 
and Bayesian estimates might be able to generate glob- 
ally asymptotically stable parameters while quantifying 
the amplification cycle prior to bridge vector involve- 
ment. Bridge vectors are mosquito species that readily 
feed on humans and mammals [2]. 

In conclusion, correlation estimates generated from the 
WV-1 DEM revealed that the terrain covariate elevation 
was significantly associated with the Cx. quinquefasciatus 
habitats sampling sites. The spatial hydrological model 
allowed for hydrologic modeling, view-shed deter- 
mination, slope/aspect analyses, and 3-d surface visua- 
lization of the georeferenced parameters associated to Cx. 
quinquefasciatus habitat data. Elevation data was 
represented in the WV-1 DEM by including gridded data 
where the terrain covariate was estimated for each cell in a 
regular grid, a triangular irregular network, and contours. 
The coefficients from the decomposition of the sampled 
predictor variables were then entered into a Bayesian 
matrix. This framework allowed flexible model fitting, 
estimation, and mapping of all high risk habitats based on 
field-sampled egg-raft count data using a MCMC 
specification. Residual estimates were then analyzed with 
an eigenvector spatial filtering algorithm which trans- 
formed all the georferenced predictor variables containing 
spatial dependence into covariates free of spatial 
dependence by partitioning the original sampled habitat 
data and the sampled egg-raft abundance count data into 
two synthetic variates: 1) a spatial filter variate capturing 
latent spatial dependency and 2) a non-spatial variate that 
was free of spatial dependence. The geographic distribution 
of the sampled habitats based on the egg-raft counts 
exhibited positive autocorrelation in all models tested: 
log-egg-raft counts aggregated in geo-space. The procedure 
accounted for 17 % pseudo-replicated information in the 
datasets. All models were then adjusted based on the 
residual estimates form the eigenfunction decomposition 
algorithm and then kriged. The sill indicated that the 
semivariance values had been reached (i.e., the value of 
maximum variance was equivalent to the variance of a 
0.5m pixel value), while a non-zero intercept value (i.e., 

nugget variance) of the varigram model was indicative of 
the variability of the field and remotesampled Cx. 
quinquefasciatus data. A simple quantitative measure of 
the interpolation performed was determined by generating 
RMSE values for the models and by constructing Voroni 
polygons. Optimizing the RMSE by minimizing the 
spatial structure in a Cx. quinquefasciatus habitat model 
generated a pure nugget variogram, of which the level of 
nugget variance represented noise characteristics in the 
predictor variables. Interpolation accuracy tests measured 
by the natural logarithm of the mean squared interpolation 
error and the Voroni polygons revealed all error effects of 
the parameter estimates in the kriged-based model and 
quantified the covariate interaction terms. Newer GIS 
software, WV-I data and spatial statistics can implement 
larval control strategies by targeting prolific habitats of 
Cx. quinquefasciatus based on field-sampled count data in 
Trinidad.  

In the future high quality spatial autoregressive and 
surface models should be constructed using spatiotem- 
poral-sampled Cx. quinquefasciatus and other mosquito 
habitat data and Worldview-2 (WV-2) imagery for im- 
proving sensitivity in LULC, elevation and kriged-based 
interpolation parameters in Trinidad. On October 8, 2009 
Digitalglobe launched WV-2 which is the first high 
resolution commercial satellite to offer 8-band capability 
with high accuracy, agility and spectral diversity (www. 
digitalglobe.com). This allows the creation of accurate 
Cx. quinuqefasciatus habitat maps without the need of 
GCPs. A wide range of features can be extracted using 
the traditional four spectral bands but WV-2 offers the 
addition of the Coastal Yellow, Red edge and shorter 
wave NIR bands which may provide a wider range of 
potential derivatives for targeting prolific Cx. Quinque- 
fasciatus and other mosquito habitats. For example, the 
Coastal-blue bands can be used for bathymetry, benthic, 
wetland and atmospheric modeling which can assist in 
detecting subtle differences in land cover and coastal 
features associated with prolific mosquito habitats. 
Probably the best feature of WV-2 for geomapping Cx. 
quinquefasciatus and other mosquito habitats, however, 
is the ability to derive algorithms and functions from new 
band combinations for feature extraction and improved 
classification. For example, the Red-edge NIR band can 
identify plant health and age through chlorophyll produc- 
tion while the yellow band in conjunction with the Red 
Edge band can provide agricultural applications and iron 
oxide mineralogy which can model moisture content. Thus, 
WV-2 can provide detailed imagery for precise map gen- 
eration, LULC change detection, construction of DEMs 
and autoregressive predictive models. WV-2 data can 
further help implement a remote-based habitat surveil- 
lance in Trinidad and in other regions. 
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