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Abstract 
During the last subprime mortgage crisis, the concentration risk issue has become 
increasingly important in the world of finance. This risk is defined as the loss that we 
can incur from a large exposition of a single name counterparty, a sector or a prod-
uct. This paper represents some mathematical models for assessment and quantifica-
tion of the concentration risk under the Add-On approach. This study is based on 
the Granularity Adjustment (GA). This measure quantifies the idiosyncratic risk that 
is neglected by the Asymptotic Single Risk Factor model (ASRF) based on the infi-
nitely granular assumption of the portfolio. This work is about the approximation of 
this measurement to simplify the formula of GA using the Ad-Hoc approach. We 
have implemented empirical tests to find the relation between the GA and concen-
tration indexes and we applied these results to the iBoxx portfolio. 
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1. Introduction 

The Ad-Hoc approach does not take into consideration the specific risk factors like the 
PD and LGD. On the other hand, it does not allow computing the provision charge of 
capital requirement to cover the concentration risk. Behind this, the GA represents all 
specific risks neglected by the ASRF model, so it’s over than the concentration risk. 
However, we can use it as a metric to measure this kind risk. 

This paper studies the modeling and the approximation of this measure of concen-
tration risk. We will focus on the credit environment that represents the banking book 
and the source of risks in the bank balance. We will restrict on the name concentration. 

First, we will begin by modeling the name concentration under the granularity ad-
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justment. Next, we will implement this approach in the Vasicek and Credit Risk+1 
models. Then, we will suggest the approximation of the GA. Finally, we will implement 
some tests to see the efficiency of these approximations and we will use these results on 
the iBoxx portfolio to make it available. 

2. The Formulation of Granularity Adjustment (GA) 

The GA was developed to underpin the Asymptotic Single Risk Factor model (ASRF) in 
order to cover the idiosyncratic risk under Internal Rating Based model (IRB) of Basel 
II. Indeed, the ASRF model supposes that the portfolio is infinitely granular and this 
assumption neglected the specific risk. The GA formula was computed by Wilde 
(2001). Thereafter, Martin and Wilde (2002) used the results of Gourieroux et al. (2000) 
to simplify it. In this section, we will compute the GA formulation under the Vasicek 
and Credit Risk+ models. We deem X as the one-dimensional systematic factor and 

NL  as the portfolio loss with N loan, and giving the following notations of the mean 
and the variance of the conditional loss2: 

( ) [ ] ( ) [ ]2| et |N NX L X X L Xµ σ= =   
For 1ε = , the portfolio loss is equal to: 

( ) ( )( )N NL X L Xµ ε µ= + −
 

Using these notations, the GA is defined as: 

( ) ( ) ( )
( ) ( )( )( ) ( )( )

ASFR
q N q N q N

q N q

GA L VaR L VaR L

VaR X L X VaR Xµ ε µ µ

= −

= + − −
 

By applying the Taylor expansion on ( ) ( )( )( )q NVaR X L Xµ ε µ+ −  with second 
order according to the 0ε =  and by replacing the 1ε = , we get3: 

( )

( ) ( )( )( ) ( ) ( )( )( )
2

2
0 0

1
2

q N

q N q N

GA L

VaR X L X VaR X L X
ε ε

µ ε µ µ ε µ
ε ε= =

∂ ∂
= + − + + −
∂ ∂

 

By computing the first and the second derivative terms, we find the following re-
sults4: 

( ) ( )|q N qVaR X L X VaR X
ε
∂  = = ∂


 

( ) ( ) ( ) [ ]( )
( )

2

2
1 |

q

q X N
X x VaR X

VaR X f x L X x
f x xε

=

 ∂ ∂
= − × = ∂∂  



 
With Xf  defines the density function of X. 
If we set ( )X Xµ= , we get the following results5: 

 

 

1See Annex. 
2See Annex. 
3See Wilde (2001), Probing granularity, Risk Magazine, Vol 14, No 8, pp 103-106. 
4See Gourieroux, Laurent, & Scaillet (2000), Sensitivity analysis of Values at Risk, Journal of Empirical 
Finance. 
5See Martin, & Wilde (2002): Unsystematic credit risk, Risk Magazine 15(11), pp 123-128. 
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( )( ) 0qVaR Xµ
ε
∂

=
∂

 

( ) ( )
( ) ( )

( )
( )1

22

2

1
2

q

X
q

X x VaR X

x f x
VaR X

f x x x
σ

µε
−=

  ∂ ∂
= − ×   ′∂∂    

 

We find the general formula of GA basing on these results: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )( )
( )1

2 2 2
2

1 1
2

q

X
q N

X
x VaR X

f x x
GA L x x x

x f x x

µ
σ σ σ

µ µ
−=

 ′ ′′ ′ = − + −  ′ ′  
 

Therefore, if we want to explain this formula we should use a risk model. The most 
prevalent models for the banking book to calculate the capital request for the credit risk 
is: The Vasicek and the Credit Risk+ models. The first one is deemed as a structural 
model, and the second one belongs to the intensity model. In the following paragraphs, 
we will develop the GA formula under these models. 
• The GA formula under the Vasicek model: 

The Vasicek6 model supposes that the systematic factor is following the Gaussian dis-
tribution ( )~ 0,1X N , and this result leads to: 

( )
( )

X

X

f x
x

f x
′

= −
 

Substituting in the formula of GA, we get: 

( ) ( ) ( ) ( )( ) ( ) ( )
( )( )

( )

( )
( )
( ) ( ) ( )

( )

1

1

2 2 2
2

Φ 1

2 2

Φ 1

1 1
2

1
2

Vasicek
q N

x q

x q

x
GA L x x x x

x x

x
x x x

x x

µ
σ σ σ

µ µ

µ
σ σ

µ µ

−

−

= −

= −

 ′′′ = − +
′ ′ 

 ′′  ′= + −   ′ ′     
Thus, we can compute the components that allow computing the GA7: 

( ) [ ] ( ) [ ] ( )
1 1

|
N N

N i i i i i
i i

x L x s x s LGD PD xµ µ
= =

= = = × ×∑ ∑ 
 

( ) [ ] ( )2 2 2

1
|

N

N i i
i

x L x s xσ σ
=

= = ∑
 

with ( ) [ ] ( ) [ ] ( )1

1
i i

i i i i
i

PD x
x LGD PD x LGD

ρ
µ

ρ

− Φ −
= × = ×Φ  − 
   

( ) [ ] ( )1

1 1
i i

i
i

i
i

i

PD x
x LGD

ρρµ ϕ
ρ ρ

− Φ −
′⇒ = − × ×   − − 


 

and ( ) ( ) ( )
1Φ

1 1
ii

i i
i i

iPD x
x x

ρρ
µ µ

ρ ρ

− −
′′ ′= × ×  − − 

 

 

 

6See Vasicek (1987). Probability of loss on loan portfolio, KMV Corporation, San Francisco, USA. 
7See Annex. 
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We have also: 

( ) [ ] ( ) [ ]( )
( ) ( ) [ ]( ) [ ]( )

[ ] [ ]( )( ) [ ]( ) ( )( ) ( )

( ) ( )

222

2 22 2

2 2

2

| | |

| |

i i i i i i

i i i i

i i i i i

i i i

x L x LGD D x LGD D x

LGD D x LGD D x

LGD LGD LGD PD x PD x

C x x

σ

µ µ

 = = × − × 
   = × − ×   

= + − × ×

= −

  

   

  
 

With [ ] [ ]
[ ]

2
i i

i
i

LGD LGD
C

LGD
+

=
 


 and iD  is the default variable8. 

The derivative function regarding to x is equal to: 

( ) ( ) ( ) ( ) ( )
1

1 1
,

1 1

N N
i ii

i i
i i i i

i i
PD x

x s x x s x
ρρµ µ µ µ

ρ ρ

−

= =

 Φ −
′ ′ ′′ ′= × = × × ×  − − 

∑ ∑
 

( ) ( ) ( )( ) ( ) ( ) ( )( )2 2 2 2

1 1
, 2

N N

i i i i i i i i
i i

x s x C x x s x C xσ µ µ σ µ µ
= =

′ ′= × × − = × × −∑ ∑
 

By developing the GA under ( )1 1x q−= Φ − , we find the following formula: 

( )
( )( ) ( )( ) ( )( )( )

( )( )
( )( ) ( )( )( )

2 1 1
1

1

1
1

1

1 1 1
2 1

1
2 1

1

N
Vasicek
q N i i i i

i

i i
i

i

GA L s q C q
q

q
C q

q

µ δ µ
µ

µ
µ

µ

− −
−

=

−
−

−

 
= × Φ − × − Φ − ′ Φ −  

′ Φ −
− × − Φ −
Φ − 

∑

 

With ( )
( )( )
( )( )

1
1

1

1
1

1

q
q

q

µ
δ

µ

−
−

−

 ′′ Φ −
 = Φ − +
 ′ Φ − 

 

• The GA formula under the Credit Risk+ model: 
As we have seen to compute the GA formula, we need to calculate the following 

quantities ( )xµ , ( )2 xσ , and ( )Xf x  that depend to the model. The assumption of the  

Credit Risk+9 model is that ( )~ ,X α βΓ  where 1α
β

= . Then, we obtain the follow-

ing relation: 
( )
( ) ( )1 1X

X

f x
x

f x
α

′
= − −  

We can explain the GA formula by computing the following components: 

( ) ( ) ( ) ( )2 2 2

1 1
,

N N

i i i i
i i

x s x x s xµ µ σ σ
= =

= =∑ ∑
 

The expression of ( )i xµ  is given by10: 
( ) [ ] ( ) [ ] ( )1i i i i i i ix LGD PD x LGD PD w w xµ = × = × × − + ×   

( ) [ ] ( )
1

1 ,
N

i i i i
i

x LGD PD w w xµ
=

⇒ = × × − + ×∑  

 

 

8See Annex. 
9See Credit Suisse Financial Products (1997). Credit Risk+: A Credit Risk Management Framework. London, 
1997. 
10See Annex. 
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And ( ) [ ] ( )
1

et 0
N

i i i
i

x LGD PD w xµ µ
=

′ ′′= × × =∑  

We have for the conditional variance: 

( ) ( ) [ ]( )
( ) ( ) [ ]( ) ( )( )
( ) ( ) ( )( )

( ) ( )( ) [ ]
[ ]

222

2 22 2

22 2

2

2

| |

|

|

i i i i i

i i i i

i i i

i
i i i

i

x LGD D x LGD D x

LGD D x LGD PD x

LGD D x x

LGD
C x x

LGD

σ

µ

µ µ

 = × − × 
   = × − ×   
   = × −   

= + ×

 

  

 


  

With [ ] [ ]
[ ]

2
i i

i
i

LGD LGD
C

LGD
+

=
 


 

We conclude that: 

( ) ( ) ( ) [ ]
[ ]

2 2
2

1

N
i

i i i i
i i

LGD
x s x C x

LGD
σ µ µ

=

 
 = × + ×
 
 

∑



 
Therefore, we have: 

( ) ( ) ( ) [ ]
[ ]

2 2
2

1
2

N
i

i ii i
i i

LGD
x s x C x

LGD
σ µ µ

=

 ′ ′  = × + ×
 
 

∑



 
These results we lead us to the GA formulation found it by Gordy and Lutkebohmert 

(2007)11: 

( ) ( ) ( ) [ ]
[ ]

( ) [ ]
[ ]

22
2

1

2

1
2

2

N
iCR

q N i i i i i i
i i

i
i i i i

i

LGD
GA L s C UL EL UL EL

UL LGD

LGD
UL C UL EL

LGD

δ δ+

=

 
 = × + + + ×
  

 
 − × + + ×

  

∑






 
With, 

[ ] [ ] ( )( )
1

, 1 ,
N

i i i i i i i q i i
i

EL LGD PD UL LGD PD w VaR X UL s UL
=

= × = × × × − = ∑ 
 

And ( )( ) ( )
11q

q

VaR X
VaR X

αδ α
 −

= − × +  
 

 

3. The Granularity Adjustment Approximation 

The aim of this study is the implementation of algorithmic tests to test approximations 
of GA. These algorithmic tests will be established on R and under the following as-
sumptions: 

 

 

11See Gordy, & Lutkebohmert (2007), Granularity adjustment for Basel II, Discussion Paper Series 2: Banking 
and Financial Studies, Deutsche Bundesbank (1). 
See Gordy, & Lutkebohmert (2013), Granularity Adjustment for Regulatory Capital Assessment, Internation-
al Journal of Central Banking. 
See Lutkebohmert (2009). Concentration Risk in Credit Portfolios. Springer. 
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• The HKI (Hannah-Kay Index) parameter is equal to 3. 
• The HIS (Hammami-Slime Index) parameter is equal to 0.25. 
• The generation of exposures follows the Log-normal distribution. 
• The parameter of the Gamma distribution is equal 0.31. 
• The quantile is equal to 99.9%. 

3.1. The Reduced Form of GA 

The authors of the GA formula below the Credit Risk+ suggest a simplification under 
the assumption that quantities of iEL  and iUL  are enough small. So, we can neglect
( )2 0i iUL EL+ ≈  and ( ) 0i i iUL UL EL× + ≈ . The simplified GA becomes: 

 ( ) ( )( )2

1

1
2

NCR
q N i i i i i

i
GA L s C UL EL UL

UL
δ

+

=

≈ × × + −∑
 

By the same way, we can approximate this formula below the Vasicek model giving 
the assumption ( )( )21 1 0i qµ −Φ − ≈  and ( )( ) ( )( )1 11 1 0i iq qµ µ− −′Φ − × Φ − ≈ , by: 

 ( )
( )( ) ( )( ) ( )( )( )2 1 1

1
1

1 1 1
2 1

NVasicek
q N i i i

i
iGA L s C q q

q
δ µ µ

µ
− −

−
=

 ′≈ × × × Φ − − Φ − ′ Φ −  
∑

 
This test allows verifying the validity of these approximate formulas of GA. The Ta-

ble 1 summarizes the formulations under the both models Vasicek and Credit Risk+. 
The test implementation is based on portfolio generating of some 1000N =  expo-

sures according to the Log-normal distribution. Then, we compute the full and the ap-
proximate GA under the both models Vasicek and Credit Risk+. We repeat this opera-
tion one thousand times to get 1000 portfolios at the end. Test steps are described on 
the following algorithm: 
1) Generate 1000 exposures according to the Log-normal (10, 3) distribution. 
2) Generate 1000 probabilities of default according to the uniform distribution. 
3) Generate1000 correlation coefficient according to the uniform distribution between 

0.12 and 0.24. 
4) Compute the full GA according to the two models. 
5) Compute the approximate GA according to the two models. 

 
Table 1. Summary of the GA formula depending on model. 

 Vasicek Credit Risk+ 

qGA  

( )

( )( ) ( )( ) ( )( )( )

( )( )
( )( ) ( )( )( )

2 1 1
1

1

1
1

1

1 1 1
2 1

1
2 1

1

Vasicek
q N

N

i i i i
i

i i
i

i

GA L

s q C q
q

q
C q

q

µ δ µ
µ

µ
µ

µ

− −

−
=

−

−

−

 
= × Φ − × − Φ − ′ Φ −  

′ Φ −
− × − Φ − Φ − 

∑  

( )

( ) ( ) [ ]
[ ]

( ) [ ]
[ ]

22
2

1

2

1
2

2

CR
q N

N
i

i i i i i i
i i

i
i i i i

i

GA L

LGD
s C UL EL UL EL

UL LGD

LGD
UL C UL EL

LGD

δ δ

+

=

 
 = × + + + ×  

 
 − × + + ×  

∑






 



qGA  

 ( )

( )( ) ( )( ) ( )( )( )2 1 1
1

1

1 1 1
2 1

Vasicek
q N

N

i i i
i

i

GA L

s C q q
q

δ µ µ
µ

− −

−
=

 ′≈ × × × Φ − − Φ − ′ Φ −  
∑

  ( ) ( )( )2

1

1
2

NCR
q N i i i i i

i

GA L s C UL EL UL
UL

δ
+

=

≈ × × + −∑
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6) Iterate 1000 times the steps from 1 to 5. 
7) Statistical test of the average under the generated data of the full and the approx-

imate GA. 
8) Statistical test of the variance homogeneity under the generated data of the full and 

the approximate GA. 
This test allows us to determine the conditions of using the approximate GA in order 

to simplify computing. First, we get in the Vasicek model with an interval of default 
probabilities between 0 and 1%. We conclude that the two values are very close. Fur-
thermore, the Student test of the average and the Fisher test of the variance are conclu-
sive and we find respectively a p-value equal to 24% and 5.5%. This result underpins the 
approximate formula of the GA. On the other hand, if we have the un-conditional de-
fault probabilities go beyond of 1% then this approximation doesn’t more work. The 
Figure 1 reproduces the results of this test: 

In regards to the Credit Risk+ model, we can prove using tests that the approxima-
tion formula of GA still suitable when the probabilities of default are between 0 and 
10%. We get in by the same way and we generate the PDs between 0 and 10%. The Stu-
dent test on the average and the Fisher test on the variance give respectively a p-value 
of 49% and de 16%. On the other side, this result is no more suitable for the PDs 
beyond of 10%. As conclusion, the condition that makes the approximation formula 
suitable for Vasicek model is the PDs portfolio between 0% and 1%, and for the Credit 
Risk+ model is the PDs portfolio between 0% and 10%. The Figure 2 shows the evolu-
tion of the full and the approximate GA. 

3.2. The Regression of GA on the Concentration Indexes 

• The regression of the GA on the Herfindahl-Hirschman Index (HHI): 
We find into the GA formula the square of shares 2

is , and these represent compo- 
 

 
Figure 1. The evolution of the GA under the Vasicek Model according to number of simulations. 

 

 
Figure 2. The evolution of the GA under the Credit Risk+ Model according to number of simulations. 
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nents of the HHI12 index. Furthermore, in the case of a homogeneous portfolio regard-
ing to specific risk factors, we get a linear relation between the GA and the HHI: 

( )
( )( )
( )( ) ( )( )( )

( )( )
( )( ) ( )( )( )

( ) ( ) ( ) [ ]
[ ]

( ) [ ]
[ ]

1
1

1

1
1

1

2
2

2

1
1

2 1

1
2 1

1

1
2

2

Vasicek
q N

CR
q N

q
GA L C q

q

q
C q HHI

q

LGD
GA L C UL EL UL EL

UL LGD

LGD
UL C UL EL HHI

LGD

µ
δ µ

µ

µ
µ

µ

δ δ

−
−

−

−
−

−

+

 Φ − 
 = × − Φ −

′ Φ − 

 ′ Φ −
 − × − Φ − ×
 Φ − 


 
 = × × + + + ×    


 
 − × + + × ×    







 
( ) ( )

( ) ( )
, ,

, , ,

Vasicek
q N

CR
q N

GA L Coeff PD LGD q HHI

GA L Coeff PD LGD w q HHI+

 = ×⇒ 
= ×  

where 2
1

.N
ii

HHI s
=

= ∑  
The Figure 3 shows the evolution of the GA according to the HHI index in the case 

of homogenous portfolios ( 5%, 45%, 12%PD LGD w= = = ): 
The goal of this test is to verify the validity of this relation on the non-homogeneous 

portfolio. For this, we establish the following test: 
1) Generate 1000 exposures according to the Log-normal (10, 3) distribution. 
2) Generate 1000 probabilities of default according to the uniform distribution (5%, 

10%). 
3) Generate 1000 correlation coefficient according to the uniform distribution between 

0.12 and 0.24. 
4) Compute the full GA according to the two models (Vasicek and Credit Risk+). 
5) Compute the HHI index. 
6) Iterate 1000 times the steps from 1 to 5. 
7) Apply the linear regression under the simulated GA according to the simulated 

HHI. 
If we take an interval of PDs between 0% and 20%, we obtain the following results in 

the Figure 4. 
The Table 2 summarizes the characteristics of the linear regression. 
From these results, we can deduce that the relationship of linearity between the GA 

and the HHI remains valid for minimum concentrations. Otherwise, you can have 
quite substantial dispersions around the regression for fairly major indexes. 
• The regression of the GA on the Hannah-Kay Index (HKI): 
We couldn’t find directly the relation between the GA and the HKI even though in 

case of a homogeneous portfolio. Therefore, we will use an empirical approach to get 
this relation. The HKI13 is defined by: 

 

 

12See Herfindahl (1950). Concentration in the U.S. Steel Industry, Dissertation, Columbia University.  
See Hirschmann (1964). The paternity of an index. American Economic Review, 54, 5, pp. 761. 
13See Hannah, & Kay (1977). Concentration in modern industry. Mac Millan Press, London. 
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Figure 3. The evolution of GA regarding to HHI in case of a homogeneous portfolio. 

 

 
Figure 4. The evolution of GA regarding to HHI with [ ]0,20%PD∈ . 

 
Table 2. Summary of linear regression of GA on HHI. 

 
Coefficient Standard Residue R-Squared 

GA Vasicek 1.61 0.065 0.93 

GA Credit Risk+ 1.70 0.1 0.87 

 

( )
1

1

1
avec 0 et 1

N

i
i

HKI s
αα α α
−

=

 
= > ≠ 
 
∑

 
Basing on the empirical experience, we get a non-linear regression relation: 

( )
( )

( )
( )

2 11

1 2

2 11

1 2

With  is the HKI parameter
Vasicek V V
q N

CR CR CR
q N

GA L a HKI a HKI

GA L a HKI a HKI

αα
α α

αα
α α

α

× −−

× −−
+


= × + ×⇒ 

 = × + ×  
We process in the same way to the last implementation. Indeed, we generate 

1000N =  exposures with the Log-normal and we compute the GA and the HKI index. 
The description of the algorithm steps is: 
1) Generate 1000 exposures according to the Log-normal (10, 3) distribution. 
2) Generate 1000 probabilities of default according to the uniform distribution (5%, 10%). 
3) Generate 1000 correlation coefficient according to the uniform distribution between 

0.12 and 0.24. 
4) Compute the full GA according to the two models (Vasicek and Credit Risk+). 
5) Compute the HKI index. 
6) Iterate 1000 times the steps from 1 to 5. 
7) Apply the nonlinear regression under the simulated GA according to the simulated HKI. 

In the case of homogenous portfolios, the Figure 5 shows the evolution of the GA 
according to the HKI index, and coefficients of the non-linear regression are respec-
tively 1 20.199, 1.236V Va a= =  and 1 20.282, 1.748CR CRa a= =  ( 5%PD = , 45%LGD = ,

12%w = ): 



B. Slime 
 

255 

 
Figure 5. The evolution of GA regarding to HKI in case of a homogeneous portfolio. 

 

 
Figure 6. The evolution of GA regarding to HKI with [ ]0,20%PD∈ . 

 
If we take an interval of PDs between 0% and 20%, we obtain the following results in 

the Figure 6.  
We can conclude that this relationship between the GA and the HKI remains valid 

for minimum concentrations. Otherwise, you can have quite substantial dispersions 
around the regression for fairly major indexes. 
• The regression of the GA on The Hammami-Slime Index (HSI): 

We can’t directly find the relation between GA and HSI even though in case of a 
homogeneous portfolio. Therefore, we will use an empirical approach to get this rela-
tion. The HSI14 is defined by: 

1

1
; 0 1

N

i
i

HSI s α α+

=

= < ≤∑
 

Using the empirical study, we get a non-linear regression relation: 

( )
( )

( )
( )

11

1 2
11

1 2

With  is the HSI parameter
Vasicek V V
q N

CR CR CR
q N

GA L a HSI a HSI

GA L a HSI a HSI

α
α α

α
α α

α

+

+
+


= × + ×

⇒ 
 = × + ×  

We process in the same way to the last implementation. Indeed, we generate 
1000N =  exposures with the Log-normal and we compute the GA and the HSI index. 

The description of the algorithm steps is: 

 

 

14See Slime, & Hammami (2016). Concentration Risk: The Comparison of the Ad-Hoc Approach Indexes. 
Journal of Financial Risk Management, 5, 43-56. 
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1) Generate 1000 exposures according to the Log-normal (10, 3) distribution. 
2) Generate 1000 probabilities of default according to the uniform distribution (5%, 

10%). 
3) Generate 1000 correlation coefficient according to the uniform distribution between 

0.12 and 0.24. 
4) Compute the full GA according to the two models (Vasicek and Credit Risk+). 
5) Compute the HSI index. 
6) Iterate 1000 times the steps from 1 to 5. 
7) Apply the nonlinear regression under the simulated GA according to the simulated 

HSI. 
In the case of homogenous portfolios, the Figure 7 shows the evolution of the GA 

according to the HSI index, and the coefficients of the non-linear regression are respec-
tively 1 24.7, 3.17V Va a= = −  and 1 26.65, 4.49CR CRa a= = −  ( 5%PD = , 45%LGD = , 

12%w = ). 
If we take an interval of PDs between 0% and 20%, we obtain the following results in 

the Figure 8. 
We can conclude that this relationship between the GA and the HSI remains valid 

for minimum concentrations. Otherwise, you can have quite substantial dispersions 
around the regression for fairly major indexes. 

 

 
Figure 7. The evolution of GA regarding to HSI in case of a homogeneous portfolio. 

 

 
Figure 8. The evolution of GA regarding to HSI with [ ]0,20%PD∈ . 
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4. Application: iBoxx Portfolio 

In this section, we will apply the obtained results under an iBoox portfolio. We will 
build some portfolios given the composition of this index. We will deem that the port-
folio building this index is the market portfolio. The iBoox contains 1663 exposures 
over 10 sectors and 36 countries. The total amount of debt is 1 trillion Euros. The Fig-
ure 9 and Figure 10 show repartitions by sector and by countries (the displayed data 
are dated 30/06/2015). 

We can also have the repartition by rating in the Figure 11. 
 

 
Figure 9. Graph of exposures by sector. 

 

 
Figure 10. Graph of exposures by countries. 

 

 
Figure 11. Graph of exposures by rating. 
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The Table 3 displays the mapping between the probabilities of default and the rat-
ing15. 

Firstly, we can study the concentration of the iBoxx portfolio to get a global view of 
the concentration. The Lorenz curve, in the Figure 12, allows us to have the dispersion 
of exposures by counterparty. 

Basing on the graph, we have an almost equal distribution between exposures. We 
can make a first feeling that the name concentration is small. Therefore, we use also the 
other metrics to confirm this conclusion. Indeed, we compute the tree concentration 
indexes and the GA. The Table 4 summarizes the result compute of these metrics. 

Giving these results, we can conclude that the name concentration is neglected. 
After this study, we will take a small portfolio with 100 exposures to see the impact 

of the number of exposures on the name concentration under these metrics. For this, 
we will do a random selection from the iBoxx composition. We can use regressions of 
the GA on concentration indexes to compute the name concentration risk. We use 
the same algorithms in the third section. The Figure 13 below shows the simulation 
result. 

The Table 5 summarizes the obtained results: 
 

Table 3. The mapping table between the rating and the PDs. 

Rating PD 

AAA 0.09% 

AA 0.20% 

A 0.75% 

BBB 2.02% 

 

 
Figure 12. Lorenz curve of the iBoxx portfolio. 

 
Table 4. The computational result of the iBoxx portfolio. 

HHI 0.07% 

HKI 0.08% 

VaR 6.42% 

EC 5.87% 

GA 0.07% 

Approximate GA 0.08% 

 

 

15Moody’s Investor Service, 2010. 
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Figure 13. The regression of GA on indexes. 
 

Table 5. The concentration measure recapitulative of the credit portfolio. 

HHIP 1.17% 

HKIP 1.25% 

HSIP 32.42% 

VaRP 6.22% 

ECP 5.71% 

GA (HHI) 1.183% 

GA (HKI) 1.192% 

GA (HSI) 1.195% 

 
There is a concentration risk rather important consideration at the GA, as it increas-

es the costs in terms of provision approximately 21%. This result is consistent with the 
HSI index, unlike the HHI and HKI indexes. 

5. Conclusion 

This paper is dedicated, firstly, to model the name concentration under the Add-On 
approach; secondly, to approximate the GA using the concentration indexes. We estab-
lished tests to find the relation between the GA and the indexes. These approximations 
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allow us some simplification of the GA formula. As application, we chose the iBoxx 
composition as the credit portfolio. 

These tests on the GA approximation enabled us to make the relation between the 
Ad-Hoc and the Add-On. We retained the regression between the GA and concentra-
tion indexes. Furthermore, the HSI index gave a more consistent measurement of 
portfolios with a small number of exposures. 

However, these approximations can be used to simplify the GA calculation under the 
sector concentration. Indeed, the formulation of GA is more complex in the sector 
concentration than the name concentration. 
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Annexes 

• The Vasicek model: 
In 1987, Vasicek used the Merton model (1974) to modeling relations between the 

default events to get the assessment of the credit risk. We denote iλ  as the liability of 
the borrower i. The asset value of this borrower with a giving time t follows a geometric 
Brownian motion and verifies the following stochastic differential equation (SDE): 

, , , , ,
1

d d d d
m

i t i t i i k k t i i t
k

V V t W Bµ σ η
=

 
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

= + +


∑
 

With 1 ,,, ,i m iµ σ σ η  are constant and 1, , ,, , ,t m t i tW W B
 is an Independent Brow-

nian motion. , , 1, ,k tW k m= 
 represent the macroeconomic component (systematic 

risk) and ,i tB  is the specific factor (idiosyncratic risk). The Black & Scholes theory 
with a one year horizon gives us the solution of the SDE: 
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where 1, , ,m iX X   are i.i.d (independent and identically distributed) and follow a 
Gaussian distribution. 

The model supposes that default variables iD  are Bernoulli: 
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Indeed, the default probability is equal to: 
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Therefore, the borrower is in default when: 
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If we set: 
2
, ,1

,2 2
,1 ,

2

1

et
m

i k i k

i

k
i i km m

i kk i kk

σ σ
ρ α

σ η σ
=

= =

= =
+

∑
∑ ∑

 

We get: ,1

2
,1

2
1

m
i k k i ik

i i im
i ik

i

k

Zσ η
ρ ρ

σ η
=

=

+
′= + −

+

∑
∑

X


α  

With ( ),1 ,, ,i i i mα α′ = α  and ( )1, , mX X′ =X   
The default condition becomes: 
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Then, we conclude that: 
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The Vasicek model use one systematic factor X=X . The default probability of 
some borrower conditionally to this factor is equal to:  
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Giving these results and under the assumption that borrowers loss are independent. 
The loss rate of the whole portfolio is: 
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We can obtain the expected loss conditionally to the systematic factor under the as-
sumption that the loss giving default iLGD  and the default event  
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We can use the Monte Carlo simulation on the systematic factor to compute this 

value. 
• The Credit Risk+ model: 

The Credit Risk+ model was had developed by Credit Suisse Financial Products 
(CSFP). This model is the one of most used in the IRB Approach and he is one of re-
duced form models. The default rate is a stochastic variable and the default variable 
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follows the Bernoulli distribution: 
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Credit Risk+ supposes that default probabilities are hazardous and systematic factors 

follow the Gamma distribution with the following function density: 
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In the case that the default frequency iD  follows the Poisson distribution with iPD  

as intensity, we get: 
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The default variable and the default frequency meet with the following relation 
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