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Abstract 
Linear price systems, typically used to model “perfect” markets, are widely known not to accom-
modate most of the typical frictions featured in “actual” ones. Since some years, “proportional” 
frictions (taxes, bid-ask spreads, and so on) are modeled by means of sublinear price functionals, 
which proved to give a more “realistic” description. In this paper, we want to introduce two more 
classes of functionals, not yet widely used in Mathematical Finance, which provide a further im-
provement and an even closer adherence to actual markets, namely the class of granular func-
tionals, obtained when the unit prices of traded assets are increasing w.r.t. the traded amount; and 
the class of star-shaped functionals, obtained when the average unit prices of traded assets are in-
creasing w.r.t. the traded amount. A characterisation of such functionals, together with their rela-
tionships with arbitrages and other (more significant) market inefficiencies, is explored. 
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1. Introduction 
One of the first and biggest concerns of Mathematical Finance is to study the prices of a suitable set of risky fi-
nancial assets of any type, including stocks, indexed bonds, variable rate deposits, derivative securities, and so 
on. Usually, financial assets are modeled as random variables on some state sets, which are supposed to be the 
same for every asset in the considered market. 

In earlier models, such as the one leading to the celebrated Black, Scholes, and Merton formula for option 
pricing (Black & Scholes, 1973; Merton, 1973), the market is supposed to be a perfect one; in particular, no fric-
tions are featured and no bid-ask spreads or commissions affect prices. Consequently, as it is clearly shown, for 
instance, in Dothan (1990), Pliska (1997), and Björk (1999), asset prices turn out to be linear with respect to as-
sets themselves, in the sense that the price of the sum of two positions exactly equals the sum of the two sepa-
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rated prices. In such a setting, a central result is found, called the Fundamental Theorem of Asset Pricing, of 
which dozens of variants are featured in the literature (besides the cited books see, for instance, Delbaen & 
Schachermayer, 1994, for quite a general version), which essentially is a representation theorem: roughly 
speaking, the market prices do not allow for arbitrages (i.e., free gains without risks) if and only if there exist a 
probability measure called the risk neutral probability—and a discount factor such that prices themselves are 
(discounted) expected values of the future asset values. 

The perfect market model, however, quickly proves to be unfit to provide a good description of realistic mar-
kets. For instance, it may be impossible to obtain the exact replication of a given pay-off, and therefore no linear 
price can be given for it. In such a case, as investigated by Davis & Clark (1994), the investor may naturally aim 
at super-hedging it, i.e., at getting at least as much as needed (possibly more) at the minimum possible price. 
There are also cases when, due to market frictions, a dynamical strategy that exactly replicates the given pay-off 
may turn out to be more expensive than a super-hedging one: see, e.g., Hodges & Neuberger (1989). El Karoui 
& Quenez (1995), Jouini & Kallal (1995), Jouini (1997), and Cvitanić et al. (1999) among others, had investi-
gated such a setting and found a representation theorem: in any case, super-hedging prices turn out to be the 
maximum of a family of linear prices, which, for instance, Cvitanić et al. (1999) interpreted as prices in “sha-
dow markets”. Moreover, Pham (2000) studied the properties of super-hedging price functionals to find them 
sublinear: additivity was replaced by subadditivity, meaning that the price of the sum of two positions might be 
cheaper than the sum of the two separated prices. Since sublinearity entails positive homogeneity besides subad-
ditivity, it turns out to be perfectly fit to describe markets affected by proportional transaction costs (such as 
taxes or percentage commissions): see, e.g., Pham, Touzi, & Touzi (1999). Furthermore, sublinearity turned out 
to be interesting for risk management purposes as well, being the foundational point for the celebrated paper by 
Artzner et al. (1999) on coherent risk measures. 

A class of risk measures more general than the sublinear (i.e., coherent) ones of Artzner et al. (1999) is pro-
posed by Föllmer & Schied (2002), who replace sublinearity with the weaker convexity1. Inspired by their work, 
we started wondering whether convex price functions may sensibly be adapted to financial markets: we realized 
that this was naturally the case, for instance, if unit asset prices are supposed to increase with respect to the 
traded amount. A representation result can be found, stating that convex price functionals are the upper envelope 
of a family of affine prices, which admit an interpretation similar to the “shadow markets” of Cvitanić et al. 
(1999). 

Another, further generalisation, may require average unit asset prices to be increasing, instead of “marginal” 
ones. This may be the case, for instance, when an agent can choose to buy an asset on several different markets, 
featuring different increasing unit prices: of course, the purchase will be conducted in such a way that the overall 
price (or, which is the same, the average unit price) is as low as possible. This leads to a totally new class of 
price functions, which we name star-shaped because their epigraph turns out to be a star-shaped set with respect 
to the origin, in the sense of Stewart & Tall (1983). A representation result can be given for this class of func-
tionals as well, with an interesting economical interpretation. 

In the remaining part of this section, the notation used throughout the entire paper is stated, and the current 
state of the literature about linear and sublinear prices is briefly summarized. Although in different notation, 
everything exposed here can be found, for instance, in Dothan (1990), Pliska (1997), and Björk (1999) for the 
linear setting, and in Jouini & Kallal (1995) and Koehl & Pham (2000) for the sublinear case. Some examples, 
in a simple discrete setting, are also given, in order to allow the reader for familiarising with the phenomena un-
der study. Remarkably, we emphasise that, as soon as the price functional is no longer linear, market efficiency 
is no longer guaranteed by absence of arbitrages only, and that another class of inefficiencies, namely the con-
venient super-hedgings (roughly speaking, the opportunity to get a better pay-off at a lower price), have to be 
taken into account. 

Section 2 is dedicated to introducing and examining the convex case. After observing that convex functions 
naturally pop out when pricing by super-hedging by means of assets whose unit price is increasing, we give a 
generalisation of the Fundamental Theorem of Asset Pricing, and give an interpretation of the representation in 

 

 

1Further generalisations of convex risk measures have been proposed. El Karoui & Ravanelli (2009) remarked that cash additivity, which 
was a required property of coherent risk measures, should be replaced with cash subadditivity in several cases (e.g., with lack of liquidity for 
the “riskless” asset). Starting from this, Cerreia-Vioglio et al. (2011) proposed to replace convexity with quasi-convexity in order to better 
maintain the financial meaning of “diversification” originally connected with the subadditivity requirement. An interpretation of such gene-
ralisation in terms of financial prices, though, does not appear to be immediate, and is still under investigation. 
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terms of market efficiency. It turns out that the market is fully efficient, i.e., that no convenient super-hedging is 
possible, if all of the “shadow markets” are efficient, whereas absence of arbitrage is guaranteed by a local, less 
restrictive property. 

Star-shaped prices are analysed in Section 3. We show that such functionals are the result of pricing by super- 
hedging by means of assets whose average price is increasing, and show that such a requirement is actually a 
proper generalisation of the previous, convex case. We also introduce a new pricing technique, which we may 
call “super-hedging by chunks” and that mathematically corresponds to the inf-convolution of the price func-
tionals of the “shadow markets”. We show that convexity and star-shape are in some sense “stable” under su-
per-hedging, either in the classical sense or in the “by chunks” one, and analyse the representation of star-shaped 
functionals in terms of market efficiency. 

Finally, Section 4 is dedicated to summarising and comparing the main properties and the efficiency condi-
tions of the four analysed market types and Section 5 features some concluding remarks. 

1.1. Notation 
A state space Ω  is supposed to be given, and the market   is a set of (real valued) random variables2 

:X Ω→  : every X ∈  is identified with an asset, in the sense that the (random) value attained by X cor-
responds to the pay-off (or the market value) of the considered asset at a suitable maturity. We are supposing 
that the uncertainty is resolved in a single time period: in other words, the models we encompass are of a static, 
not dynamic, type. We write X Y  (respectively, X Y> ) to intend that ( ) ( )X Yω ω≥  (respectively, 

( ) ( )X Yω ω> ) for every ω∈Ω , where ≥  indicates the usual weak inequality between real numbers. 
We shall suppose one of the classical “perfect market hypotheses” to hold, requiring every asset X ∈  to 

be infinitely available (there is no “maximum tradable amount”) and divisible (it is possible to buy any fraction 
of it); furthermore, short sales are allowed. This translates into the fact that, for every a∈  and every 
X ∈ , the investor can hold the position aX  (where 0a <  indicates short sale of a  units of X). Of 

course, several assets 1 2, , , nX X X  can be simultaneously traded, by buying 1 2, , , na a a  units of each (with 
0ja <  indicating short sale); this corresponds to holding a portfolio of those n assets, whose “final” pay-off 

plainly turns out to be 1 1 2 2 n na X a X a X+ + + . Mathematically speaking, this corresponds to   being a li-
near space. 

Giving a price to every traded asset X ∈  simply amounts to defining a (price) functional :π →  . 
The functional π  is said to allow for: 

• An arbitrage (see, e.g., Björk, 1999 and Pliska, 1997) if there exist a 0X   in   such that ( ) 0Xπ <  
(which means that it is possible to obtain an immediate gain, corresponding to the negative price, without any 
risk, i.e., with the certainty not to lose any money at the maturity); 

• A convenient super-hedging (quite a recent concept: see, e.g., Castagnoli et al., 2009 and Castagnoli et al., 
2011, but also, for instance, Hodges & Neuberger (1989), who observe the phenomenon although without spe-
cifically titling it) if there exist ,X Y ∈  such that X Y  and ( ) ( )X Yπ π<  (which means that it is 
possible to obtain a “higher” pay-off at a “lower” price). 

Of course, the basic laws of supply and demand imply that neither of the above opportunities, which we shall 
jointly refer to as inefficiencies, should hold in a market: in both cases, the demand pressure on X would quickly 
lead its price ( )Xπ  to increase until becoming either positive (in the first case) or greater than ( )Yπ  (in the 
second case; furthermore, lack of demand on Y would lead its price ( )Yπ  to decrease as well). Note that:  

• π  does not allow for arbitrages if and only if ( ) 0Xπ ≥  whenever 0X  , that is, if π  is (or may be 
called) positive; 

• π  does not allow for convenient super-hedgings if and only if ( ) ( )X Yπ π≥  whenever X Y , that is, 
if π  is (or may be called) increasing. 

Generally speaking, absence of arbitrages has the nature of a local property, because it only involves the be-
haviour of the price functional π  with respect to the null pay-off, whereas absence of convenient su-
per-hedgings is a global property, because it is required to hold for every pair ,X Y ∈ . 

It is noteworthy as well that there are no general links between positivity and monotonicity. Take for instance, 
n=  : the functional ( ) :y yπ =  is (of course) positive but not increasing (because, taken a 0q <  in n , 

it is 2q q<  and 2q q> ), whereas, taken a 0p >  in n , the functional ( ) 1y pyπ = −  is increasing but  

 

 

2A puzzled reader, wondering about the measurability of such random variables, will find some clarifications in Remark 1 below. 
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not positive (because 
1 1 0
2 2

pπ   = − < 
 

, although 1 0
2

p > ). 

Note also that, for every X ∈ , the price functional π  induces a function :Xπ →   defined by 
( ) ( ):X Xπ α π α= , which in a natural way can be called the supply and demand function for X. 

Remark 1. We purposefully decided to avoid measurability issues: in particular, we never mentioned the 
(σ -)algebra   on Ω  where the probability P is properly defined (and with respect to which all the X ∈  
have to be measurable). This is only possible because of our choice of dealing with single period models: in or-
der to introduce a dependence from time, actually, it is unavoidable to follow the well-known approach of de-
fining a filtration ( )t t∈

  of (σ -)algebrae contained in   and to suppose that, at every time t T∈ , the value 
(price) of a random variable X ∈  is given by its conditional expected value ( )| tE X  , possibly dis-
counted in a suitable way. 

In the same way, the price functional :π →   should be taken to be measurable with respect to the 
(σ -)algebra   (and the Borel σ -algebra   on  ). As a matter of fact, the most general setting for this 
situation is to take an arbitrary (real) linear space   and to consider as possible price functionals all of the 
elements of a subspace ′  of the algebraic dual of  . Moreover, by considering on   the weak topology 
(i.e., the minimal one that makes continuous all of the ϕ ′∈ ), ′  turns out to be the topological dual of  , 
so that our setting can be included in the topological duality among linear spaces, a typical topic in Functional 
Analysis. Some more details can be found in Castagnoli et al. (in print) and references therein. 

Remark 2. The arbitrage and convenient super-hedging opportunities defined above are often called strong in 
the literature, and their weak counterparts are defined as follows. Write X Y≥  to indicate that X Y  and 
X Y≠  (that is, there exists at least an ω∈Ω  such that ( ) ( )X Yω ω> ). In such a case, the functional π  is 

said to allow for: 
• A weak arbitrage (or an arbitrage of the second kind) if there exists a 0X ≥  in   such that ( ) 0Xπ ≤  

(the case ( ) 0Xπ =  is allowed, possibly cancelling the immediate gain, but in some states a gain at the maturi-
ty will be obtained); 

• A weak convenient super-hedging (or a convenient super-hedging of the second kind) if there exist 
,X Y ∈  such that X Y≥  and ( ) ( )X Yπ π≤  (the prices may coincide, but in some states X will pay off 

strictly better than Y ). 
It is straightforward that: 
• π  does not allow for weak arbitrages if and only if ( ) 0Xπ >  whenever 0X ≥ : that is, if and only if π  

is strictly positive; 
• π  does not allow for weak convenient super-hedgings if and only if ( ) ( )X Yπ π>  whenever X Y≥ : 

that is, if and only if π  is strictly increasing. 
As a matter of fact, when the assets X ∈  are not discrete random variables, the above definitions turn out 

to be impossible to deal with (they would imply, for instance, that for every ω∈Ω  the “Dirac function” ωδ  
gets a positive price ( ) 0ωπ δ > , which is plainly meaningless). It is then customary to take into consideration 
an a-priori probability P on Ω , and to define X Y≥  when X Y  and { } 0P X Y> > . In such a case, all 
of the “inequalities” between random variables are of course to be intended in the “P-almost everywhere” sense. 

We decided not to take into consideration the weak arbitrages, both for the sake of simplicity and because we 
want to emphasize that there is no actual need for the a priori probability P to be given. It is nevertheless proper 
to cite this cases, both for compatibility with the existing literature and to remark that asking for weaker and 
weaker inefficiencies to be removed from the market translates into stronger and stronger regularity properties 
for the price functional π . 

It is also noteworthy that, in order to define weak inefficiencies and to intend the inequalities “almost every-
where”, instead of an a priori probability P, any a priori measure λ  equivalent to P could be considered on 
Ω : it would actually be exactly the same to define X Y≥  whenever X Y  and { }( ) 0X Yλ > > , i.e., 
when the set where X Y>  has a positive measure instead of a positive probability. Briefly said, the normali-
sation property of the a priori measure is completely unnecessary. 

1.2. Perfect Markets: The Linear Case 
Besides the infinite availability and divisibility hypotheses cited above, the classical models based on “perfect 
markets” (see the already cited Björk, 1999, Pliska, 1997, and Dothan, 1990) ask for three more requirements. 
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First of all, all market agents are fully rational and they aim at maximising their profit; furthermore, all agents 
are equally informed, without “informational asymmetries”. Secondly, the agents are price takers: they have no 
possibility to negotiate the prices they see on the markets. Finally, in the market there are no taxes, no bid-ask 
spreads, no commissions: in a word, there are no frictions. 

All of these hypotheses together could be simply summarised in a single property: a market is called perfect if 
the price functional :π →   is linear. Recall that the linearity of π  means that 
( ) ( ) ( )aX bY a X b Yπ π π+ = +  for every ,X Y ∈  and every ,a b∈ ; equivalently, π  is additive  

( ( ) ( ) ( )X Y X Yπ π π+ = +  for every ,X Y ∈ ) and homogeneous ( ( ) ( )aX a Xπ π=  for every X ∈  
and every a∈ ). Note that this translates into the fact that the unit price for every asset X ∈  does not 
depend on the traded amount: buying (or short selling) a units of X exactly costs (or yields) a  times the unit 
price of X. In other words, the supply and demand function Xπ  is a linear function for every X ∈ : for 
every a∈ , ( ) ( )X Xπ α απ= . 

Every linear functional on a linear space attains null value at the “origin” (i.e., at the null vector): as an im-
mediate consequence, an increasing linear functional turns out to be positive as well. Shortly said, for linear 
functionals, (increasing) monotonicity implies positivity. In the case of linear functionals, moreover, the con-
verse is also true: X Y  is equivalent to 0X Y−  , and the fact that ( ) ( ) ( )X Y X Yπ π π− = −  imme-
diately yields that a positive linear functional is increasing as well. In other words, positivity and monotonicity 
are equivalent in the linear setting: therefore, in the classical literature about perfect markets, convenient su-
per-hedgings have never been specifically recognised as market inefficiencies, because a price functional allows 
for convenient super-hedgings if and only if it allows for arbitrages. 

A classical duality result states that, given a linear space   of real valued functions defined on the same set 
Ω , a functional :π →   is linear if and only if there exist a (signed) measure µ  on Ω  such that 

( ) ( ) ( )d d for every X X X Xπ µ ω µ ω
Ω Ω

= = ∈∫ ∫   

(Lebesgue integrals). Usually, it is said that π  can be represented as the Lebesgue integral with respect to a 
suitable measure µ  defined on Ω ; we remark that the measure µ  may be “signed”, i.e., that it may attain 
negative values. The Fundamental Theorem of Asset Pricing, translated into our setting, states that the price 
functional π  allows for no arbitrages if and only if it is represented by a “proper” positive measure µ . 

If the “constant” (degenerate) random variables a Ω  belong to   (or, equivalently, if the monetary unit  

Ω  belongs to  ), then the price of Ω  amounts to ( ) ( )1dπ µ µΩ Ω
= = Ω∫ : in other words, the “norma- 

lisation factor” ( ):B µ= Ω  has the financial meaning of the discount factor for the considered time period. 
Note also that the measure : 1Q B µ= ⋅  turns out to be a probability on Ω : this way, the above representation 
of the price functional becomes 

( ) ( )d d ,QX X B X Q B E Xπ µ
Ω Ω

= = ⋅ = ⋅∫ ∫                              (1) 

which is classically told by stating that, if no arbitrages are allowed, the current prices of financial assets are the 
discounted expected values of their final random pay-off. In such a case, Q  is called a risk-neutral probability 
(or, in the dynamical case, a martingale measure). 

Example 1. Take into consideration the state space { }1 2,ω ωΩ = : since Ω  is finite, every random variable  

:X Ω→   can be identified with the vector 
( )
( )

1 1 2

2 2

x X
x X

ω
ω

  
= ∈  

   
 : therefore, we shall simply write 

1

2

x
X

x
 

=  
 

. Suppose that two assets are exchanged on the market: 1 2
6

X  
=  
 

, at price 4, and 2 8
4

X  
=  
 

, at 

price 5. 
The decision to hold a portfolio obtained by buying (or short selling) 1a  units of 1X  and 2a  units of 2X   

( )1 2,a a ∈  can be identified with the vector 1

2

a
a

a
 

=  
 

: it leads to the pay-off 1 2

1 2

2 8
6 4

a a
a a
+ 

 + 
 and costs 

1 24 5a a+ . Note that every pay-off 1

2

x
x
 
 
 

 can be obtained by means of a suitable (and unique) portfolio: in other  

words, 2=  , where it is intended that the price of every 2X ∈  is defined as the price of the portfolio a 
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yielding the pay-off X. 

We can simplify the notation by defining the pay-off matrix 1 2 2 8
6 4

X X   = =     
X : this way, the portfolio 

2a∈  simply leads to the pay-off aX  (usual matrix product). If we further define the price vector 

( ) ( ) [ ]1 2 4 5p X Xπ π = =  , it is clear that the price of the portfolio a is p a⋅ . 

Note that every linear functional 2:ϕ → 
 simply amounts to the vector (“inner”) product by a vector 

[ ] 2
1 2ϕ ϕ ∈ , with 1

1
:

0
ϕ ϕ

  
=   

  
 and 2

0
:

1
ϕ ϕ

  
=   

  
: indeed, 

[ ]1 1
1 2 1 1 2 2 1 2

2 2

1 0
0 1

x x
x x x x

x x
ϕ ϕ ϕ ϕ ϕ ϕ
         

= ⋅ + ⋅ = + = ⋅         
        

. 

Let us now represent the price functional π . As we already mentioned, for every 2X ∈  it has to be 
( )X paπ = , with a such that a X=X . Suppose now that ϕ  is a vector such that pϕ =X :3 it is immediate  

that pa a Xϕ ϕ= =X , and therefore that ϕ  represents π . Since the linear system [ ]2 8
4 5

6 4
ϕ

 
⋅ = 
 

 has  

the unique solution [ ]0.35 0.55ϕ = , such a vector turns out to be the representation of the linear price function-
al π  induced by the market prices. 

It is immediate to realise that, since both components of ϕ  are positive, the functional ϕ  is (positive, and 
therefore) monotonically increasing. This shows that no arbitrages are allowed in the market. Note also that the  

discount factor is 1 2

1
0.9

1
B ϕ ϕ ϕ

 
= ⋅ = + = 

 
, and that the vector 

1 7 11
0.9 18 18

q ϕ  = ⋅ =   
 corresponds to a prob-

ability Q on Ω , assigning ( )1
7

18
Q ω = , ( )2

11
18

Q ω = . Furthermore, for every 2X ∈ , 

( ) ( )QX X Bq X BE Xπ ϕ= ⋅ = ⋅ = . 
Just for the sake of completeness, suppose that the price of 1X  be 8 instead of 4. In this case, the unique so- 

lution of the system [ ]2 8
8 5

6 4
ϕ

 
⋅ = 
 

 would be [ ]0.05 1.35ϕ = −  the presence of a non-positive component 

implies that ϕ  is not positive and that indicates the possibility of arbitrages. Indeed, the pay-off 
20

0
0

X  
=  
 

  is obtained with the portfolio 
2

3
a

− 
=  
 

 at the price 1pa Xϕ= − = .  

1.3. Proportional Frictions: The Sublinear Case 
A natural generalisation of the linear model is to suppose that some frictions affect the market, in order to ac-
commodate, for instance, taxes or commissions. By supposing such frictions to be proportional to the traded 
amount, it is possible to maintain “half” of the homogeneity property of the price functional: namely, π  turns 
out to be positively homogeneous, meaning that ( ) ( )aX a Xπ π=  for every X ∈  and every 0a ≥  (no 
longer for every a∈ ). 

It is clear that such a price functional can no longer be expected to be additive: for instance, an agent buying 
both X  and X−  will pay the taxes and commissions on both of them, and thus will end up paying a positive 
price for the null pay-off: in symbols, ( ) ( ) ( ) 0X X X Xπ π π+ − ≥ − = . Nevertheless, since the agents are still 
supposed to be rational, it is reasonable to suppose that π  is subadditive, i.e., that ( ) ( ) ( )X Y X Yπ π π+ ≤ +  
(if the price of a joint position were greater than the sum of the two composing ones, every rational agent would 
separately buy the two components). 

If X ∈ , generally speaking, the bid price induced by a pricing functional is ( ) ( ):b X Xπ π= − − . If π  is 

 

 

3It is natural to wonder whether such a ϕ always exists. It can be shown (see Pliska, 1997 and Castagnoli et al., 2009) that existence is guar-
anteed by a weaker condition than the absence of arbitrages, called the law of one price (roughly speaking, there is no way to obtain the 
same pay-off at two different prices): this always happens if, as in this example, the pay-off of the listed assets are linearly independent. 
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(sublinear, and therefore) subadditive, recalling that ( ) ( ) 0X Xπ π+ − ≥ , we get 
( ) ( ) ( ) ( )b aX X X Xπ π π π= − − ≤ = , where we write aπ  to underline that those expressed by π  actually are 

ask prices. Roughly speaking, then, sublinear functionals model the case when the ask and the bid price may 
differ (due to taxes, commissions, or general bid-ask spreads), yet the unit price does not depend on the traded 
amount. The supply and demand function induced by a sublinear π  for a given X ∈  takes the form  

( )
( )
( )

0

0
a

X
b

X

X

απ α
π α

απ α

≥= 
<

. 

Every sublinear functional attains null value at the origin: therefore, every increasing sublinear functional is 
positive as well. The converse is not true, as already mentioned: the norm functional is positive, but not increas-
ing. As a consequence, there may be sublinear price functionals that allow for convenient super-hedgings al-
though not allowing for arbitrages. It is noteworthy, nevertheless, that π  turns out to be increasing every time 
that it is “negative”, i.e., when ( ) 0Yπ ≤  for every 0Y  : in such a case, indeed, whenever X Y  we get 
( ) ( ) ( ) ( ) ( )Y X Y X X Y X Xπ π π π π= + − ≤ + − ≤ . Recalling that the bid price of the pay-off X is naturally 

defined as ( ) ( )b X Xπ π= − − , the “negativity” condition translates into ( ) 0b Xπ ≥  for every 0X  : in oth-
er words, absence of arbitrages is guaranteed by the positivity of ask prices of the positive pay-offs, whereas ab-
sence of convenient super-hedgings is ensured by the positivity of bid prices of the same positive pay-offs. 

As an immediate consequence of the classical Hahn-Banach Theorem, a sublinear functional π  can be 
represented as the pointwise maximum of the linear functionals that it “dominates”. In greater detail: if π  is a 
sublinear functional, then the set { }: : : linear,L ϕ ϕ ϕ π= →    is not empty and ( ) ( )sup LX Xϕπ ϕ∈= . 
Moreover, if π  is not allowed to take infinite values, L turns out to be convex and compact, so that the “sup 
“can be replaced by a “max”. It is possible to show (see Pliska, 1997 and Castagnoli et al., 2009) that: 

• π  is positive if and only if there exists (at least) a positive Lϕ ∈ ; 
• π  is increasing if and only if every Lϕ ∈  is positive. 
From a mathematical point of view, L is the subdifferential of π  at 0 (see, e.g., Rockafellar, 1970). 
According to such a characterisation, if π  does not allow for convenient super-hedgings (and, therefore, not 

even for arbitrages), every Lϕ ∈  can be represented as the expected value with respect to a suitable measure 
Qϕ , discounted by a suitable factor Bϕ : 

( ) ( )max .QL
X B E X

ϕϕϕ
π

∈
 = ⋅   

In other words, an efficient sublinear functional acts “as if” a whole set L of “plausible” scenarios ϕ  are 
involved, each corresponding to (a linear price functional, i.e., to) a probability measure Qϕ  and a discount 
factor Bϕ : the price assigned to every random variable amounts to the “worst case” discounted expected value, 
i.e., to the linear functional assigning the highest price to X. It is noteworthy to mention that such a representa-
tion was already conjectured by de Finetti & Obry (1933). 

One final consideration is in order. A rational investor who aims at obtaining the pay-off :Z Ω→   (which 
need not belong to  ) is naturally led to look for the best (super)hedge of Z, i.e., to buy the cheapest traded 
asset X ∈  that dominates Z (El Karoui & Quenez, 1995). This way, (a better pay-off than) Z can be ob-
tained at the price 

( ) ( ){ }min : , ,Z X X X Zπ π= ∈   

called the cheapest super-hedging price of Z. It is quite clear that, if π  does not allow for convenient su-
per-hedgings, ( ) ( )X Xπ π=

 for every X ∈ ; on the other hand, it is immediate to realise that, if π  al-
lows for convenient super-hedgings, then π π≤ . It is indeed possible to show that π  is sublinear as soon as  
π  is and that, if ( ) ( ){ }max : Lπ ϕ ϕ⋅ = ⋅ ∈ , then ( ) ( ){ }max : Lπ ϕ ϕ +⋅ = ⋅ ∈  with { }: : is positiveL Lϕ ϕ+ = ∈ .  

Roughly speaking, π  turns out to be the highest sublinear functional, among those dominated by π , that does 
not allow for (arbitrages or) convenient super-hedgings. 

Example 2. Consider the same two assets of Example 1, with pay-off matrix 
2 8
6 4
 

=  
 

X , but suppose now  

that two price vectors are given, namely that of the ask prices [ ]4 5ap =  and of the bid prices [ ]3.6 4.4bp =  
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(of course b ap p ). The price of every 2X ∈  is found as its cheapest super-hedging price: 
( ) { }1 2

1 1 2 1 1 2min 4 3.6 5 4.4 :X a a a a a X a X Xπ + − + −= − + − +   (where { }: max ,0a a+ =  and { }: max ,0a a− = −   

denote the positive and negative part of a∈  respectively). A standard linear programming duality argument4 
allows to conclude that the price π  dominates the linear functional induced by the vector [ ]1 2ϕ ϕ ϕ=  if and 
only if b ap pϕ≤ ≤X , which amounts to finding all the ϕs such that 

( ) [ ]1 3.6 0.4 4.4 0.6a bp pϕ ϑ ϑ ϑ ϑ= + − = + +X , with 0 1ϑ≤ ≤ . 
The solutions of the given parametric linear system is the set [ ]{ }0.3 0.05 0.5 0.05 : 0 1L ϑ ϑ ϑ= + + ≤ ≤ : it is 

immediate to check that it is a convex and compact subset of 2
 . Since L contains positive vectors only, we 

can conclude that π  allows for no convenient super-hedgings (and, therefore, for no arbitrages). 
It is possible to build examples when the functional π  induced by the listed assets allows for arbitrages and 

for convenient super-hedgings, or for convenient super-hedgings only. For the sake of brevity, we invite the in-
terested reader to see Castagnoli et al. (2009).5 

2. Increasing Unit Prices 
The Granular (Convex) Case 
Although sublinear prices can indeed capture several features of prices in the “real world”, they still feature unit 
prices which do not depend on the traded amount. Who trades on actual markets, instead, knows well that unit 
prices tend to increase with respect to the amount bought, and to decrease with respect to the amount sold. Sup-
pose, for instance, that we are set to buy 1000 units of some asset. Having a look at the offer prices, we see that 
someone is selling up to 100 units at 3€ each, someone else up to 500 units at 3.1€ each, someone else up to 600 
units at 3.2€ each, and so on. This way, we are facing increasing unit prices, and to buy all of the 1000 units we 
have to pay 3 100 3.1 500 3.2 400 3130€× + × + × = : it is immediate to realise that, generally speaking, total price 
needed to buy 0α >  units of an asset turns out to be a(n increasing and) convex function of α  (and piece-
wise affine, in our example, but this is not necessary: the price is a convex function of the traded amount every 
time that the marginal price is increasing, which is the standard hypothesis of the classical law of supply and 
demand). We want to show that a natural way to model such a situation is to take into consideration a convex 
price functional :π →   (which is of course a generalisation of the sublinear case, because every sublinear 
functional is convex as well): in order to do so, let us see how a convex price functional comes out in a very 
natural way. 

Suppose that, in an exchange list under consideration, the assets 1 2, , , nX X X
 are included, such that, for 

every 1,2, ,j n=  , the supply and demand function ( ):j
j

X
Xπ α π α→  is increasing and convex. Of course, 

the set   of all attainable pay-offs is the linear space spanned by the traded assets: 
{ }1 2

1 2 1 2: , , ,n
n nX X Xα α α α α α= + + + ∈   . The only reasonable way of assigning a price to every 

Y ∈  is to use the super-hedging technique seen at the end of the previous section: 

( ) ( )
1 1

min : .
n n

j j
j j

j j
Y X X Yπ π α α

= =

 
=  

 
∑ ∑   

It is immediate to show that such functional π  is increasing5; since ( )0 0π = , the monotonicity of π  im-
plies its positivity, which, from the financial point of view, means that the “cheapest super-hedging” price func-
tional π  does not allow neither for arbitrages nor for convenient super-hedgings. It is also possible, although a 

 

 

4The dual of the problem 
( )

min

sub
a ap a p a

a a Y

+ −

+ −

−

− =X
 is 

min
sub a

a

Y
p
p

ϕ
ϕ
ϕ− −

X
X




, which can be written as min
sub b a

Y
p p
ϕ

ϕX 
; the dual of 

( )
min

sub
a ap a p a

a a Y

+ −

+ −

−

−X 
 is 

max
sub

0
b a

Y
p p
ϕ

ϕ
ϕ

X 


. 

5Suppose that ,Y Z ∈  are such that Y Z . This means that every portfolio that super-hedges Y super-hedges Z: therefore, the min that 

corresponds to the super-hedging price ( )Yπ  is evaluated on a subset of the set where the min corresponding to ( )Zπ  is evaluated. As 

a consequence, ( ) ( )Y Zπ π≥ . 
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little technical, to show that π  is convex, i.e., that ( )( ) ( ) ( ) ( )1 1X Y X Yπ ϑ ϑ ϑπ ϑ π+ − ≤ + −  for every 
,X Y ∈  and every [ ]0,1ϑ∈ 6: the convexity of the single supply and demand functions “propagates” to the 

entire pricing functional. 
Fenchel’s Theorem ensures that a convex functional π  can be represented as the pointwise maximum of the 

affine functionals that it dominates, where an affine functional is the translation of a linear functional: 
:f →   is affine if there exist :ϕ →   linear and c∈  such that ( ) ( )f cϕ⋅ = ⋅ + . In greater detail: 
Proposition 1 (Fenchel’s Theorem). Let :π →   be convex. Then the set 
{ }: : : affine,L f f f π= →    is non-empty, closed and convex and such that ( ) ( )max f LX f Xπ ∈=  for 

every X ∈ . 
Since every f L∈  can be written as f fcϕ +  with :fϕ →   linear and fc ∈ , and since every li-

near functional can be represented as in (1), the convex functional π  can be represented as 

( ) ( ) ( ) ( )max max E .
ff f f Q ff L f L

X X c B X c Xπ ϕ
∈ ∈

  = + = + ∈                  (2) 

Note that ( )0 0π =  implies that all of the constants fc  are 0≤ , and that at least one of them is null,  
because ( ) ( )0 max 0 maxf L f f f L fc cπ ϕ∈ ∈ = + =  . 

Example 3. Take into consideration the same two assets of Examples 1 and 2, with pay-off matrix, 
2 8
6 4
 

=  
 

X , and suppose that they are exchanged on the market as follows: 

• 1X  has unit price 4 for (short) sales or purchases up to 10 units, 4.2 for purchases up to 50 units and 4.4 
beyond 50 units; 

• 2X  has unit price 5 up to 20 units, 5.5 up to 80 units and 6 beyond 80 units. 
Such prices split the portfolio space into nine regions, identified by four vertices (see Figure 1). 

• 1 10
20

a  
=  
 

, which yields the pay-off 1 180
140

a  
=  
 

X  and costs 4 10 5 20 140× + × = ; 

• 2 10
80

a  
=  
 

, which yields the pay-off 2 660
380

a  
=  
 

X  and costs 4 10 5 20 5.5 60 470× + × + × =  (recall the  

first 20 units of 2X  are bought at the cheaper price 5, and only the 60 subsequent units are bought at the higher 
price 5.5; 

• 3 50
20

a  
=  
 

, which yields the pay-off 3 260
380

a  
=  
 

X  and costs 4 10 4.2 40 5 20 308× + × + × = ; 

• 4 50
80

a  
=  
 

, which yields the pay-off 4 740
620

a  
=  
 

X  and costs 4 10 4.2 40 5 20 5.5 60 638× + × + × + × = . 

Inside each region, the unit prices ip  remain constant (shown in Figure 1 as well), and therefore the price 

functional π  is affine: we may write | i

i i
if cπ ϕ= = + , 1, 2, ,9i = 

. 

In greater detail: there have to be nine vectors 1 2 9 2, , ,ϕ ϕ ϕ ∈ 
 and nine (non positive) constants  

 

 

6To prove the inequality, suppose that the cheapest (super) hedges for ,Y Z ∈  are, respectively, 
1

n j
jj
Xβ

=∑  and 
1

n j
jj
Xγ

=∑ , so that 

( ) ( )1

n j
jj

Y Xπ π β
=

=∑  and ( ) ( )1

n j
jj

Z Xπ π γ
=

=∑ . Let 0 1ϑ≤ ≤ , and consider the portfolio ( )( )1
1n j

j jj
W Xϑβ ϑ γ

=
= + −∑ . Of course, 

( )1W Y Zϑ ϑ+ − ; therefore, ( )( ) ( )1Y Z Wπ ϑ ϑ π+ − ≤ . 

Since ( )Wπ  is defined as the cheapest (super)hedge of W, ( ) ( )( )1
1n j

j jj
W Xπ π ϑβ ϑ γ

=
 ≤ + − ∑ . On the other hand, the fact that all of 

the functions jX
π  ( )1,2, ,j n=   are convex w.r.t. α  implies that 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
1 1 1n nj j j

j j j jj j
X X X Y Zπ ϑβ ϑ γ ϑπ β ϑ π γ ϑπ ϑ π

= =
  + − ≤ + − = + −   ∑ ∑ . By transitivity, 

( )( ) ( ) ( ) ( )1 1Y Z Y Zπ ϑ ϑ ϑπ ϑ π+ − ≤ + − ,  i.e. , π  is convex. 

Note that this implies that the inequalities (3) hold for every X ∈ , not just for the listed assets. 
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Figure 1. The portfolio space in Example 3.                      

 
1 2, , , nc c c ∈   such that, if X a= X  with a∈  ( )1,2, ,9j = 

, then ( ) j
jX X cπ ϕ= + . Every vector jϕ  

( )1,2, ,9j = 

 identifies a discount factor jB  and a risk-neutral probability jQ , and therefore this model  
identifies at least nine risk-neutral measures; however, as already pointed out, the risk-neutral measures turn out 
not to be as important as the properties of the price functional in order to investigate market efficiency. 

Note that, if both X and X H+  belong to the same region j , then ( ) ( ) jX H X Hπ π ϕ+ − = : it is then 
straightforward to realise that, for every 1,2, ,j n=  , the vector jϕ  is easily determined by solving the usual 
linear system j jpϕ =X . The constants jc , 1, 2, ,j n=  , are calculated as the amount “saved” by buying the 
“first” units at a price smaller than jp : 

• In 1 , the effective prices are the lowest ones: therefore, 1 0c =  (we could argue the same conclusion from 
the fact that ( ) 1

10 0 0 cπ ϕ= = ⋅ + ); 
• In 2 , the price of 2X  is 5.5, but the first 20 units are bought at the price 5 5.5 0.5= − , thus “saving”  

20 0.5 10× = : therefore, 2 10c = −  (as a double check, consider for instance that the portfolio 2

5
20

a  
= ∈ 
 

  

yields the pay-off 
410
230

a  
=  
 

X  and costs ( )5 4 20 5 50 20 5.5 285× + × + − × = , and 2
2

410
285

230
cϕ

 
= ⋅ + 

 
 pre- 

cisely yields 2 10c = − ); 
• In 3 , the price of 2X  is 6, but the first 20 units are bought at 6 5 1− =  less and the subsequent 

( 80 20− = ) 60 at 6 5.5 0.5− =  less, for a total “saving” of 20 1 60 0.5 40× + × = : therefore, 3 50c = −  (note 
that such a saving can also be calculated as the one achieved in the “previous” region 2 , i.e., 20 0.5 10× = , 
plus the additional saving of 0.5 on all of the first 80 units: 20 0.5 80 0.5 50× + × = ); 

• In 4 , the price of 1X  is 4.2, but the first 10 units are bought at 4.2 4 0.2− =  less, thus “saving” 
10 0.2 2× = : therefore, 4 2c = − ; 

• In 5 , both the first 10 units of 1X  and the first 20 units of 2X  are bought at a lower price: the savings 
of 2  and 4  add up, and therefore 5 2 4 12c c c= + = − ; 

• In 6 , the savings of 3  and 4  add up, and therefore 6 3 4 52c c c= + = − ; 
• In 7 , the first 10 units of 1X  cost 4.4 4 0.4− =  less than the “full” price, and the subsequent ( 50 10− = ) 

40 cost 4.4 4.2 0.2− =  less: the total saving is 10 0.4 40 0.4 12× + × = : therefore, 7 12c = − ; 
• In 8 , the savings of 2  and 7  add up, and therefore 8 2 7 22c c c= + = − ; 
• Finally, 9 3 7 62c c c= + = − . 

Now, the price of every pay-off 2X ∈  can be calculated as ( ) 1,2, ,9max j
j jX X cπ ϕ=  = + 

. For instance, 

for 
800

1200
X  
=  
 

 we get: 
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(the maximum price is emphasised). Note that, indeed, X is yielded by the portfolio 8

160
60

a  
= ∈ 
 

 , and the 

price of a is 10 4 40 4.2 110 4.4 20 5 40 5.5 1012× + × + × + × + × = . 
As already mentioned, the price functional π  is convex. We want nevertheless to strike out that, generally  

speaking, it is neither sub- nor superadditive: for instance, consider again the pay-off 
800

1200
X  
=  
 

. It is possible 

to check that 
800

350
0

π
  

=  
  

 and 
0

744
1200

π
  

=  
  

, and therefore 

800 800 0
1012 1094

1200 0 1200
π π π
          

= < = +          
          

. On the other hand, it is also 
400

495
600

π
  

=  
  

, and 

therefore 
800 400 400

1012 990
1200 600 600

π π π
          

= > = +          
          

. We want to point out that this second inequality  

does not correspond to a convenient super-hedging: indeed, it is not possible to buy simultaneously two portfo- 

lios yielding the claim 
400
600
 
 
 

 because, when doubling the position, the unit prices of the traded assets increase.  

It is still possible to show that, if π  does not take infinite values, the set { }: :L f f LϕΦ = ∈  is compact and  
convex. Mathematically speaking, the set LΦ  is the union of the sub differentials of π  at all points X ∈ ; 
note that, if π  is sublinear, then L LΦ = . 

In perfect analogy to what happens for sublinear functionals, π  is increasing if and only if every Lϕ ∈Φ  is 
positive. The natural technique of pricing any pay-off Z (either belonging to   or not) by super-hedging, as 
seen in Section 1.3, can still be applied, even in the case when π  allows for convenient super-hedgings, and it 
can be shown that the cheapest super-hedging price π  is a convex functional if the “original” π  is. Further-
more, the set LΦ



 corresponding to the set L  identified by π  turns out to be precisely the set 
( ) { }: 0L Lϕ ϕ

+
Φ = ∈Φ  . 
Example 4. On { }1 2,ω ωΩ =  consider the two assets: 

• 1 4
5

X  
=  
 

, at the unit price of 4.5, which increases at 4.7 for purchases of more than 10 units; 

• 2 3
4

X  
=  
 

, traded at 3.4 per unit, which increases at 3.7 for purchases of more than 20 units. 

This way, 
4 3
5 4
 

=  
 

X . The prices split the portfolio space into four regions 1 2 3 4, , ,    , corresponding 

to the four “quadrants” identified by the portfolio 
10
20

a  
=  
 

 (see Table 1); note that the portfolio a  yields the 

pay-off 
100
130
 
 
 

 and costs 10 4.5 20 3.4 113× + × = . The vectors jϕ  and the constants jc , calculated as in  
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Table 1. The four regions of the portfolio space in Example 4.               

 
 
previous Example 3, are also shown. 

There are positive vectors in LΦ  (such as 1ϕ , for instance); yet, the negative components of 2ϕ  and 3ϕ  
indicate the possibility of a convenient super-hedging. It is quite clear that such possibilities apply to all of the 
portfolios belonging to the regions 2  and 3 . 

Consider, for instance, the portfolio [ ]2
25 30a = − ∈ , whose pay-off is 2 70

95
a  

=  
 

X  and whose price is 

[ ] 70
5 4.5 20 3.4 10 3.7 82.5 0.5 1.3 6

95
 

− × + × + × = = − ⋅ − 
 

. It is immediate to check that the pay-off 2 70
95

a  
=  
 

X  

can be super-hedged by means of the portfolio ( )2
1 2

3
20

a  
= ∈ 
 


  , whose pay-off is 

72
95
 
 
 

 and whose price 

is 3 4.5 20 3.4 81.5 82.5× + × = < : a convenient super-hedging is found, and the cheapest super-hedging price 

functional π  will be such that 
110

81.5
145

π
  

≤  
  

  (indeed, it can be shown that the equality holds). 

Analogously, the portfolio 3
3

25
10

a  
= ∈ 
 

  yields the pay-off 3 130
165

a  
=  
 

X  at the price 

[ ] 130
10 4.5 15 4.7 10 3.4 149.5 1.8 0.5 2

165
 

× + × + × = = − × − 
 

, but a convenient super-hedging is given by 

( )3 4 3

17.5
20

a  
= ∈ 
 


  , whose pay-off is 

130
167.5
 
 
 

 and whose price is 10 4.5 7.5 4.7 20 3.4 148.25× + × + × = . 

Therefore, 
130

148.25
165

π
  

≤  
  

  (and, as before, the equality holds, indeed). 

It is possible to prove7 that the “adjusted” functional π , calculated after exploiting all of the convenient su-
per-hedgings, is calculated as the maximum of six affine functionals as shown in Table 2. Notably enough, the 
convex set Φ  identified by the six vectors 1 2a 4, , ,ϕ ϕ ϕ  

  exactly amounts to the subset of the positive vectors 
contained in the “original” set Φ  (see Figure 2). Note also that not all of the vectors jϕ , 1, 2,3, 4j = , induce 
risk neutral measures, because some of them have negative components; however, each of the six “vertices” of 
the “restricted” set Φ  can again be seen as the product of a risk neutral measure and a discount factor (for in-
stance, 2bϕ  corresponds to the degenerate probability 2bQ  such that { }( )2b

2 1Q ω =  and to the discount fac- 

 

 

7We confine ourselves to a few hints, in order to help a reader possibly interested in finding a method into this madness. In the region 2 , 

the “marginal” pay-off 
1
0
 
 
 

 (yielded by the “marginal” portfolio 
4
5

 
 − 

) has a negative cost (indeed, ( )4 4.5 5 3.7 0.5× + − × = − ): therefore  

the idea is to add to any portfolio 
2
12

22
2

a
a

a
 

= ∈ 
 

  a multiple of 
4
5

 
 − 

 until “hitting” the boundary with another region. If 

( ) ( )2 2
2 14 20 5 10a a− ≤ − − , such a region turns out to be 1 , and the affine pricing functional used to price the pay-off becomes 2a

2acϕ −  ; 

in the opposite case when ( ) ( )2 2
2 14 20 5 10a a− ≥ − , the region hit is 4 , and the “adjusted” pricing functional is 2b

2bcϕ −  . Analogous 

considerations apply to the region 3 , where the “marginal arbitrage” is the pay-off 
0
1
 
 
 

, (yielded by the marginal portfolio 
3

4
− 
 
 

), 

which costs 0.5− . 
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Figure 2. The sets Φ  (thin line) and Φ  (thick line) in Example 4.            

 
Table 2. The four regions of the portfolio space in Example 4 after taking 
advantage of the convenient super-hedging opportunities.                    

 
 
tor 2b 0.925B = ). Nevertheless, we remark that such elements are not as important as the ϕs themselves to in-
vestigate market efficiency.  

When it comes to positivity, things get a little more complicated: indeed, the fact that Φ  contains no posi-
tive functionals at all is still sufficient, but no longer necessary, in order to allow for arbitrages. Consider the 
following (and quite minimal) example. 

Example 5. Again on { }1 2,ω ωΩ = , suppose that the asset 1 1
0

X  
=  
 

 is sold at the unit price 0.4 regardless 

of the amount, and that 2 0
1

X  
=  
 

 is sold at unit price 0.1−  up to 5 units, and 0.5 for more than 5 units. The 

portfolio space is trivially split into two regions (and in each of them, since 
1 0
0 1
 

=  
 

X , it is trivially 

j jpϕ = ): 
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It is clear that arbitrages are possible, because buying 
0
k
 
 
 

 with 0k ≥  has a negative price for every  

6k < . Nevertheless, the set Φ  contains the positive vector [ ]2 0.4 0.5ϕ = . 
It is still possible to define the cheapest super-hedging price functional π : it turns out that it simply amounts  

to replace, in the region 1 , 1ϕ  and 1c  with [ ]1 0.4 0ϕ =  and 1 3c = − . As a consequence, it is no longer 

( )0 0π =
: indeed, ( )0 3π = −

, which precisely indicates the possibility to get a free gain of 3 without risk. It is  
also worth pointing out that such an arbitrage is just “local” in the spirit of Castagnoli et al. (2011), in the sense 
that there is an upper bound to the gains that can be obtained by means of arbitrages.  

The point is that, as already mentioned, an arbitrage is nothing but a convenient super-hedging of the null 
vector. In the sublinear case, positive homogeneity ensures that such a convenient super-hedging (meaning both 
its positive pay-off and its negative price) can be multiplied by an arbitrary positive constant and still remain an 
arbitrage: this way, if arbitrages are possible, the region of the arbitrage portfolios is always unbounded. In the 
“granular” convex case, instead, positive homogeneity no longer holds, and therefore arbitrages may be confined 
to a bounded region, as it happens in Example 5. 

As a matter of fact, it is possible to show that a linear functional ϕ ∈Φ  matters in determining whether π  
allows for arbitrages or not only if ϕ  is relative to a “region” of the portfolio space that contains the null 
pay-off: we call 0Φ  such a subset of Φ 8. In other terms, while Φ  is the union of all subdifferentials of π , 
we are here only interested in the subdifferential 0Φ  of π  at the origin. Briefly, a convex functional π  is 
positive if and only if there exists a positive 0ϕ ∈Φ . 

For sublinear functionals, it can be proven that the subdifferential at each point is by necessity a subset of the 
subdifferential at 0, or, in other words that 0Φ = Φ . This, besides the “unbounded” nature of arbitrages in sub-
linear markets, provides a further argument in favour of the fact that, unlike what happens for convex markets, 
in sublinear markets absence of arbitrages and absence of convenient super-hedgings are properties of the same 
set L. 

The results of this section can be summarized and formalized in the following 
Theorem 1. Let   be a linear space of financial assets, and :π →   be a convex pricing functional 

such that ( )0 0π = . Define { }: : : affine,L f f f π= →    and, for every f L∈ , call ( ): 0fc f=  and 

( ) ( ):f ff cϕ ⋅ = ⋅ − , so that ( ) ( )f ff cϕ⋅ = ⋅ + . Let { }: :f f LϕΦ = ∈  and { }0 : : : linear,ϕ ϕ ϕ πΦ = →   . 
Then: 

1. L is non-empty, closed and convex; 
2. for every X ∈ , ( ) ( )max f LX f Xπ ∈= ; 
3. for every f L∈ , 0fc ≤  and fϕ  is linear; furthermore, there exists f L∈  such that 0fc = ; 
4. Φ  and 0Φ  are non-empty, closed and convex, and 0 LΦ = Φ ; 
5. π  is increasing if and only if every fϕ ∈Φ  is positive; 
6. π  is positive if and only if there exists a positive 0ϕ ∈Φ . 

3. Increasing Average Prices 

The Star-Shaped Case 

Suppose that X ∈  is such that the supply and demand function ( )Xα π α→  is convex. If, as it is nat-

ural to suppose, ( )0 0π = , then it turns out that 

( ) ( )
( ) ( )

if 0 1,

if 1

X X

X X

π α απ α

π α απ α

≤ ≤ ≤

≥ ≥
                        (3) 

the first inequality comes from the convexity property, because (being 0 1α≤ ≤ ) it is 

 

 

8In the case when ( )0 0π = , 0Φ  can also be defined as the subset of linear (not just affine) functionals of Φ  or, equivalently, as the set 

of all fϕ  such that 0fc = . 
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( )( ) ( ) ( ) ( )1 0 1 0X Xπ α α απ α π+ − ≤ + − ; it is furthermore possible to see that the two inequalities are equiv-
alent to each other9. 

A possible reason why inequalities (3) are sensible in ordinary markets can be seen as follows. Take 
,α β ∈  such that 1 α β≤ ≤ , so that 1β α > . The first of the two inequalities (3) above is equivalent to 

( ) ( ) ( ) ( )
i.e., :

X X
X X X

π β π αβ βπ β π α π α
α α β α
 = ⋅ ≥ ≥ 
 

 

in other words, the supply and demand function of an X ∈  satisfies (3) if and only if the average unit price 
of X is increasing with respect to the traded amount. This is why we deem reasonable such a property: indeed, 
when aiming at purchasing some quantity of something, it is rational to buy it at the lowest possible overall price, 
which of course coincides with the lowest average unit price. 

Suppose, for instance, that three agents sell the same asset X on the market. The first one sells it at 4 per unit, 
but can only provide up to 30 units. The second one sells it at 5 per unit (for any amount). The third one sells it 
at 4.5 per unit, but only for a minimum order of 50 units. It is clear that the best price that can be obtained to buy 

0α >  units of X are: 

( )
4 30
5 30 30 60
4.5 60

X
α α

π α α α
α α

≤
= − < <
 ≥

 

for instance, to buy 50 units of X, the unit price of 4.5 may be obtained, but it is less expensive to buy 30 units 
from the first agent and 20 from the second, at a total price of 30 4 20 5 220× + × =  instead of 50 4.5 225× = . 
Note that the average price obtained with the “separate” purchase is 220 50 4.4 4.5= < . 

We shall call star-shaped a supply and demand function ( )Xα π α→  that satisfies inequalities (3) and, in 
general, any function :f →  , with   any real linear space, that does the same. Note the difference with 
“granular” pricing functionals, which feature an increasing marginal price with respect to the traded amount: of 
course every convex function is star-shaped as well, but the converse need not be true. 

Example 6. The function :f →   defined as 

( )
0.3 10
2 1 10

x x
f x

x x
≤

=  − >
 

is star shaped, because ( ( )0 0f =  and) its “average value” ( )f x x  is increasing. Nevertheless, f is not con-
vex (and not even continuous).  

A geometrical interpretation of the star-shaped property is easily deduced from the monotonicity of average 
prices. Recall that, given any real linear space  , a function :f →   is convex if and only if, whenever 

two points 
1 2

1 2

,
X X
y y

   
   
   

 are given “above” the “graph” of f, i.e., such that ( )j
jf X y≤  ( )1,2j = , then the 

entire segment adjoining 
1

1

X
y

 
 
 

 and 
2

2

X
y

 
 
 

 remains “above” the graph of f (which translates into 

( )( ) ( )1 2
1 21 1f X X y yϑ ϑ ϑ ϑ+ − ≤ + −  for every [ ]0,1ϑ∈ ). The property that average prices are increasing for 

star-shaped functions translates into the fact that whenever X
y

 
 
 

 is given “above” the “graph” of f, i.e., such 

that ( )f X y≤ , then the entire segment adjoining 
0
0
 
 
 

 and 
X
y

 
 
 

 remains “above” the graph of f (which 

translates into ( )f X yϑ ϑ≤  for every [ ]0,1ϑ∈ ). In Figure 3 the typical appearance of the four functions 
examined in this paper is depicted for functions :f →  . 

 

 

9Define, indeed 1β
α

=  and Y Xα= : it is clear that 0 1α≤ ≤  (respectively, 1α > ) if and only if 1β >  (respectively, 0 1β≤ ≤ ) and 

that ( ) ( )X Xπ α απ≤  can be written as ( ) ( )Y Yπ απ β≤ , i.e. , ( ) ( )X Xπ β βπ≥ . 
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(a)                                 (b) 

 
(c)                                 (d) 

Figure 3. Typical graphs of (a) a linear function; (b) a sublinear (and not linear) 
function; (c) a convex (and not sublinear) function and (d) a star-shaped (and 
neither convex nor continuous) function.                                 

 
Suppose that, in an exchange list under consideration, the assets 1 2, , , nX X X

 are included, such that, for 
every 1,2, ,j n=  , the supply and demand function ( )jXα π α→  is increasing and star-shaped. Once again, 

we define on the set { }1 2
1 2 1 2: , , ,n

n nX X Xα α α α α α= + + + ∈    of all attainable pay-offs a price func-
tional π  by super-hedging: 

( ) ( )
1 1

min : .
n n

j j
j j

j j
Y X X Yπ π α α

= =

 
=  

 
∑ ∑   

As usual, such a functional immediately turns out to be increasing (and therefore positive, because ( )0 0π = ); 
moreover, it can be proved that π  is star shaped as well, i.e., that inequalities (3) hold for every X ∈ . So 
to say, the star-shape of the single supply and demand functions “propagates” by super-hedging. 

An adaptation of a result by Chateauneuf & Aouani (2008), still unpublished (see Castagnoli et al., 2009), 
shows that a star-shaped functional π  can be represented as the pointwise minimum of the convex functions 
that dominate it. In detail: 

Proposition 2. Let :π →   be a star-shaped functional. Then the set 
{ }: : : convex,G g g g π= →    is closed and convex, and ( ) ( )min g GX g Xπ ∈=  for every X ∈ . 

It is indeed possible to prove that only the convex functionals g G∈  such that ( )0 0g =  can be taken into 
consideration, i.e., that if ( ){ }0 : : 0 0G g G g= ∈ = , then ( 0G  is closed and convex as well and) 
( ) ( )

0
min g GX g Xπ ∈=  as well. By applying Proposition 1, we can write each 0g G∈  as in (2), and therefore 

represent the star-shaped functional π  as 

( ) ( )
0

min max .
g g

g g
f fg G f L

X X cπ ϕ
∈ ∈

 = +                             (4) 
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To give an economical interpretation of such a representation, think that several agents are available to sell X 
on the market. Each agent, corresponding to a g G∈ , assigns a convex price to X (i.e., has an increasing mar-
ginal price), and we are free to choose the agent we want to buy the asset X from (i.e., the cheapest one). 

It is worth mentioning that the class of star-shaped functionals is closed under pointwise sup and inf, even for 
an infinite family of functionals; more explicitly, if   is any real linear space and ( ):s s S

f
∈

→   is a fam-
ily of star-shaped functionals such that min

ss Gf g= , then min min
sss s Gf g=



 and max min
sss s Gf g=



. 
Example 7. Take into consideration the same two assets of Examples 1, 2, and 3, with pay-off matrix  

2 8
6 4
 

=  
 

X We suppose that the investor can call her/his demands on three different markets, each run by a 

(representative) agent with her/his own convex price system: this way, three convex price functionals 1π , 2π  
and 3π  are given. Suppose that the first one is the same of Example 2, with nine portfolio region as follows: 
 

 
 
The second agents gives the granular price functional 2π  identified by10 

 

 

 
The third agent simply gives a linear price: [ ]3 4.2 6p = , [ ]3 0.48 0.54ϕ = . 
Let us take into consideration some random variables: the details of the calculations (which amount to see in 

which region the price of the given pay-offs is maximum) are left to the reader. 

• For 1 300
300

Y  
=  
 

, it is ( )1
1 279Yπ = , ( )1

2 276Yπ = , and ( )1
3 306Yπ = : therefore, 1Y  is bought from the 

second agent and ( )1 276Yπ = . 

• For 2 180
140

Y  
=  
 

, it is ( )2
1 140Yπ = , ( )2

2 143Yπ = , and ( )2
3 162Yπ = : therefore, 2Y  is bought from 

the first agent and ( )1 140Yπ = . 

• For 3 5000
1000

Y  
=  
 

, it is ( )3
1 2950Yπ = , ( )2 3 3010Yπ =  and ( )3

3 2940Yπ = : therefore, 3Y  is bought 

from the third agent and ( )3 2940Yπ = . 

 

 

10We are supposing here that the three “markets” share the exchange list, i.e., that the same assets are exchanged on the three markets. This 
is just chosen in order to avoid further complications: indeed, on different markets, different assets could be quoted and exchanged. 
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It is then clear that each of the three price systems has a chance to prove the cheapest one and, therefore, that 
it is effective in determining π  as the pointwise minimum of 1π , 2π , and 3π . This can happen even for a  

single asset: for instance, the three demand functions ( )Xα π α→  ( )0α ≥  for 
17
16

X  
=  
 

 in the three mar- 

kets turn out to be: 

( )

( )

1

2

2014.75 0
3

20 8015.05 2
3 7

80 10015.925 12 ,
7 3
100 32016.225 22

3 7
32017.1 62

7
12015.075 0

7
12016.825 30 20

7
17.425 42 20

X

X

α α

α α

π α α α

α α

α α

α α

π α α α

α α

 ≤ <

 − ≤ <

= − ≤ <



− ≤ <

 − ≥
 ≤ <

= − ≤ <


− ≥


 

and ( )3 16.8Xπ α α= . It is straightforward (but very laboured) to see that 

( )

( )

( )

( )

( )

1

2

1

3

2014.75 0
3

20 8015.05 2
240 3 70

80 24017 15.925 12
240 7 1720

240 12017 15.075
620 17 720

1203 16.825 30 20
620 7

6203 15.925 12 20
3

62016.8
3

X

X
X

X

X

α α

α α
π α

α α
π α

π α α α
π α

α α
π α

α α

α α

 ≤ <

 − ≤ < ≤ < 
 − ≤ <
 ≤ <  = = ≤ < 

 ≤ <
 

− ≤ < 
 ≥
  − ≤ <


≥





 

note that the marginal price is not increasing (for instance, around 240
17

α = , it decreases from 15.925 to  

15.075), whereas the average one is.  
It is still true that the star-shaped price functional π  does not allow for convenient super-hedgings if and 

only if it is increasing. 
Notably, if this is the case, instead of the set { }: : : convex,G g g g π= →    of Proposition 2 or the set 

( ){ }0 : : 0 0G g G g= ∈ =  of (4), the subsets { }: : : convex and increasing,G g g g π+ = →    and 

( ){ }0 : : 0 0G g G g+ += ∈ =  can be taken into consideration in order to represent π . Define indeed, for every 
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g G∈ , the functional :g + →   by ( ) ( ){ }: min :g X g Y Y X+ =  : the fact that g is convex ensures that 

such a minimum exists. It is clear that g +  is increasing and that g g+  ; furthermore, it is possible to prove 
(by taking into consideration the monotonicity of π ) that still g π+  .11 This way, it is straightforward to rea-

lise that ( ) ( )min g GX g Xπ +
∈=  and, therefore, that ( ) ( )min

g G
X g Xπ +∈

=  for every X ∈ . 

Since it is trivial that the minimum of a family of increasing functionals remains increasing, the above con-
siderations allow us to conclude that a star-shaped functional does not allow for convenient super-hedgings if, 
and only if, it can be represented as the pointwise minimum of a family of increasing functionals. Note that this 
is quite analogous to what happened for convex and, before, for sublinear functionals: π  allows for no conve-
nient super-hedgings if, and only if, all of the functionals in the representation of π  are increasing. 

In order to deal with arbitrages, one more consideration is needed. Since, in the economical interpretation we 
gave, we are free to choose, among several agents, the best one to buy the pay-off X we want to detain, it is rea-
sonable to think that we may prefer to buy several different portfolios from the different agents, in such a way 
that the overall position matches or, better, super-hedges X. Mathematically speaking, we are dealing with the 
following object: 

Definition 1. Let   be a real linear space, and { }: : :sG g s S= → ∈  a family of real functionals on 
 . The inf-convolution of G is the functional { }: ,F → −∞ +∞  defined by, for every X ∈ , 

( ) ( ) ( ) ( )1 2

1 2
1

1
: inf : , , , , .

n

n
n j

s s s n
j

F X g Z g Z g Z n s s S Z X
=

 
= + + + ∈ ∈ 

 
∑    

This way, if we are given a set { }:s s Sπ ∈  of price functionals, each ideally corresponding to a different 
market (or agent), taking their inf-convolution amounts to buying a finite number of positions 1 2, , , nZ Z Z

, on 
the markets 1 2, , , ns s s  respectively, in such a way that the overall pay-off 1 2 nZ Z Z+ + +  super-hedges 
the desired pay-off X. Note that, as a consequence, the inf-convolution of a family of functionals always turns 
out to be smaller than their pointwise minimum. (Note also that, if the g G∈  are all increasing, the condition 

1 2 nZ Z Z X+ + +   can be equivalently replaced by 1 2 nZ Z Z X+ + + = .) 
The following proposition holds true, with evident consequences from the financial point of view. 
Proposition 3. Let   be a real linear space and { }: : :sG g s S= → ∈  be a family of real functionals 

on   such that every g G∈  is increasing and such that ( )0 0g = . Let { }: ,F → −∞ +∞  be the inf- 
convolution of G: then F is finite-valued, and 

1. if every g G∈  is convex, then F is convex; 
2. if every g G∈  is star-shaped, then F is star-shaped. 
The fact is that, even if every g G∈  is such that ( )0 0g = , it is not necessary that ( )0 0F = . Economi-

cally speaking, even if the “original” markets do not allow either for arbitrages nor for convenient super- hedg-
ings, a “cross-market” arbitrage may still be possible. 

Example 8. Consider again the three markets of Example 7: we saw that 1 300
300

Y  
=  
 

 can be bought from 

the second agent at the price 276. It is immediate to check that for 1 300
300

Y
− 

− =  − 
 it is ( )1

1 270Yπ − = − , 

( )1
2 276Yπ − = − , and ( )1

3 306Yπ − = − : therefore, 1Y  can be sold to the third agent for a gain of 306, thus 
making a “cross-market” arbitrage of 30. 

 
As a consequence, the inf-convolution π  of 1 2 3, ,π π π  will be star-shaped and increasing, because of  

Proposition 3, but such that 
0

30
0

π
  

≤ −  
  

. (The inequality is indeed strict: for instance, 

 

 

11For every X ∈ , it is ( ) ( )g X g Y+ =  for some Y ∈ , Y X . It is ( ) ( )g Y Yπ  because g G∈ ; therefore, by monotonicity 

of π , we get that ( ) ( ) ( ) ( )X Y g Y g Xπ π +=  . 
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180 120 300 0
140 160 300 0

−         
+ + =         −        

, and 1 2 3

180 120 300
33

140 160 300
π π π
     −      

+ + = −          −          
). 

Although the technical details for a complete proof become too complex to be reported here, the key feature 
can be guessed from the following (and last) example. 

Example 9. The function 

( )
0.4 0

: , :
0.3 0

x x
f f x

x x
<

→ =  ≥
 

 

is increasing, star-shaped and such that ( )0 0f = . Yet, it is clear that ( )10 4f − = −  and ( )10 3f = , so that 
( ) ( )10 10 1f f− + = − . Note that the subdifferential of f at 0 is the empty set (no straight line fits below the 

graph of f).  
The point that can be proven is that, if a star-shaped price functional is the result of a “best price” over several 

markets, “cross-market” arbitrages are possible if and only if there are assets whose price around 0 behaves like 
the function of Example 9. Therefore, the same condition seen for convex functionals applies: a star-shaped 
price functional does not allow for arbitrages, not even cross-market ones, if and only if the subdifferential 0Φ  
of π  at 0 contains at least a positive functional 0ϕ . If 0Φ =∅ , of course such a condition is not satisfied, 
which immediately signals the possibility of arbitrages. 

Note that cross-market convenient super-hedgings may still be possible, as Example 8 itself makes clear12: as 
a consequence of Proposition 3, this is of course bound to happen every time that the price function is (star- 
shaped but) not convex. 

We can summarise the results of this section in the following: 
Theorem 2. Let   be a linear space of financial assets, and :π →   be a star-shaped pricing func-

tional such that ( )0 0π = . Define { }: : : convex,G g g g π= →    and ( ){ }0 : : 0 0G g G g= ∈ = . Call 

{ }: : increasingG g G g+ = ∈  and { }0 0 0: : increasingG g G g G G+ += ∈ =  . Finally, call F the inf-convolution of 
G (see Definition 1) and define, as in Theorem 1, { }0 : : : linear,ϕ ϕ ϕ πΦ = →   . Then: 

1. G and 0G  are non-empty, closed and convex; 
2. for every X ∈ , ( ) ( ) ( )

0
min ming G g GX g X g Xπ ∈ ∈= = ; 

3. π  is increasing if and only if ( ) ( ) ( )
0

min min
g G g G

X g X g Xπ + +∈ ∈
= =  for every X ∈ . 

4. ( )0 0F =  is positive if and only if there exists a positive 0ϕ ∈Φ . 
Remark 3. In this section, we have seen two ways to build the overall supply and demand function of a given 

asset in the case when several “markets” are available. 
1. In the first case, seen at the beginning of the section, we supposed that the agent simply chooses the “best 

market”: implicitly, we imposed that every single trade can only happen with a single agent. In such a case, the 
market is chosen where the total price, or (which is the same) the average price, is the minimum one. 

2. In the second case, by using the “inf-convolution” technique, we supposed that the agent is free to split the 
desired position into “chunks” and buy the various “chunks” separately on the various markets. This way, for 
every single additional unit, the agent chooses the market where the marginal price is the minimum one. 

Depending on the type of price functionals on the “original” market, we saw that: 
1. In the first case, when all of the markets feature either a convex or a star-shaped price functional, the over-

all price functional turns out to be star-shaped: we pointed indeed out that an increasing average price is ob-
tained; 

2. In the second case, the overall price functionals inherit the convexity or the star-shape of the original func-
tions (namely, it is convex if all of the original pricing functionals are, and star-shaped likewise): the minimum 
marginal price is chosen, and yet it need not be increasing unless it is in the original markets already. 

In some sense, we have found that convexity and star-shape are quite “stable” properties in financial markets. 
Of course, several other “rules” can be imagined: for instance, some markets may be only available for pur-

 

 

12In Example 8, buying 
180
140
 
 
 

 on the first market and 
120
160
 
 
 

 on the second one costs less than buying 
300
300
 
 
 

 on the cheapest ( i.e., still 

the second) one. 
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chases, or for sales, or only some particular amounts can be bought (not just with a minimum or a maximum 
amount, as seen in the beginning of this section, but for instance for multiples of some “size” only), in such a 
way that the offer price function turns out not even to be star-shaped. Anyway, examining such cases goes 
beyond the scopes of the present paper. 

4. Analysis 
Four type of price systems, each a generalisation of the previous one, have been examined in this paper. From 
the last to the first, they are: 

1. star-shaped prices: 

( ) ( ) ( )min max with 0 ;
g g g

g g
f f fg G f L

X X c cπ ϕ
∈ ∈

 = + ≤   

2. convex (or granular) prices, obtained when G is a singleton: 

( ) ( ) ( )max with 0 ;f f ff L
X X c cπ ϕ

∈
 = + ≤   

3. sublinear prices, obtained when (G is a singleton and) 0fc =  (and therefore ff ϕ= ) for every f L∈ : 

( ) ( )max ;
L

X X
ϕ

π ϕ
∈

=  

4. linear prices, obtained when (G is a singleton, 0fc =  for every f L∈ , and furthermore) L is a singleton: 
( ) ( ).X Xπ ϕ=  

The mentioned fact that both the pointwise minimum and the inf-convolution of a family of star-shaped func-
tionals still are star-shaped seems to suggest that no further generalisation of this type should be fruitful. 

For each of the above types, the conditions for absence of arbitrages and of convenient super-hedgings can be 
examined by taking into consideration the behaviour of the price functionals on the indicator functions 

:A Ω→   with A ⊆ Ω  (where, as usual, ( ) 1A ω =  if Aω∈  and =0 otherwise), which are all positive. 
1. Linear prices: ( ) ( )X Xπ ϕ= . The price of A  is the value ( )Aϕ  : it is then immediate that such a price 

is positive for every A (i.e., that no arbitrages and no convenient super-hedgings are possible) if and only if 
0ϕ  . Intuitively, indeed, if ϕ  is not positive, then there exists an A ⊆ Ω 13 such that ( ) 0Aϕ < , so that 

A  makes an arbitrage. 
2. Sublinear prices: ( ) ( )max LX Xϕπ ϕ∈= , with { }linear,L ϕ ϕ π=  . Recall that the positivity of π  is 

equivalent to the positivity of its ask prices, and its (increasing) monotonicity is equivalent to the positivity of its 
bid prices. The ask price of A  is ( ) ( ) ( )maxa A A L Aϕπ π ϕ∈= =    and its bid price is 

( ) ( ) ( )minb A A L Aϕπ π ϕ∈= − − =   : therefore, the ask price is positive as soon as one of the prices ( )Aϕ   is, 
i.e., if there exists a positive Lϕ ∈ , and the bid price is positive only if all of the prices ( )Aϕ   are, i.e., if all 

Lϕ ∈  are positive. Intuitively, if there is a non-positive Lϕ ∈ , then as above there exists an A ⊆ Ω  such 
that ( ) 0Aϕ < : this means that ( ) 0b Aπ < , so that A  makes a convenient super-hedging of the null 

pay-off. Less intuitively, and indeed harder to prove, if all Lϕ ∈  are not positive, then there exists an A ⊆ Ω  

such that ( ) 0Aϕ <  for every Lϕ ∈ : in this case, ( ) 0a Aπ < , and A  makes an arbitrage. 

3. Convex prices: ( ) ( )max f L f fX X cπ ϕ∈  = +  , with { }affine,L f f π=  . Call Φ  the set of all fϕ  

such that f fc Lϕ + ∈   for some 0fc ≤ . The ask price of A  is positive as soon as ( )Af   is: since 

( )0 0ff c= ≤ , this implies that fϕ  is increasing, i.e., positive, that is to say, that there exists a positive ϕ  in 

Φ . 
As for arbitrages, since π  is not positively homogeneous, we need to take into consideration every Ak ⋅   

 

 

13In the spirit of Remark 1, we should write A∈ . 
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for 0k > : in order to make an arbitrage, ( )Af k  has to be negative for all f L∈  and for some k . This 

happens if ( ) 0f A fk cϕ + ≤  for every f L∈ : since this equality can be easily met when 0fc <  (it is  
enough to take k  “small enough”), indeed only the f L∈  such that 0fc =  can be taken into consideration, 
and these fs (which amount to the set 0Φ  of the linear functionals of L) are precisely the ones that concur in 
determining the value of π  close to 0. Therefore, the above arguments for sublinear functionals can be re-
peated in a “local” sense (i.e., for a Ak   with k  “small enough”), to conclude that π  does not allow for 
arbitrages if there exists a positive 0ϕ ∈Φ . 

Intuitively, if there is a non-positive ϕ ∈Φ , then as above there exists an A ⊆ Ω  such that ( ) 0Aϕ < : 

since there is some f L∈  such that f cϕ= + , it is possible to get also ( ) 0Af k <  if k is “big enough”, and 
this means that ( ) 0b Akπ <  (convenient super-hedging). On the other hand, if all 0ϕ ∈Φ  are not positive, 

then there exists an A ⊆ Ω  such that ( ) 0Aϕ <  for every 0ϕ ∈Φ : in this case, it is possible to choose k 

“small enough” so as to obtain ( ) 0a Akπ < , and Ak  makes an arbitrage. 

4. Star-shaped prices: ( ) ( )min max
g g g gg G f L f fX X cπ ϕ∈ ∈

 = +  . The ask price of A  is positive only if all 

of the ( )Ag   are positive for every convex g G∈ : in other words, π  does not allow for arbitrages only if  
all g G∈  do not allow for them. As for convenient super-hedgings, it is now quite complex to summarise the 
properties that have to be imposed on the convex functionals g G∈  in order to get an increasing functional  
(for instance, it is possible to prove that, for every x∈ , ( )2 2min 2 1x x xα α α∈  + − + = 

: an increasing  

functional, i.e., the identity x x→ , is obtained as the pointwise minimum of a family of functions, none of 
which is increasing). We have nevertheless realized that, if π  is increasing, then only the increasing function-
als f L∈  may be taken into consideration and, on the other hand, that the pointwise minimum of increasing 
functions is increasing: therefore, π  does not allow for arbitrages if it can be written as the minimum of a 
family of increasing convex functionals14. Intuitively, it is clear that an arbitrage is possible as soon as even a 
single market allows for it, but now, for convenient super-hedgings, things become quite different. Indeed, recall 
that a convenient super-hedging is a pair ,X Y ∈  such that X Y  but ( ) ( )X Yπ π< : in order to “deac-
tivate” such a situation, i.e., in order to obtain ( ) ( )Y Xπ π≤ , it may be enough that on a single market Y is sold 
at a cheaper price than ( )Xπ . 

It is clear that moving from linear to star-shaped price systems yields price systems whose properties are 
closer and closer to what happens in “real” financial markets. Yet, because of the fact that such systems are each 
the generalisation of the previous one, the “efficiency” conditions for each family of functionals propagates on 
the further generalisations in a reasonable way. All in all, therefore, these four price systems altogether make 
quite a versatile toolbox for building financial models, in the sense that, when a financial model is needed, it is 
easy to “fine tune” the level of precision to suit the needs of the considered problem. 

5. Conclusion 
A classical problem in Mathematical Finance is to study the prices of a suitable set of risky financial assets, 
modeled as random variables on some state sets, by means of suitable functionals defined on this set of random 
variables. The properties of the price functional reflect the assumptions on the market. In this paper, we analysed 
four types of price functionals. We first summarized the properties of the widely known linear functionals, ob-
tained when the market was supposed to be perfect, and of sublinear functionals, which took into account the 
proportional frictions. Then, we introduced two more classes of functionals which accommodate a wider set of 
market frictions: granular (convex) functionals, obtained when the unit prices of traded assets were increasing 

 

 

14To conclude the short example: in computing ( )2 2min 2 1a x xα α∈ + − +  

, for every a∈ , instead of the functions 

( ) ( )2 22 1f x x xα α α= + − +  it is possible to take into consideration the functions  

( ) ( ){ } ( )2 2

0.25 0.5
min :

2 1 0.5
x

x f x f y y x
x x xα α

α α
α α α

+
− ≤ −→ = ≥ =  + − + > −

 

which are all convex and increasing. 
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w.r.t. the traded amount, and star-shaped functionals, obtained when the average unit prices of traded assets 
were increasing w.r.t. the traded amount. We explored some characterizations of such functionals, together with 
their relationships with arbitrages and market inefficiencies, and performed a final analysis on their effectiveness 
in allowing for versatile modelling. 
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