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Abstract 
This study presents an analysis of the impact of asset price bubbles on standard credit risk meas-
ures, including Expected Loss (“EL”) and Credit Value-at-Risk (“CVaR”). We present a styled model 
of asset price bubbles in continuous time, and perform a simulation experiment of a 2 dimensional 
Stochastic Differential Equation (“SDE”) system for asset value determining Probability of Default 
(“PD”) through a Constant Elasticity of Variance (“CEV”) process, as well as a correlated a Loss- 
Given-Default (“LGD”) through a mean reverting Cox-Ingersoll-Ross (“CIR”) process having a long- 
run mean dependent upon the asset value. Comparing bubble to non-bubble economies, it is 
shown that asset price bubbles may cause an obligor’s traditional credit risk measures, such as EL 
and CVaR to decline, due to a reduction in both the standard deviation and right skewness of the 
credit loss distribution. We propose a new risk measure in the credit risk literature to account for 
losses associated with a bubble bursting, the Expected Holding Period Credit Loss (“EHPCL”), a 
phenomenon that must be taken into consideration for the proper determination of economic 
capital for both credit risk management and measurement purposes. 
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1. Introduction 
The financial crisis of the last decade has been the impetus behind a movement to better understand the relative 
merits of various risk measures, classic examples being Value-at-Risk (“VaR”) and related quantities (Jorion, 
2006; Inanoglu & Jacobs, 2009). The importance of an augmented comprehension of these measures is accen-
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tuated in the realm of credit risk, as the price bubble in the housing market and the ensuing credit crunch is un-
doubtedly a catalyst for the financial crisis. We have subsequently learned from this that the credit models of 
that era fail in not incorporating the phenomenon of price bubbles, which in turn add to the severity of the 
downturn for investors and risk managers who mis-measured their potential adverse exposure to credit risk. This 
manifestation of model risk (The US Board of the Governors Federal Reserve System, 2011) is due to some ex-
tent to a lack of basic understanding, wherein a modeling framework lacks a key element of an economic reality 
and there for fails. This failure of the modeling paradigm in credit risk spans gaps in the measurement, characte-
rization and economics of asset price bubbles. 

In view of analyzing the impact of asset price bubbles on credit risk measures and credit capital determination 
with respect to a firm subject to default risk, we construct various hypothetical economies having and also not 
having asset price bubbles. In a stylized structural credit model framework (Merton, 1974), we simulate a firm’s 
value process in each of these economies, computing the firm’s standard risk measures. We present a model of 
asset price bubbles in continuous time, and perform a simulation experiment of a 2 dimensional Stochastic Dif-
ferential Equation (“SDE”) system for asset value determining Probability of Default (“PD”)1 through a Con-
stant Elasticity of Variance (“CEV”)2 process, as well as a correlated a Loss-Given-Default (“LGD”)3 through a 
mean reverting Cox-Ingersoll-Ross (“CIR”) process having a long-run mean dependent upon the asset value. 
Comparing bubble to non-bubble economies, it is shown that asset price bubbles may cause an obligor’s tradi-
tional credit risk measures such as Expected Loss (“EL”) and Credit Value-at-Risk (“CVaR”) to decline, due to a 
reduced standard deviation and an increased right skewness of the credit loss distribution. We propose a new 
risk measure in the credit risk literature to account for losses associated with a bubble bursting, the Expected 
Holding Period Credit Loss (“EHPCL”), a phenomenon that must be taken into consideration for the proper de-
termination of economic capital for both credit risk management and measurement purposes. 

The results of our experiment demonstrate that the existence of an asset price bubble, which occurs for certain 
parameter settings in the CEV model, results in the firm asset value distribution having both a lower standard 
deviation and a greater right skewness. This augmented right skewness in conjunction with a reduced variance 
of a firm’s return due to bubble expansion results in a reduction of the right skewness in the distribution of the 
default rate and a lower PD, which in combination with a lower mean of the LGD process, results in a credit loss 
distribution having lower mean right skewness and standard deviation. This in turn implies results in the firm’s 
CVaR measures declining, an understatement in the credit risk of the firm. Based on these measures alone, their 
declining values imply that in the presence of asset price bubbles, less credit capital is required. However, as 
shown by the additional risk measure proposed in the present paper, the EHPCL, this conclusion is incorrect. 
This credit loss measure increases in bubble economies and is due to bubble bursting, which causes significant 
firm value losses on the bubble-bursting paths. 

As asset price bubbles are inevitably bound to burst, causing significant credit loss to creditors, more credit 
capital should be held for these bubble-bursting scenarios. Unfortunately, the se-verity of these bubble-bursting 
scenarios is not adequately captured by the standard credit risk measures, whose computation is based on the 
standard moments and quantiles of a firm’s credit loss distribution over time horizons such as a year, over which 
bubble bursting is unlikely. These bubble-bursting scenarios are captured, however, in some correctly con-
structed credit risk measures such as the EHPCL.  

An outline for this paper is as follows. Section 2 presents a review of the literature. Section 3 presents our 
credit model incorporating the effect of asset price bubbles. Section 4 describes the results of our simulation ex-
periment, while Section 5 summarizes the implications of our analysis for credit risk management. 

2. Review of the Literature 
Modern credit risk modeling (e.g. Merton, 1974) increasingly relies on advanced mathematical, statistical and 
numerical techniques to measure and manage risk in credit portfolios. This gives rise to Model Risk (Federal 

 

 

1For a Bayesian stochastic model for PD in the Basel Asymptotic Single Risk Factor (“ASRF”) class of models, underlying the Basel II Ad-
vanced IRB model for credit loss, see Jacobs & Kiefer (2010). 
2For applications of the CEV model in finance see Chan et al. (1992) and Jacobs (2001), in the context of term structure and interest rate 
derivatives. 
3See Jacobs (2011, 2012) for a 2-factor structural credit model with stochastic LGD; Araten & Jacobs (2004) or Jacobs & Karagozoglu 
(2011) for empirical models of LGD; and Frye & Jacobs (2012) for a structural credit risk model in ASRF class of models, featuring 
co-monotonic LGD and PD that provides a parsimonious function for downturn LGD. 
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Reserve Board of Governors, SR 11-7), defined as the potential that a model used to assess financial risks does 
not accurately capture those risks, and the possibility of understating inherent dangers stemming from very rare 
yet plausible occurrences perhaps not in reference data-sets or historical patterns of data4, a key example of this 
being the inability of the credit risk modeling paradigm to accommodate the phenomenon of asset price bubbles. 

The relative merits of various risk measures, classic examples being Value-at-Risk (“VaR”) and related quan-
tities, have been discussed extensively by prior research (Jorion, 1997, 2006). Risk management as a discipline 
in its own right, distinct from either general finance or financial institutions, is a relatively recent phenomenon.  
A general result of mathematical statistics due to Sklar (1956), allowing the combination of arbitrary marginal 
risk distributions into a joint distribution while preserving a non-normal correlation structure, readily found an 
application in finance. Among the early academics to introduce this methodology is Embrechts et al. (1999, 
2002, 2003). This was applied to credit risk management and credit derivatives by Li (2000). The notion of co-
pulas as a generalization of dependence according to linear correlations is used as a motivation for applying the 
technique to understanding tail events in Frey & McNeil (2001). This treatment of tail dependence contrasts to 
Poon et al. (2004), who instead use a data intensive multivariate extension of extreme value theory, which re-
quires observations of joint tail events. 

Since the 2007 crisis, the mathematical finance literature has made significant advances in the modeling and 
testing of asset price bubbles (Jarrow & Protter, 2010; Hong et al., 2006). Inanoglu & Jacobs (2009) contribute 
to the modeling effort by providing tools and insights to practitioners and regulators, utilizing data from major 
banking institutions’ loss experience, exploring the impact of business mix and inter-risk correlations on total 
risk, and comparing alternative established frameworks for risk aggregation on the same data-sets across banks. 
Protter (2011), Protter et al. (2010) and Jarrow et al. (2014) apply these new insights to determine the impact, if 
any, that asset price bubbles have on the common risk measures used in practice for the determination of equity 
capital, which we extend to the realm of credit risk. 

3. A Credit Model for Asset Price Bubbles 
We model the evolution of asset prices, incorporating the phenomenon of price bubbles, using the approach of 
Jarrow et al. (2007, 2015). The setting is a continuous trading economy, without loss of generality having a and 
finite horizon [ ]0,τ , with randomness described by the filtered probability space ( ), , F,PΩ ℑ , where we define:  
the state space Ω , the σ -algebra ℑ , the information partition { } [ ]0,

F t t τ∈
= ℑ , and the physical probability  

measure P  (or actuarial, as contrasted to a risk-neutral probability measure, commonly denoted by the sym-
bol Q ). We assume, again without loss of generality and for the purpose on focusing on the application to cre-  
dit loss, a single asset value process { } [ ]0,t t

V
τ∈

 that is adapted to the filtration F . Note that this could also  

represent a share of stock owned by a representative equity investor, which is a claim on the single productive 
entity or firm in this economy. In the general setting, tV  follows an Ito diffusion process (Øksendal, 2003) 
having the following SDE representation: 

( ) ( )d , d , d ,L
t t t tV V t t V t Wµ σ= +                               (3.1) 

where μ(Vt, t) is the instantaneous drift process, ( ),tV tσ  is the instantaneous diffusion process, ( )~ 0,L
tW N t   

is a standard Weiner process (or a Brownian motion process) on the filtered probability space ( ), , F,PΩ ℑ , and 
d tW  are its infinitesimal increments. In order to complete this economy, we assume that there exists a traded 
money market account process tM , which grows according to a risk-free rate process tr , the latter also adapted 
to the filtration F  of the aforementioned probability space: 

{ }0
exp d .

t
t ss

M r s
=

= ∫                                    (3.2) 

Without loss of generality we assume that the asset tV  has no cashflows, which could have been incorpo-
rated into the model by assuming a dividend process and studying the dividend-reinvested stock price process 

 

 

4In the wake of the financial crisis (Demirguc-Kunt et al., 2010; Acharya et al., 2009), international supervisors have recognized the impor-
tance of Stress Testing (ST), especially in the realm of credit risk, as can be seen in the revised Basel framework (BCBS 2005, 2006, 2009a, 
2009b, 2010) and the Federal Reserve’s Comprehensive Capital Analysis and Review (“CCAR”) program (Jacobs 2013, Jacobs et al. 2015). 
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(Back, 2010), but tomaintain simplicity of notation we do not do not do so. 
We model an economy potentially having an price bubbles through the assumption that the risky asset’s pric-

es follows a Constant Elasticity of Variance (CEV) process, as in Jarrow et al. (2014), which is the following re-
stricted version of the Ito diffusion process in (3.1): 

d d d ,V
t t t tV V t V Wθµ σ= +                                 (3.3) 

where µ  is the drift, σ  is the volatility and the CEV parameter θ  governs the state of the risky asset price 
process exhibiting a price bubble or not. An asset price bubble is defined as the situation where the market price 
for an asset exceeds its fundamental value (Jarrow et al., 2007, 2010), the latter being defined conventionally 
price an investor would pay to hold the asset perpetually without rebalancing. This fundamental value is deter-
mined through the imposing some additional structure on the economy, requiring at minimum two additional 
assumptions. First, we need to assume that the absence of any arbitrage opportunities (Delbaen & Schachermay-
er, 1998), which guarantees the existence of a risk-neutral probability Q  measure equivalent to P , such that 
the asset value process tV  normalized by the money market account tM  is a local Martingale process, fol-
lowing restricted version of the Ito diffusion process in (3.1): 

( )* *,
,

tQ t
t t

t t

V
V

E V t t
M M

τ τ
−

′

     ′ ℑ = = ∀ <      

                         (3.4) 

where 
( )

*

*,
t

t
V Vτ

τ
−≡  is the stopped process of tV  and [ )* : 0,τ Ω→ +∞  is a sequence of stopping times that  

satisfy certain technical condition.5 The mechanism in (3.4) involving the risk-neutral probability measure af-
fords us a means of computing present values where we shift the mass of the probability distribution (magnitude 
of the cash-flows) such that we can recover the same prices as under actuarial measure with the original cash- 
flows-but note that Q  is arbitrary. In order to pin down this risk-neutral distribution, we assume from this 
point on a complete market, which means that that enough derivatives on the risky assets trade in order to repli-
cate its cash flows in a suitably constructed arbitrage portfolio. The first condition is satisfied because the CEV 
process given in expression (3.3) admits an equivalent local martingale measure, so by construction it satisfies 
the absence of arbitrage opportunities.6 Under this incremental structure that we impose upon the economy, an 
asset’s fundamental value tFV  given the time t  information set tℑ , is defined as the asset’s discounted fu-
ture payoff from liquidation at time at horizon tτ > : 

.Q
t t t t t

V
FV V E M

M
τ

τ

 
 ℑ = ℑ  

  
                           (3.5) 

It follows that we may define the asset’s price bubble [ ]V
tΒ •  as the difference between the market price tV  

and its fundamental value tFV : 

.V
t t t t t t tV V FV V   Β ℑ ≡ − ℑ                               (3.6) 

Since as a conditional expectation, the fundamental value normalized by the value of the money market ac-
count is a martingale under Q , a bubble exists if and only if the asset’s normalized price is a strict local mar-
tingale and not a martingale under Q . In the case of the CEV process, it can be shown (Jarrow et al., 2011) that  

the asset’s normalized price t

t

V
M

 
 
 

 is a martingale under Q  when 1θ ≤  in (3.3) (i.e. no asset price bubble),  

and a strict-local martingale under Q  where 1θ >  in that equation (i.e. an asset price bubble). Note that the 
boundary case of 1θ =  yields the geometric Brownian motion underlying the Black-Scholes-Merton (“BSM”) 
option pricing model (Merton, 1974), which is called the BSM economy, and can be shown to exhibit no price 
bubble (Delbaen & Schachermayer, 1995). 

 

 

5The conditions are that *τ  is almost surely increasing * *
1 1Q

k kP τ τ +< =    and is almost surely divergent * as 1Q
kP kτ →∞ →∞ =    

(Oksendal, 2003). 
6This condition is sometimes termed “no free-lunch with vanishing risk” or NFLVR (Jeanblanc et al., 2009). 
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In order to model the distribution of credit loss in the structural modeling paradigm (Merton, 1974), we define 
the unconditional loss process as an Ito process, similarly to the asset value process (3.1): 

( ) ( )d , , d , d ,L
t t t t tL L V t t L t Wν ς= +                             (3.7) 

where ν(Vt, t) is the instantaneous drift process, ( ),tL tς  is the instantaneous diffusion process, ( )~ 0,L
tW N t   

is a standard Weiner process (or a Brownian motion process) on the filtered probability space ( ), , F,PΩ ℑ , and 
d L

tW  are its infinitesimal increments. We assume that L
tW  is independent of V

tW , but model the correlation 
between tV  and tL  through making the drift of the latter dependent on the former as follows: 

( ) 1
0 1 0d d d .L

t t t t tL L V t L Wςν ν ς= − +                            (3.8) 

Therefore, for ( ) ( )0 1, 0,0ν ν ≥  the linear drift function ( ) ( )0 1, ,t t t tL V t L Vν ν ν= −  of tL  is decreasing in 
tV . Next, we develop the distribution of credit loss CLτ  by defining an event of default as asset value tV  

falling beneath the value of debt (or the default threshold) D  the horizon τ  times the loss-given-default Lτ : 
,A DCL I L

ττ τ<≡ ×                                   (3.9) 

We define expected credit loss ECLτ  as the expectation of this random variable under actuarial probability 
measure P : 

,P
tECL E CLτ τ = ℑ                                (3.10) 

We may estimate this quantity as ECLτ  through numerical integration over pN  simulations, which is 
simply the sample mean, which is a consistent and unbiased estimator of this sample moment: 



1

1 ,
pN

i

ip

ECL CL
N

τ τ
=

= ∑                                (3.11) 

Similarly, we may obtain estimators of the population standard deviation ECL
τσ  and of the population nor-

malized skewness ECL
τς  of this distribution, defined as: 

( )2 ,ECL P
tE CL ECLτ τ τσ  = − ℑ  

                        (3.12) 

( )

( )

3

2 3 ,
P

t
V

ECL

E CL ECLτ τ

τ

τ

ς
σ

 − ℑ  =                           (3.13) 

by their sample analogues ˆ ECL
τσ  and ˆECL

τς :  
2

1 1

1 1ˆ ,
1

p pN N
ECL i i

i ip p

CL CL
N Nτ τ τσ

= =

 
= − 

−   
∑ ∑                      (3.14) 



( )

3

1

2 3

1

ˆ .
ˆ

pN
i

ipECL

ECL

CL ECL
N

ττ

τ

τ

σ
σ

=

 − 
=

∑
                         (3.15) 

These statistics are estimates of the credit loss distribution’s moments under the physical probability measure 
P , characterizing the changes in the value of a defaultable instrument that includes both positive and negative 
mark-to-market values. In an credit risk management application, we are actually only interested in losses, to 
which end we seek to understand the right tail of the credit loss distribution, and compute various high quantile 
risk measures, such as the VaR (in market risk) CVaR (it analogue in credit risk). Apart from asset price bubbles, 
even though its limitations are widely known (Alexander, 2001; Jorion, 1997), such measures are widely used in 
the industry.7 An estimator for the CVaR at a given confidence level c is given by: 

 

 

7This is partly due to the Basel II Accords (Engelmann & Rauhmeier, 2006; Cornford, 2005). 
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( ) ( )Quantile ,
pi k N cCVaR cτ ≤ ≤=                               (3.16) 

where: 

( ) ( )
1

1Quantile inf ,
p

kp

N

i k N c CL xx kp

c I c
N τ≤ ≤ ≥

=

   = ≥  
    

∑                       (3.17) 

where kCL x
I

τ ≥
 is an indicator function that takes the value 1 if kCL xτ ≥  and 0 otherwise. We may also define a  

conditional CVaR measure, the Expected Tail Credit Value-at-Risk (“ETCVaR”), as the expected loss condi-
tional on credit loss being greater than or equal to loss at confidence level c : 

( )
( )

( )

1

1

.

p

k

p

k

N
k

CL CVaR c
k

N

CL CVaR c
k

CL I
ETCVaR c

I

τ

τ

τ ≥
=

≥
=

=
∑

∑
                            (3.18) 

In order to model the influence of an entire boom to bust cycle of asset values upon credit risk measures, we 
introduce a measure of credit loss over a sequence of smaller sub-intervals, which we call the Expected Holding 
Period Credit Loss (“EHPCL”). Let HPt  be a shorter 1-week (5 days) holding period, 

dNt  be the longer 1-year 
(250 day) horizon of the simulation and 

ds N NPN t t=  is the number of consecutive sub-intervals of length HPt  
(50 weeks). Then we define the HPt  day credit loss ,k sCL  for sub-period { }1, , ss N∈   along simulation path  

{ }1, , pk N∈   as a situation in which it is greater than the estimated expected loss over the simulation horizon  
ECLτ : 



,
,

, .k s
k s

k s CL ECL
CL CL I

ττ
τ >

=                                 (3.19) 

Then we define the EHPCL  as the average of this quantity over sub-intervals and over simulation paths: 

,
1 1

1 .
p sN N

k s
k sp s

EHPCL CL
N N = =

∑∑                               (3.20) 

Finally, we make note that we may look at all of these measures on a relative basis, scale by the ECLτ , the 
estimators for which we omit for the sake of brevity. 

4. A Simulation Experiment 
We demonstrate the impact of asset price bubbles on an obligor’s credit risk measures, as defined in the previous 
section (i.e. EL, CVaR, ETCVaR and EHPCL), through a stochastic simulation experiment. Simulation is 
needed to determine the probability distribution of asset value, loss given default rate and ultimately the credit 
loss rate over a given time interval. In our experiment we fix the time period for the standard credit risk meas-
ures to be 250 trading days or one year, which is conventional for economic and regulatory credit risk capital 
calculations, with subintervals of one business week or five trading days for the EHPCL measure. We use simu-
lation because an analytic solution for the firm value’s probability distribution using the CEV process is un-
available (Emanuel & MacBeth, 1982; Schroder, 1989).8 

We perform the simulation experiment through constructing a collection of different economies, some with 
bubbles and some without, by varying the CEV parameter θ  from 0.25 to 2.0 in steps of size 0.25. n each of 
these different economies, we compute the standard risk measures to determine the impact that bubbles have on 
their values. We fix the other parameters of the simulation as follows. Asset value tV  is initiated at a norma-
lized value of one 0 1V = , with a drift rate of 5% per annum, 0.05µ = , and a volatility parameter of 10% per 
annum, 0.10σ = . Default is assumed to occur is asset value at the horizon is below the debt threshold of 0.80, 

0.80V Dτ ≤ = . The mean reversion parameter of the LGD process tL  is set to be 0 0.80ν = , and the sensitivi-
ty of the long-run mean to asset value is set to 1 0.40ν = , with an initial value 0 0.40L = ; and a diffusion func-
tion having volatility of 0 0.4ς =  and CEV parameter 1 0.25ς = . 

 

 

8We use the R package Sim. DiffProc to simulate the 2-imensional system of SDEs for asset value and for LGD (Development Core Team, 
2015). 
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The results of our sssanalysis are tabulated in Table 1 and Table 2, and in Figures 1-10. In Table 1 we present  
 

Table 1. Alternative absolute credit risk loss measures and distributional statistics-stochastic simulation of CEV asset value 
process ( 0 1V = , 0.05µ = , 0.80D = , 0.10σ = ) and correlated CEV mean-reverting loss-given-default process ( 0 0.80ν = , 

1 0.40ν = , 0 0.40L = , 0 0.4ς = , 1 0.25ς = ) for various values of the CEV parameter.                                        

 
Theta 

0.25 0.5 0.75 1.00 1.25 1.5 1.75 2.00 

Probability of Default 0.6600% 0.5800% 0.3700% 0.3900% 0.3500% 0.1800% 0.2100% 0.0700% 

Asset Value 

Minimum 61.61% 68.37% 70.84% 69.65% 72.37% 71.81% 71.77% 76.97% 

1st Quartile 97.98% 98.04% 97.94% 97.67% 97.73% 97.63% 97.33% 97.37% 

Median 105.00% 105.00% 104.70% 104.50% 104.60% 104.50% 103.90% 103.90% 

Mean 105.00% 105.20% 105.10% 105.10% 105.20% 105.20% 105.00% 111.70% 

3rd Quartile 111.90% 112.00% 111.80% 111.80% 112.10% 111.80% 111.60% 111.70% 

Maximum 146.40% 148.50% 157.80% 158.50% 168.90% 176.90% 155.60% 170.30% 

Standard Deviation 10.37% 10.35% 10.32% 10.54% 10.77% 10.66% 10.89% 10.97% 

Skewness 0.0841 0.1224 0.2452 0.3089 0.3853 0.5212 0.5490 0.6485 

Loss-Given-Default 

Minimum −0.17% 3.38% 3.33% 2.32% 2.48% 3.50% 2.98% 0.06% 

1st Quartile 25.94% 27.50% 27.64% 27.17% 27.59% 27.47% 27.48% 26.30% 

Median 39.98% 38.06% 38.22% 37.94% 38.58% 38.32% 38.40% 40.09% 

Mean 55.81% 40.65% 40.62% 40.49% 40.85% 40.44% 40.66% 55.31% 

3rd Quartile 136.70% 51.08% 51.15% 51.01% 51.43% 50.96% 51.39% 159.80% 

Maximum 146.40% 150.60% 164.20% 143.40% 156.40% 140.30% 139.40% 159.80% 

Standard Deviation 21.72% 10.35% 17.87% 18.08% 18.01% 17.61% 17.96% 21.75% 

Skewness 0.5850 0.8456 0.7782 0.7978 0.8182 0.7664 0.7803 0.6425 

Credit Loss 

Minimum 0.0155% 0.0619% 0.0286% 0.0444% 0.0250% 0.0337% 0.0178% 0.0024% 

1st Quartile 0.1282% 0.1590% 0.0833% 0.0792% 0.0802% 0.0481% 0.0388% 0.0134% 

Median 0.2129% 0.2142% 0.1117% 0.1329% 0.1043% 0.0715% 0.0593% 0.0195% 

Mean 0.2387% 0.2492% 0.1313% 0.1412% 0.1235% 0.0725% 0.0609% 0.0178% 

3rd Quartile 0.3310% 0.2967% 0.1664% 0.2071% 0.1432% 0.0873% 0.0788% 0.0224% 

Maximum 0.5429% 0.6146% 0.3595% 0.2660% 0.3781% 0.1305% 0.1324% 0.0309% 

Credit Loss Meas 

Expected Credit Loss 0.2387% 0.2492% 0.1313% 0.1412% 0.1235% 0.0960% 0.0609% 0.0250% 

Credit VaR-90th Percentile 0.4405% 0.4442% 0.2179% 0.2309% 0.2045% 0.0997% 0.0609% 0.0268% 
Credit Expected Shortfall-90th 

Perc. 0.4939% 0.5215% 0.2844% 0.2510% 0.2891% 0.1169% 0.0896% 0.0309% 

Credit VaR-99th Percentile 0.5367% 0.6110% 0.3344% 0.2309% 0.3573% 0.1259% 0.1284% 0.0305% 
Credit Expected Shortfall-99th 

Perc. 0.5429% 0.6146% 0.3595% 0.2510% 0.3781% 0.1305% 0.1324% 0.0309% 

Credit VaR-99.9th Percentile 0.5423% 0.6143% 0.3570% 0.2656% 0.3760% 0.1301% 0.1320% 0.0308% 

Credit Expected  
Shortfall-99.9th Perc. 0.5429% 0.6146% 0.3595% 0.2660% 0.3781% 0.1305% 0.1324% 0.0308% 

Credit VaR-99.97th Percentile 0.5427% 0.6145% 0.3588% 0.2659% 0.3775% 0.1304% 0.1323% 0.0309% 

Credit Expected  
Shortfall-99.97th Perc. 0.5429% 0.6146% 0.3595% 0.2660% 0.3781% 0.1305% 0.1324% 0.0309% 

Standard Deviation of Credit Loss 0.1365% 0.1279% 0.0732% 0.0674% 0.0744% 0.0263% 0.0304% 0.0098% 

Skewness of Credit Loss 1.0522 0.8583 0.6448 0.4888 0.3239 0.2436 0.0849 −0.2660 
Expected Holding Period Credit 

Loss 0.3161% 0.3534% 0.4072% 0.4632% 0.5413% 0.6622% 0.7408% 0.8791% 
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Table 2. Alternative relativee credit risk loss measures and distributional statistics-stochastic simulation of CEV asset value 
process ( 0 1V = , 0.05µ = , 0.80D = , 0.10σ = ) and correlated CEV mean-reverting loss-given-default process ( 0 0.80ν = , 

1 0.40ν = , 0 0.40L = , 0 0.4ς = , 1 0.25ς = ) for various values of the CEV parameter.                                             

 
Theta 

0.25 0.5 0.75 1.00 1.25 1.5 1.75 2.00 

Probability of Default 0.6600% 0.5800% 0.3700% 0.3900% 0.3500% 0.1800% 0.2100% 0.0700% 

Asset Value 

Minimum 61.61% 68.37% 70.84% 69.65% 72.37% 71.81% 71.77% 76.97% 

1st Quartile 97.98% 98.04% 97.94% 97.67% 97.73% 97.63% 97.33% 97.37% 

Median 105.00% 105.00% 104.70% 104.50% 104.60% 104.50% 103.90% 103.90% 

Mean 105.00% 105.20% 105.10% 105.10% 105.20% 105.20% 105.00% 111.70% 

3rd Quartile 111.90% 112.00% 111.80% 111.80% 112.10% 111.80% 111.60% 111.70% 

Maximum 146.40% 148.50% 157.80% 158.50% 168.90% 176.90% 155.60% 170.30% 

Standard Deviation 10.37% 10.35% 10.32% 10.54% 10.77% 10.66% 10.89% 10.97% 

Skewness 0.0841 0.1224 0.2452 0.3089 0.3853 0.5212 0.5490 0.6485 

Loss-Given-Def
ault 

Minimum −0.17% 3.38% 3.33% 2.32% 2.48% 3.50% 2.98% 0.06% 

1st Quartile 25.94% 27.50% 27.64% 27.17% 27.59% 27.47% 27.48% 26.30% 

Median 39.98% 38.06% 38.22% 37.94% 38.58% 38.32% 38.40% 40.09% 

Mean 55.81% 40.65% 40.62% 40.49% 40.85% 40.44% 40.66% 55.31% 

3rd Quartile 136.70% 51.08% 51.15% 51.01% 51.43% 50.96% 51.39% 159.80% 

Maximum 146.40% 150.60% 164.20% 143.40% 156.40% 140.30% 139.40% 159.80% 

Standard Deviation 21.72% 10.35% 17.87% 18.08% 18.01% 17.61% 17.96% 21.75% 

Skewness 0.5850 0.8456 0.7782 0.7978 0.8182 0.7664 0.7803 0.6425 

Credit Loss 

Minimum 0.0155% 0.0619% 0.0286% 0.0444% 0.0250% 0.0337% 0.0178% 0.0024% 

1st Quartile 0.1282% 0.1590% 0.0833% 0.0792% 0.0802% 0.0481% 0.0388% 0.0134% 

Median 0.2129% 0.2142% 0.1117% 0.1329% 0.1043% 0.0715% 0.0593% 0.0195% 

Mean 0.2387% 0.2492% 0.1313% 0.1412% 0.1235% 0.0725% 0.0609% 0.0178% 

3rd Quartile 0.3310% 0.2967% 0.1664% 0.2071% 0.1432% 0.0873% 0.0788% 0.0224% 

Maximum 0.5429% 0.6146% 0.3595% 0.2660% 0.3781% 0.1305% 0.1324% 0.0309% 

Credit Loss 
Meas. 

Expected Credit Loss 0.2387% 0.2492% 0.1313% 0.1412% 0.1235% 0.0960% 0.0609% 0.0250% 

Credit VaR-90th Percentile 184.51% 178.25% 165.92% 163.51% 165.49% 103.84% 100.00% 106.90% 

Credit Expected Shortfall-90th Perc. 206.87% 209.27% 216.55% 177.72% 233.99% 121.77% 147.09% 123.24% 

Credit VaR-99th Percentile 224.81% 245.20% 254.61% 163.51% 289.18% 131.13% 210.70% 121.60% 

Credit Expected Shortfall-99th Perc. 227.40% 246.65% 273.78% 177.72% 306.05% 135.94% 217.28% 123.24% 

Credit VaR-99.9th Percentile 227.14% 246.51% 271.87% 188.07% 304.36% 135.46% 216.62% 123.07% 

Credit Expected  
Shortfall-99.9th Perc. 227.40% 246.65% 273.78% 188.36% 306.05% 135.94% 217.28% 123.07% 

Credit VaR-99.97th Percentile 227.32% 246.61% 273.21% 188.27% 305.54% 135.80% 217.08% 123.19% 

Credit Expected  
Shortfall-99.97th Perc. 227.40% 246.65% 273.78% 188.36% 306.05% 135.94% 217.28% 123.24% 

Standard Deviation of Credit Loss 57.18% 51.32% 55.74% 47.72% 60.26% 27.43% 49.86% 39.12% 

Skewness of Credit Loss 440.72 344.46 491.02 346.17 262.20 253.71 139.34 −1062.11 

Expected Holding  
Period Credit Loss 1.3238 1.4181 3.1008 3.2804 4.3812 6.8967 12.1572 35.0964 

 
the absolute credit loss measures as defined in Section 3, whereas in Table 2 we present these measures on a 
relative basis, scale by the expected credit loss. We also show the estimate of PD and the distributional statistics of  
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Figure 1. Alternative absolute credit risk loss measures-stochastic simulation of CEV asset value 
process ( 0 1V = , 0.05µ = , 0.80D = , 0.10σ = ), correlated CEV mean-reverting loss-given- 
default ( 0 0.80ν = , 1 0.40ν = , 0 0.40L = , 0 0.4ς = , 1 0.25ς = ) and credit loss processes or 
various values of the CEV parameter.                                                                                         

 

 
Figure 2. Alternative relative credit risk loss measures-stochastic simulation of CEV asset value 
process ( 0 1V = , 0.05µ = , 0.80D = , 0.10σ = ), correlated CEV mean-reverting loss-given- 
default ( 0 0.80ν = , 1 0.40ν = , 0 0.40L = , 0 0.4ς = , 1 0.50ς = ) and credit loss processes or 
various values of the CEV parameter.                                                                                         



M. Jacobs Jr. 
 

 
260 

 
Figure 3. Stochastic simulation of CEV asset value process ( 0 1V = , 0.05µ = , 0.80D = , 0.10σ = ), correlated CEV 
mean-reverting loss-given-default process ( 0 0.80ν = , 1 0.40ν = , 0 0.40L = , 0 0.4ς = , 1 0.25ς = ) and credit loss 
processes-histograms and sample paths ( 0.25θ = ).                                                                                         

 

 
Figure 4. Stochastic simulation of CEV asset value process ( 0 1V = , 0.05µ = , 0.80D = , 0.10σ = ), correlated CEV 
mean-reverting loss-given-default process ( 0 0.80ν = , 1 0.40ν = , 0 0.40L = , 0 0.4ς = , 1 0.25ς = ) and credit loss 
processes-histograms and sample paths ( 0.50θ = ).                                                                                         

 
the asset value, LGD and credit loss processes. Figure 1 and Figure 2 plot some key credit loss measures 
against the values of the CEV parameter, both in absolute and relative terms with respect to EL, respectively. 
Figures 2-10 plot the distributions of asset value, LGD and credit loss processes, as well as the simulation paths  
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Figure 5. Stochastic simulation of CEV asset value process ( 0 1V = , 0.05µ = , 0.80D = , 0.10σ = ), correlated CEV 
mean-reverting loss-given-default process ( 0 0.80ν = , 1 0.40ν = , 0 0.40L = , 0 0.4ς = , 1 0.25ς = ) and credit loss 
processes-histograms and sample paths ( 0.75θ = ).                                                                                         

 

 
Figure 6. Stochastic simulation of CEV asset value process ( 0 1V = , 0.05µ = , 0.80D = , 0.10σ = ), correlated CEV 
mean-reverting loss-given-default process ( 0 0.80ν = , 1 0.40ν = , 0 0.40L = , 0 0.4ς = , 1 0.25ς = ) and credit loss 
processes-histograms and sample paths ( 1.00θ = ).                                                                                         

 
of the asset value and LGD processes.  

We can see from the results that all of the standard risk measures decrease as we increase the CEV parameter 
into the region where we have an asset price bubble, whereas the EHPCL increases montonically and at an  
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Figure 7. Stochastic simulation of CEV asset value process ( 0 1V = , 0.05µ = , 0.80D = , 0.10σ = ), correlated CEV 
mean-reverting loss-given-default process ( 0 0.80ν = , 1 0.40ν = , 0 0.40L = , 0 0.4ς = , 1 0.25ς = ) and credit loss 
processes-histograms and sample paths ( 1.25θ = ).                                                                                         

 

 
Figure 8. Stochastic simulation of CEV asset value process ( 0 1V = , 0.05µ = , 0.80D = , 0.10σ = ), correlated CEV 
mean-reverting loss-given-default process ( 0 0.80ν = , 1 0.40ν = , 0 0.40L = , 0 0.4ς = , 1 0.25ς = ) and credit loss 
processes-histograms and sample paths ( 1.50θ = ).                                                                                         

 
increasing rate as this parameter grows. We observe that this is driven by a change in the asset value process as 
θ  rises, as we observe the skewness to rise monotonically and dramatically, doubling from 0.3089 to 0.6485 as 
we go from Geometric Brownian Motion (GBM) at 1θ =  to a bubble economy with 2θ = . Note that other 
features of the asset value distribution are largely unchanged, such as the mean or the standard deviation, as we  
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Figure 9. Stochastic simulation of CEV asset value process ( 0 1V = , 0.05µ = , 0.80D = , 0.10σ = ), correlated CEV 
mean-reverting loss-given-default process ( 0 0.80ν = , 1 0.40ν = , 0 0.40L = , 0 0.4ς = , 1 0.25ς = ) and credit loss 
processes-histograms and sample paths ( 1.75θ = ).                                                                                         

 

 
Figure 10. Stochastic simulation of CEV asset value process ( 0 1V = , 0.05µ = , 0.80D = , 0.10σ = ), correlated 
CEV mean-reverting loss-given-default process ( 0 0.80ν = , 1 0.40ν = , 0 0.40L = , 0 0.4ς = , 1 0.25ς = ) and credit 
loss processes-histograms and sample paths ( 2.00θ = ).                                                                 

 
increase θ . Note further that we see increasing asset value skewness in θ  even when in the non-bubble region 

[ ]0.25,1.0θ ∈ , with skewness about quadrupling from 0.08 to 0.31. On the other hand the LGD process does not 
have a very pronounced decrease in skewness as we increase θ , and the pattern is non-monotonic, although 
from BGM to a CEV parameter of 2 LGD skewness decreases from 0.80 to 0.64, which is significant; and as 



M. Jacobs Jr. 
 

 
264 

with asset value, other features of the distribution are basically unchanged, including the mean, which is sur-
prising in that the drift is a function of the asset value process. The effect of the asset value process can be seen 
in the average PD in each simulation, decreasing monotonically from 0.66% for 0.25θ = , to 0.39% for 

1.00θ = , and finally to 0.07% for 2.00θ = . 
In the bottom panel of Table 1 we show the various credit loss metrics as a functions of the CEV parameter, 

and observe that all of the standard measures are declining in θ . The ECL decreasing monotonically from 0.24% 
for 0.25θ = , to 0.14% for 1.00θ = , and finally to 0.03% for 2.00θ = . All of these CVaR measures also de-
cline montonically and at an accelerating pace in θ , and the steepness of the decline actually increases as the 
confidence level becomes more conservative. For instance, for the 99.97th percentile CVaR, it decreases mono-
tonically and at an accelerating rate in θ  from 0.54% for 0.25θ = , to 0.27% for 1.00θ = , and finally to 0.03% 
for 2.00θ = . The standard deviation of credit loss also decreases monotonically and at an accelerating rate 
from 0.14% for 0.25θ = , to 0.07% for 1.00θ = , and finally to 0.01% for 2.00θ = . In contrast, the EHPCL 
increases monotonically and at an accelerating rate in θ  from 0.34% for 0.25θ = , to 0.46% for 1.00θ = , 
and finally to 0.88% for 2.00θ = . This is a reflected in the declining skewness of the credit loss distribution in 
θ  from 1.05 for 0.25θ = , to 0.49 for 1.00θ = , and finally to −27 for 2.00θ = —implying that skewness this 
is a robust indicator of a bubble, but does not have the benefit of having an intuitive economic interpretation as 
does the EHPCL. 

In the bottom panel of Table 2 we show the various relative credit loss metrics (scaled by ECL) as a functions 
of the CEV parameter, and observe that all of the standard relative risk measures are declining in θ , as are the 
absolute versions in Table 1. All of three relative CVaR measures also decline montonically and at an accele-
rating pace in θ , and the steepness of the decline actually increases as the confidence level becomes more con-
servative. For instance, for the 99.97th percentile CVaR to ECL ratio, it decreases monotonically in θ  from 
2.27 for 0.25θ = , to 1.88% for 1.00θ = , and finally to 1.23% for 2.00θ = . The standard deviation to ECL 
ratio also decreases monotonically and at an accelerating rate from 0.57 for 0.25θ = , to 0.47 for 1.00θ = , and 
finally to 0.39 for 2.00θ = . In contrast, the EHPCL to ECL ratio increases monotonically and at an accelerat-
ing rate in θ  from 1.33% for 0.25θ = , to 3.28 for 1.00θ = , and finally to 35.11 for 2.00θ = . This is a re-
flected in the declining ratio of skewness to ECL ratio in θ  from 440.72 for 0.25θ = , to 346.17 for 1.00θ = , 
and finally to −1062.11 for 2.00θ = . 

5. Conclusion and Future Directions 
In this study, we have analyzed the impact of asset price bubbles on credit risk measures for a representative 
firm subject to default risk. We have constructed various hypothetical economies, both having and also not hav-
ing asset price bubbles in a structural credit model framework. We have simulated a firm’s value process in each 
of these economies, computing the firm’s standard risk measures, in continuous time, performing a simulation 
experiment of a 2-dimensional system of SDEs for asset value determining PD and a correlated a LGD process. 
Comparing bubble to non-bubble economies, it has been shown that asset price bubbles may cause an obligor’s 
traditional credit risk measures (such as EL or CVaR) to decline, due to a reduced standard deviation and a re-
duced right skewness of the credit loss distribution (driven by an augmented right skewness of the asset value 
distribution). We have developed the new EHPCL credit risk measure to account for losses associated with a 
bubble bursting, which behaves intuitively as we transition from non-bubble to bubble economies. 

The results of our experiment have demonstrated that the existence of an asset price bubble, which occurs for 
certain parameter settings in the CEV model, results in the firm asset value distribution to have both a lower 
standard deviation and a greater right skewness. We have demonstrated that this augmented right skewness, in 
conjunction with a reduced variance of a firm’s return due to bubble expansion, results in a reduction of the right 
skewness in the distribution of the default rate and a lower PD, which in combination with a lower mean of the 
LGD process, results in a credit loss distribution having both lower mean right skewness and lower standard 
deviation. This in turn implies a decline in the firm’s CVaR measures and an understatement in the credit risk of 
the firm. Based on these measures alone, their declining values imply that in the presence of asset price bubbles, 
less credit capital is required. However, we have shown that according to the new EHPCL, this conclusion is 
incorrect, as this EHPCL credit loss measure increases in bubble economies and is due to bubble bursting, which 
causes significant firm value losses, and therefore credit losses, on the bubble-bursting paths.  

In the detailed analysis of the results, we have shown that the various credit loss metrics are all declining 
functions of the CEV parameter: The ECL is decreasing monotonically in θ , and also all of the CVaR meas-
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ures decline montonically at an accelerating pace in θ , with the steepness of the declining actually becoming 
accentuated as the confidence level becomes more conservative. This is shown to be reflected in the declining 
skewness of the credit loss distribution in θ , implying that skewness is a robust indicator of a bubble; however, 
it does not have the benefit of having an intuitive economic interpretation as does the EHPCL. 

There are various avenues down which we may proceed in the interest of pursuing additional research. One 
such direction will be an extension to a structural model that can admit differential seniority for LGD, an op-
tion-theoretic approach along the lines of Jacobs (2011, 2012). Another potential sequel to this study will be the 
analysis of a real portfolio of equities and empirical calibration, along the lines of Jarrow et al. (2015), although 
in the context of credit as opposed to market risk. Finally, we may investigate more general stochastic diffusion 
models for asset value, such as the incorporation of jump processes. 
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