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Abstract 
This review summarizes the coherent structures (CS) based on two-point 
correlations and their applications, with a focus on the interpretation of sta-
tistic CS and their characteristics. We review studies on this topic, which have 
attracted attention in recent years, highlighting improvements, expansions, 
and promising future directions for two-point statistics of CS in turbulent 
flow. The CS is one of typical structures of turbulent flow, transporting ener-
gy from large-scale to small-scale structures. To investigate the CS in turbu-
lent flow, a large amount of two-point correlation techniques for CS identifi-
cation and visualization have been, and are currently being, intensively stu-
died by researchers. Two-point correlations with examples and comparisons 
between different methods are briefly reviewed at first. Some of the uses of 
correlations in both Eulerian and Lagrangian frames of reference to obtain 
their properties at consecutive spatial locations and time events are surveyed. 
Two-point correlations, involving space-time correlations, two-point spatial 
correlations, and cross correlations, as essential to theories and models of 
turbulence and for the analyses of experimental and numerical turbulence 
data are then discussed. The velocity-vorticity correlation structure (VVCS) 
as one of the statistical CS based on two-point correlations is reiterated in de-
tail. Finally, we summarize the current understanding of two-point correla-
tions of turbulence and conclude with future issues for this field. 
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1. Introduction 

The common recognition of the existence of organized motions or vortices in 
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turbulent shear flows can be traced to the works of Theodorsen (1952) [1] and 
Townsend (1956) [2] over six decades ago. In the past 60 years, a great deal of 
insight into the characteristics of organized structures in turbulent shear flows 
has been achieved, primarily by means of flow visualization techniques [3] [4] 
[5] [6] [7]. Some combined flow visualization and quantitative techniques [8] [9] 
[10] [11] have demonstrated the significance of certain events, e.g. the bursting 
process, or structures in turbulence. 

Unfortunately, the present knowledge of organized motions has seldom been 
applied to turbulence theories or to quantitative turbulence models. This is par-
tially caused by the lack of a quantitative definition of organized structure and 
an objective method to assess their contributions to turbulence stresses, espe-
cially their role in producing turbulence. Additionally, most flow visualizations 
have been carried out at low Reynolds numbers, in which the limited complex of 
turbulence makes it easier to detect organized motions. Thus, much of our know-
ledge of coherent motions is limited to the structures that can be observed in 
flow visualizations. It is extremely desirable to have the method for extracting 
coherent structures (CS) from turbulent flow fields and to evaluate their contri-
butions to turbulence statistics, disregarding how turbulent the flows are.  

Quantitative descriptions of organized structures are the essential element for 
successfully applying the knowledge of structures to engineering models, and the 
need of them has led to the use of statistical techniques. Most statistical tech-
niques for identification of organized structures from turbulent flows will nearly 
make a structure from any stochastic field, regardless of their existence in the 
field. Therefore, the connection of statistically derived structures with important 
instantaneous events must be asserted based on independent knowledge of the 
relevant dynamics. Thus, the result of such statistical techniques is an ensem-
ble-averaged structure. This statistical structure is often confined to a relatively 
small portion of the flow domain, with the surrounding fluctuations being aver-
aged out. For that reason, the inherent symmetries in the statistics naturally im-
pose symmetries on the extracted structures. Hence, the structures obtained 
from statistical techniques represent the average of the most energetic events and 
this is helpful for understanding the mechanisms of turbulence. 

In reality, whether a statistical structure is truly found in the instantaneous 
flow field, and on what condition it exists, may not be the critical question. If the 
main objective of a study of coherent motions is to find a decomposition of tur-
bulence into deterministic and stochastic parts, identifying the statistical struc-
ture is certainly an efficient technique. In addition, the coefficients of some 
statistical structures can be directly derived from the Navier-Stokes equations, 
which are of fundamental significance for theoretical development. Here, we 
emphasize that for modeling purpose, details of the instantaneous structures are 
not of interest to us, but the statistical structure may actually be what is impor-
tant. 

An interpretation of a CS is a fluid mass connected with the phase-correlated 
vorticity [12]. In determining the phase of fluids, two- or multi-point measure-
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ments of turbulence fields are common techniques applied in experiments. The 
two-point correlation tensor was found capable of accurately estimating condi-
tional velocity fields [13]. Thus, the conditionally averaged velocity can be ob-
tained from the information contained in the velocity correlation tensor. Some 
of the possibilities for deducing the structure of complicated flows from simul-
taneous measurements at multiple points have been demonstrated in experi-
ments on turbulent boundary layer (TBL) [14]. 

Different kinds of two-point correlation might be used, e.g. velocity-velocity, 
velocity-vorticity, or conditioned correlation, as reported by Sillero and Jiménez 
(2014) [15], Chen et al. (2014) [16] and Hwang et al. (2016) [17], according to 
the original intention of the study. These techniques are often used to character-
ize the behavior of the coherent motions in turbulent flows, i.e. the shape, size 
and location of CS. The concept of two-point correlation in determining the sta-
tistical properties of turbulent flows has been used in constructing turbulence 
theories. In inhomogeneous equilibrium flows the logarithmic law is the ground-
work in statistical turbulence theory. The log-law has been found in a broad 
range of different turbulent wall shear flows, and several statistical models have 
been proposed to be consistent with the log-law. Particularly, the two-point sta-
tistics of the log-layer has been applied to develop the rapid distortion theory 
(RDT) [18], which can be applied to solve unsteady flows where the non-linear 
turbulence-turbulence interaction can be neglected in comparison to linear tur-
bulence-mean interaction. 

This article highlights some of the major developments in applying two-point 
correlations to the study of turbulence. The paper is organized in the following 
way. Section 2 reviews two-point correlation techniques used to investigate tur-
bulent shear flow. Section 3 evaluates a statistical structure based on two-point 
cross-correlation, velocity-vorticity correlation structure (VVCS), in wall-bounded 
turbulence, and assesses the compressibility effects and the flows in special 
boundary conditions. Finally, Section 4 concludes with future perspectives. 

2. Two-Point Correlation Coefficients 

For many decades, two-point correlations have been a milestone of statistical 
theories of turbulence in modeling of its processes, and they have become vir-
tually essential methods of data analysis for investigating turbulent flows. As one 
of these methods, the Eulerian correlation coefficient of velocity components in 
stationary turbulence, fluctuation about their mean values, is defined for two lo-
cations and two times as 
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where iu  and ju  ( ), 1, 2,3i j =  denote the velocity fluctuations; ( )1 2 3, ,x x x=x  
is a specified reference location; ( )1 1 2 2 3 3Δ , Δ , Δx x x x x x+ = + + +x xΔ  are loca-
tions with respect to x  that can be consistently varied, and τ  is the time in-
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crement between the two times, 0t  and 0t +τ . Here, the numbered indices, i 
and j ( ), 1, 2,3i j = , respectively indicate the streamwise (x-direction), wall 
normal (y-direction) and spanwise (z-direction) directions, and ⋅  denotes an 
ensemble average of realizations. 

Another correlation coefficient can be expressed as Lagrangian correlation 
coefficient, which is defined for properties of fluid particles that pass through 
Eulerian locations x  at time 0t  and travel along Lagrangian trajectories to 
arrive at positions ( )+x xΔ τ  at time 0t +τ . In this case, the displacement 
vector, ( )0t +xΔ τ , is a random variable representing the positions, at time 

0t +τ , of the particles in the averaging ensemble with respect to the initial loca-
tion x at time 0t . Thus, for Lagrangian correlation coefficients, xΔ  and τ  
are interdependent, i.e., xΔ  is a function of τ . Hence, Lagrangian correlation 
coefficients are given by  
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Two-point spatial correlation of two variables (also called two-point cross- 
correlation) is a procedure usually applied to investigate the spatial relation be-
tween two variables, respectively, at two spatial points in a turbulence field. 
Two-point cross-correlation coefficient of two variables iφ  and jψ  is defined 
for two locations as 
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where the subscription r  denotes the reference point; φ  and ψ  are fluctua-
tions of two variables or components, e.g. velocity, vorticity, temperature, pres-
sure, shear stress. Two- and three-dimensional representations of correlation 
function of two variables with respect to the reference point always give useful 
information about the structure of the flow variables. Moreover, the correlations 
of the different variable components may have very different geometries [16].  

2.1. Space-Time Correlation 

Autocorrelation is a characteristic of data which shows the degree of similarity 
between the signals of single variable over consecutive time intervals. The signi-
ficance of the autocorrelation lies in the fact that it indicates the memory of the 
process. The space-time autocorrelation (also called space-time correlation), as a 
type of two-point correlation, can be defined with the Eulerian (Equation (1)) 
and Lagrangian (Equation (2)) frames of reference. As a common method for 
exploring the coupling of spatial and temporal scales of motion in turbulence, it 
has been employed to develop time-accurate turbulence models for the large-eddy 
simulation of turbulence-generated noise and particle-laden turbulence. Further 
details of the knowledge of space-time correlations and the future issues for the 
field have been reported in [19]. 
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A typical model constructed by using Eulerian two-point two-time correlation 
is the so-called “elliptic model” in analyzing turbulent shear flows with a second 
order approximation to the iso-correlation contours [20]. He and Zhang (2006) 
suggested that the space-time correlations of velocity fluctuations are mainly de-
termined by their space correlations and the convection and sweeping velocities, 
and developed the elliptic model, relating the space-time correlations to the 
space correlations through the convection velocity and the sweeping velocity. 
The model was validated by its agreement of the normalized correlation curves 
from the direct numerical simulation (DNS) of turbulent channel flows.  

Space-time correlations of fluctuating velocities in terms of the elliptical mod-
el were lately examined in numerically simulated turbulent shear flows [21]. The 
elliptic model was extended to the inertial range based on the similarity assump-
tions of the iso-correlation contours. The analytical expressions for the convec-
tion and random sweeping velocities were derived from the Navier-Stokes equa-
tions for homogeneous turbulent shear flows, and a universal form of the space- 
time correlations with the two characteristic velocities was then obtained. 

Eulerian two-point two-time correlations, as expressed in Equation (1), are 
often employed to obtain the convection and propagation processes, such as 
ejections, sweeps, and shearing in TBL. The propagation speed of turbulent 
fluctuations was first suggested in Taylor’s hypothesis on isotropic turbulence. 
Taylor postulated that the spatial fluctuations can be inferred from temporal 
signals of flow variables by assuming frozen turbulence—the fluctuations at  
( ),x t  behave as ( ),0cx U t− , where cU  is the propagation speed of the fluctu-
ations. In the past several decades, propagation speed has received considerable 
attention in the study of turbulent shear flows because of the presence of large- 
scale organized motions, e.g. CS. The inherent nonlinear and nonlocal nature of 
the interaction between flow structures and compressibility bring more difficul-
ties in understanding the propagation process of fluctuations at high speeds. 
Despite much efforts, a quantitative interpretation of the propagation speed at 
all distances from the wall has not been achieved.  

Earlier speculation of the near-wall propagation being induced by advection 
of coherent vortex structures in TBL was presented in [22]. Krogstad, Kaspersen, 
and Rimestad (1988) reported in their experiments showed that the convection 
velocities are constant in the buffer layer, whereas remarkable variations in cU  
occur in other regions, both with regard to the distance from the wall and the 
scale of the motion [23]. It is also shown that the largest-scale motions are con-
vected at velocities close to the local mean velocity. Whereas, the velocities drop 
significantly as the scales are reduced for all types of events studied. Cao et al. 
(2008) found two characteristic convection speeds near the wall in turbulent 
channel flow—one associated with small-scale streaks of a lower speed and anoth-
er with streamwise vortices and hairpin vortices of a higher speed [24]. This flow 
structure illustrates the dominant role of CS in the near-wall convection, and the 
nature of the convection. The propagation of patterns of velocity fluctuations is 
scale-dependent. Thus, the structure convection velocity should be associated 
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with the evolving state of the structure.  
The aforementioned facts were lately proved in DNS of compressible turbu-

lent channel flows. Pei et al. (2012) proposed a model for the entire profile of the 
propagation speed of the streamwise velocity fluctuations, ( )cU y , for incom-
pressible and compressible wall-bounded turbulence [25], which was examined 
in numerically simulated turbulent channel flows at four Mach numbers  
( 0 - 3.0Ma = ). Eulerian two-point two-time correlation was used in the study to 
obtain profiles of cU , which showed remarkable similarity at different Mach 
numbers. 

2.2. Two-Point Spatial Correlations 

The concept of autocorrelations can be extended to multi-point statistics. Con-
sider for example, the correlation between the velocity at one point and that at 
another. If the time dependence is suppressed, this correlation is a function only 
of the separation of the two points. In fact, two-point spatial correlation coeffi-
cient of velocity has been widely used to measure the size of CS in complex turbu-
lent flows. Note that these correlations are high-dimensional quantities. The corre-
lation for channel flows is originally four-dimensional, while it is five-dimensional 
in boundary layers with homogeneity in the spanwise direction [26]. 

Afzal (1983) conducted DNS of the boundary layer subjected to strong adverse 
pressure gradient at Reynolds number 150 - 2200Reθ =  to investigate the fea-
tures of TBL under adverse pressure gradient (APG) [27]. The two-point spatial 
correlation uuR  obtained far away from the transition region at 2175Reθ =  
and at 0.4y δ =  indicated that the correlation length of u in an APG boundary 
layer is virtually half that in the ZPG TBL. The wall-normal and spanwise corre-
lations, vvR  and wwR , are quite different from uuR . The length scales are more 
limited and the correlated regions are elongated in the wall-normal direction, as 
observed in ZPG boundary layers.  

Two-point spatial correlations were also employed to investigate the axisym-
metric turbulent flows. Since the theory of axisymmetric turbulence was first 
developed by Batchelor (1946) [28], a few scholars developed axisymmetric ten-
sor theory of axisymmetric turbulence. Kerschen (1983) derived the constraints 
for the two invariant functions which appear in the expression for the two-point 
velocity correlation tensor [29]. It is noteworthy that only limited progress has 
been made on the theory of axisymmetric turbulence. For example, relations 
between longitudinal and lateral correlations and spectra are not available. This 
would hinder the applicability of the theory. Later, Zhu et al. (1996) derived a 
relation between longitudinal and lateral correlation functions and tested it with 
available data [30]. 

Two-point velocity correlation functions and integral length scales have ex-
tended its application to complex flows. Alexander and Hamlington (2015) re-
ported detailed statistical measures of the turbulent environment vertical profiles 
of Reynolds stresses, two-point velocity correlations, and velocity structure func-
tions for understanding of localized loading of an ocean current turbine, in or-
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der to accurately predict turbine performance and durability [31]. Large eddy 
simulations (LES) of tidal boundary layers without turbines were used to meas-
ure the turbulent bending moments. The impacts of waves and tidal velocity, 
boundary layer stability and wind speeds on the strength of bending moments 
were analyzed. The results showed that both transverse velocity structure func-
tions and two-point transverse velocity spatial correlations can be used to pre-
dict and understand turbulent bending moments in tidal channels. 

Nowadays two-point velocity correlation function is a popular approach to 
understanding turbulent BL. Ganapathisubramani et al. (2005) conducted stereos-
copic particle image velocimetry (PIV) measurements in streamwise-spanwise and 
inclined cross-stream of a TBL at moderate Reynolds number ( ~ 1100Reτ ) [32]. 
Two-point spatial velocity correlations computed with a feature-detection algo-
rithm in the log-law region using the PIV data was used to identify packets of 
hairpin vortices. Both streamwise-streamwise, uuR , (see Figure 1) and stream-
wise-wall-normal, uwR , correlations present significant spatial coherence in the 
streamwise direction, such that the correlation coefficient extends further than 
1500 wall units (~1.5δ). Long streamwise correlations in uuR  were found dom-
inated by slower streamwise structures, since the streamwise streaks between 
zero crossings of 1500 wall units or longer occur more frequently for negative u 
than positive u. In addition, correlation of wwR  exhibits that the long stream-
wise slow-moving regions contain discrete zones of strong upwash over a large 
streamwise range, as might be present in packets of inclined hairpin vortices. At 
a wall-normal location over the log-law region ( 0.5z δ = ), the correlation 
structures have a shorter scale in the streamwise direction and a broader scale in 
the spanwise direction. Correlation of uuR  in the streamwise-spanwise plane is 
more elongated along the in-plane wall-normal direction than in the inclined 
cross-stream plane, in agreement with the presence of hairpin packets with a 
low-speed region lifting away from the wall. 

2.3. Cross-Correlations 

The cross-correlation coefficient is a measurement that tracks the fluctuations of  
 

 
Figure 1. (a) uuR  at the wall distance 92z+ = , (b) uuR  at the wall distance 0.5z δ = . 
The contour levels for uuR  range from −0.1 to 1.0 with increment of 0.1 [32]. 
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two variables or sets of data relative to each other. The two sets of variables can 
be velocity, vorticity, shear stress, and other variables in studying turbulence. If 
no other explanation, cross-correlations in turbulence study are usually used to 
measure to two time series at one spatial point of turbulence fields. 

Klewicki (1989) derived the momentum equations in vorticity form, relations 
between velocity-vorticity correlations and gradients of the Reynolds stresses are 
established for a two-dimensional turbulent channel flow [33]. With these rela-
tions, the approximate formulas and recently obtained experimental data allow 
for unmeasured velocity-vorticity correlation profiles to be deduced [34]. The 
results indicate that the contributions to the y gradient of uv  were most equally 
shared between zvω  and ywω , while the contributions to the normal stresses 
are dominated by the zuω  term. In addition, the fact that the measured 

3
zu uτν ω  profiles present little Reθ  variation implies that any Reθ  variation 

in the 2v  and 2w  gradients are caused by the variation of Reθ  in the corre-
lation involving xω .  

Later, Klewicki, Falco, and Foss (1990) used time-resolved measurements of 
the spanwise vorticity component, zω , to investigate the motions in the outer 
region of TBL [35]. The measurements were taken in very thick zero pressure 
gradient boundary layers ( 1010 ~ 4850Reθ = ) using a four-wire probe. An 
analysis of vorticity-based intermittency is reported near 0.6y δ =  and 0.85. 
The average intermittency is presented as a function of detector threshold level 
and position in the boundary layer. The spanwise vorticity signals were found to 
yield average intermittency values as large as previous intermittency studies. An 
analysis of zω  event durations conditioned on the signal amplitude was also 
performed. The results suggested that for decreasing Reθ , regions of sin-
gle-signed zω  increase in size relative to the boundary layer thickness, but de-
crease in size when normalized by inner variables. 

Two-point cross-correlations have been used to examine the influence of the 
complex boundaries on the near-wall vortices. Wang et al. (2019) applied the 
phase-resolved two-point cross-correlation between the wall shear stresses and 
streamwise vorticity to investigate numerically simulated turbulent flows over a 
wavy boundary with traveling-wave motion [36]. The correlation coefficient 
presents that near-wall streamwise vortices are closely associated with the wall 
shear stresses, and the magnitude of maximum correlation coefficient depends 
on the wave life time. As seen in Figure 2, the size of the correlation structures 
exhibits a remarkable variation with the wave phase for the case of slow traveling 
wave. When the wave is fast enough, the distribution of the correlation function 
recovers the manner similar with that in the flat-wall case. This method is ex-
pected to be applied to detecting near-wall streamwise vortices based on wall in-
formation in turbulent shear flows with complex boundaries. 

Guo and Li (2010) performed a two-dimensional DNS of an incompressible 
two-dimensional turbulent channel with spectral method to examine the relation 
between wall shear stress and near-wall vortices [37]. Two-point correlation be-
tween the spanwise vorticity and the wall shear stress was calculated to explore  
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Figure 2. Iso-surfaces of the two-point cross-correlation coefficient between the stream-
wise vorticity and the spanwise wall shear stress for 0.15

z x
Rτ ω =  (red) and −0.15 (blue), 

(a) flat wall, (b)   0mc U = , (c)   0.14mc U = , and (d)   1.4mc U =  [36]. 

 
the relation between these two variables. The results supported the notion that 
the wall shear stress is dominated by near-wall streamwise vortices.  

Some turbulent theories have also benefited from the cross-correlation tech-
nique. Deng et al. (2018) applied POD to two-dimensional PIV, together with a 
spatio-temporal coherence analysis to illustrate the downstream convection of 
the large-scale Q2/Q4 events, as the low-order signatures of the hairpin packets 
[38]. They applied the POD decomposition of the PIV-measured planar velocity 
fields, spatio-temporal correlation, and the combination of a POD-based low- 
order representation and two-point conditional correlation analysis to construct 
a statistical picture of vortex organization within a hairpin-packet. 

In acoustic research, cross-correlations have been applied to seek the location 
of the sound source. Oguma, Yamagata, and Fujisawa (2013) examined an expe-
rimental method for detecting aerodynamic sound sources from a bluff body in 
turbulent flow [39]. Measurements were carried out in the sound field emitted 
from the circular cylinder at Reynolds number 44 10Re = × . With the help of 
the measured instantaneous velocity field using particle image velocimetry com-
bined with the pressure Poisson equation, the pressure fluctuations around the 
circular cylinder were obtained. The sound pressure fluctuations were measured 
simultaneously by a microphone in the far field. The sound sources were then 
determined by cross-correlation of the pressure fluctuations on and around the 
flow field and the sound pressure fluctuations, consistent with the results in pre-
vious studies.  

In geophysical research, understanding and quantifying the multiscale inte-
ractions between surface shear stress and velocity in the boundary layer is im-
portant in modeling TBL with proper boundary conditions. Venugopal (2003) 
conducted high-frequency measurements in a wind tunnel to identify dominant 
scales of interaction between wind velocity and shear stress through wavelet 
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cross-correlation analysis [40]. The study provided way to estimate the linear 
correlation between shear stress and wind velocity at multiple scales and ex-
amine the reliability of boundary condition formulations in numerical models 
that compute shear stress as a linear function of wind velocity at the first vertical 
grid point. 

3. Velocity-Vorticity Correlation Structures (VVCS) 
3.1. Concept of VVCS 

Correlation structures, such as hairpins, streamwise vortices, are believed to be 
the carriers of transporting turbulent energy. Several well-known methods have 
been prevailed for identifying the correlation structures in TBL, including the 
conditional sampling [41], the dynamic mode decomposition [42], the proper 
orthogonal decomposition (POD) [43], and the quadrant splitting method [44], 
to mention a few. However, the results from these methods can be easily influ-
enced by the subjectiveness while determining the threshold value for the corre-
lation analysis. Another fact about the methods in analyzing wall bounded tur-
bulence is that enormous instantaneous flow fields are necessary for gaining a 
clear statistical description of turbulent structure. To handle the above issues, 
Chen et al. (2011, 2014) recently proposed a velocity-vorticity correlation struc-
ture (VVCS) method, with which the statistical CS can be easily extracted from 
turbulent shear flows [16] [45]. This method is meant to simplify the analysis of 
the wall-bounded and shear turbulence. In their study of compressible turbulent 
channel flows, the geometrical characteristics of the near-wall turbulence, such 
as the shape, the spanwise spacing, the streamwise length and the streak struc-
tures, were well achieved in a fairly straightforward way [16]. 

The concept of VVCS is constructed with high correlation regions in a field of 
two-point cross-correlation coefficient ijR  ( , 1, 2,3i j = ) of velocity compo-
nent iu  and vorticity component jω , as defined in Equation (3). While velocity 
fluctuation iu  at a reference location ry , the regions of ( ) 0; , ,ij rR y x y z R≥  
( 00 1R≤ ≤ ) define a set of VVCSij. The analysis of compressible turbulent channel 
flows showed that the VVCSij can accurately capture the geometrical features of 
near-wall CS, including spanwise spacing, the streamwise spacing and inclina-
tion angle of the quasi-streamwise vortices as well as the low-speed streaks 
[16].  

3.2. Topology of VVCS 

The VVCS illustrates the geometrical properties of three-dimensional vortical 
structure of wall-bounded turbulence. Figure 3 shows the shape of veloci-
ty-vorticity correlation structure of 11R  in an incompressible channel flow at 

180Reτ = . An inclined quadruple structure, with a pair of structures near the 
reference location ry+ , and the other pair of structures attached to the wall. The 
correlations of the different velocity/vorticity components have quite different 
geometrical properties, as listed in Table 1. The overview of the correlation  
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Figure 3. The iso-surface of the two-point cross-correlation coefficient for 11R  of an 
incompressible channel flow for 180Reτ = . The red surface is defined by the positive 

11 0.07R = − . The slices in the y-z plane show distribution of 11R  with the spacing of 
threshold of 11 0.07R = , and the blue surface is defined by the negative threshold of oth-
erwise. Note a topological change from (a) and (b) (four cigar-like elongated structures) 
Δ 200x+ = . The same threshold is used for identifying other VVCS unless mentioned to 
(c) (two blob-like structures): (a) 3.5ry+ = ; (b) 59ry+ = ; (c) 145ry+ =  [16].  

 
Table 1. Topology of VVCS near the wall ( 45ry+ < ). The subscripts ( ), 1,2,3i j =  in 

ijVVCS  denote x, y and z directions, respectively. 

 xω  yω  zω  

x Quadruple Horizontal Dipole Trident 

y Quadruple Horizontal Dipole Trident 

z Trident Twins Quadruple 

https://doi.org/10.4236/jfcmv.2019.74012


J. Chen 
 

 

DOI: 10.4236/jfcmv.2019.74012 164 Journal of Flow Control, Measurement & Visualization 
 

coefficient indicates that near-wall streamwise vortices are closely related to the 
near-wall shear stresses. In addition, the topology of a structure may vary with 
increasing the reference wall distance. For example, topological variation of 
VVCS11 from quadrupole to dipole at 110ry+ =  was observed in compressible 
channel flow [16], as shown in Figure 3. 

3.3. Spatial Relation between Structure Location and Reference  
Point 

What is consistently found in VVCS studies is that the major contributor to the 
velocity fluctuations at reference location near the wall is the CS well above them. 
For instance, the near-wall convection velocity (propagation speed) is shown to 
be determined by distant vortices ( 10sy+ > ) [25]. Pei et al. (2013) proposed the 
concept of limiting structure of VVCS, defined as the structure at 0ry =  [46]. 
The limiting VVCS as the streamwise vortical structure close to the wall was 
identified in numerical simulation data of compressible channel flows at the 
Mach number up to 3. A concrete Morkovin scaling summarizes all compressi-
bility effects on the channel flow. Particularly, when the height and mean veloci-
ty of limiting VVCS are taken as the reference scales to normalize the variables, 
all geometrical measures in the spanwise and normal directions, along with the 
mean velocity and fluctuation profiles come to be Mach-number-independent. 
The results were validated by DNS data. The authors also reported similarity so-
lution of the structure location sy  as a function of the reference location ry  
based on the wall density. The geometrical similarity of the structure location 
consolidates the rationality of the semi-local transformation [47]. More impor-
tantly, the location and the thermodynamic properties related to the limiting 
VVCS can be used to describe the Mach number effects on compressible wall- 
bounded turbulence.  

The Mach number effects on CS have attracted much attention in the studies 
on compressible turbulence. The Mach number dependence of length scale of CS 
in compressible channel flow at Mach numbers from 0.8 to 3.0 was investigated 
with VVCS [48]. Based on the notion of structure coordinate ( ),,s s sx y z , a set 
of scales characterizing the variation of topology structure at different Mach 
numbers were proposed in the study. It was shown that VVCS11 and VVCS12 are 
extensively stretched with increasing Mach number. Empirical relations of the 
length and spanwise spacing for the above two types of structures were suggested. 
It is noted that VVCS12 can be considered as the statistical structure of low-speed 
streaks. The geometrical features of VVCS are consistent with the results of 
Coleman et al. (1995) [49]. This study also suggested that the relationship be-
tween the characteristic scales of VVCS and the Mach number should be consi-
dered in performing numerical simulation of compressible flows, to affirm 
whether the large-scales can be properly simulated in the computation domain. 

The interpretation of the relationship between the statistical structure and the 
instantaneous structure is still an open question. Inclined “vortices” have been 
described as the eddies in boundary-layer eddies [50] and shear flows by sto-
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chastic estimation [13]. They are described as parts of local cascade structure 
and space-time correlations [24] [51]. However, it should be emphasized that the 
dimensions of the two-point velocity-vorticity correlations are much larger than 
those of individual vortices. The spacing between accompanying streamwise 
correlation structure (ASCS) of VVCS11 linearly increases from 35 to 75 wall 
units, with increasing the reference wall distance from 0 to 150. It should be 
noted that the low-speed streaks and the cross-flow vortices must be associated, 
and the difference in their size makes it difficult to describe them as parts of a 
single vortex.  

3.4. Physical Pictures of VVCS 

The length of a streamwise structure, ASCS11, decreases with increasing its 
wall-normal distance. It decreases from 500 to 150 wall units while the structure 
location sy+  moves from 15 to 150 wall units. There might be two reasons for 
these results: 1) the streamwise vortical motions becomes weak in the inertia re-
gion, and 2) three-dimensionality of the vortices are strengthened in the outer 
layer. Thus, a VVCS represents a statistical description of coherent motions. The 
VVCS analysis is a robust and efficient method for quantifying coherent mo-
tions in turbulent shear flows, and particularly suitable for extracting statistical 
geometrical measures using two-point simultaneous data from hotwire, particle 
image velocimetry, laser Doppler anemometry measurements and numerically 
simulated turbulent flows. 

The rather simplified scheme of Figure 4 is used to interpret the dynamics in 
the context of streamwise vortices with VVCS11. If the statistical structures are 
considered as instantaneous structures, low-speed fluid ejects in between two 
pairs of counter-rotating streamwise vortices, i.e. ASCS, and the near-wall cor-
relation structure (NWCS). This picture is consistent with the cause of genera-
tion of low-speed streaks. As mentioned in the previous section, the statistical 
structure may not exist in the instantaneous field, so the scenario of low-speed 
streak generation directly interpreted by statistical structures is not rigorous. 
However, comparing the results of the averaged structure and the energetic 
structures in the instantaneous turbulent flows might help understanding the 
formation of large-scale structures in turbulent flow. Accumulated evidence has  
 

 
Figure 4. Schematic graph of the sub-structures of VVCS11 and their dynamics near the 
cold wall.  
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suggested the existence of small-scale structures in the log-law layer and above, 
and they still contribute a significant part of turbulent kinematic energy. 

3.5. Applications of VVCS 

The VVCS is shown to reflect CS in different regions and thus can be used to il-
lustrate vortical motions in the inner and outer regions, e.g. the lift-up process in 
TBL [52]. Farano et al. (2018) applied VVCS to extract CS from the DNS of tur-
bulent channel flow and from the optimal perturbations at target time [53]. The 
VVCS was used to as the connection between the streamwise vortices and the 
velocity components. Particularly, the first component of the tensor, 11R , re-
flecting the correlation between streamwise vortices and streaks was utilized to 
identify the active lift-up regions. The quadruple structure characterized by 
elongated streaky structures was observed, indicating a strong correlation be-
tween flow at the reference point ry  and the near-wall coherent motions. This 
property of VVCS11 was found relevant to the lift-up mechanism, which was lat-
er confirmed by the presence of near wall streaks and streamwise coun-
ter-rotating vortices. With increasing ry , the correlation becomes much weaker 
to the wall, in terms of a dipole shape. Variation of statistical structure was ex-
plained as the appearance of bulge structures which is closely linked to the head 
of hairpin vortices, frequently observed in the outer region. As found in the 
study, the optimal perturbation at 180Reτ =  is characterized by a very similar 
correlation to the TBLs. It should be seen that the onset of a bulge occurs at 

100ry+ = , where hairpin vortices heads begin to lift up from the wall. In addi-
tion, for the case of the optimal perturbation at 180Reτ = , the NWCS of 
VVCS11 exists even the reference wall distance over 100 wall units. The connec-
tion between the near-wall region and the outer one during the bursting process 
revealed by VVCS is attributed to the hairpin vortices in constituting the optimal 
perturbation. 

The velocity-vorticity correlations were used to capture the CS in open chan-
nel turbulent flow, where visualization of structures is always challenging due to 
their multiscale and multi-layer natures. Bai et al. (2019) examined five types of 
methods for extracting CS in turbulent flow in the open channel, namely the 
Q-criterion, the vorticity, the Omega method, the VVCS method, and the Rortex 
method [54]. A DNS was performed to study the multi-layered flow structures 
under the free surface. The visualization results from the Q-criterion, the vortic-
ity, the Omega method and the Rortex were calculated. The turbulent flow layers 
near the free surface were analyzed with corresponding anisotropy indices. They 
also extracted the VVCS in various turbulence layers. Among the five methods, 
only VVCS can straightforwardly achieve the geometry information of the CS 
throughout the whole domain of the open channel. 

The VVCS analysis was used to reveal CS in a numerically simulated turbulent 
flow over a drag-reducing and a drag-increasing riblet configuration [55]. Im-
peding the spanwise movement of longitudinal vortices during the sweep events 
has been hypothesized to be a key mechanism for the turbulent drag reduction 
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with the riblets. However, no direct evidence demonstrates that the riblets are 
capable to impede the spanwise motions in TBL. Three-dimensional two-point 
statistics was employed to quantify the interaction of the riblet surfaces with the 
coherent, energy-bearing eddy structures in the near-wall region.  

Li and Liu (2019) measured geometrical properties of ASCS, e.g. the spanwise 
spacing zD , as the reference wall distance ry  varying from the wall to the lo-
garithmic region in the DNS of turbulent boundary layer [55]. Figure 5 shows 
that with the riblets the cores of the ASCS are closer to each other than those for 
flow over the smooth wall, and wider riblet spacing leads to more reduction of 
their spanwise spacings. This feature suggested that the riblets do impede the 
spanwise motions. Considering that the drag-increasing case is more effective to 
impede the spanwise motions, it may suggest that impeding the spanwise mo-
tions is not directly related with the drag reduction mechanism. Moreover, the 
linear function of ( )z rD y+ +  has a slope of 0.39 in comparison with that of 0.31 
in compressible turbulent channel flow [16]. 

Reference [55] confirmed that the ASCS exists above the NWCS and inclines 
away from the wall, similar to the prediction of Townsend’s attached eddy hy-
pothesis [2]. The authors found that the streamwise vortices (ASCS11) in the 
drag-reducing case are lifted up on the riblet tip, while in the drag-increasing 
case the streamwise vortices are implanted into the riblet cove. Since the region 
of high skin friction on the wall is mainly determined by the sweep motions of 
the streamwise vortices, the large area near the riblet tip occupied by ASCS11 in-
ducing high skin friction as being found in the drag-increasing case. Thus, the 
net drag is enhanced due to the increased drag near the riblet tip regardless of 
the drag reduction near the valley. In addition, the riblet surface tends to make 
the cores of streamwise vortices closer than that over the smooth wall, as shown 
in Figure 5. Wider riblet spacing is found to produce more drag reduction. In 
the cases with riblets the streamwise vortices have longer streamwise lengths, but  
 

 
Figure 5. Contours of 11R  at the cross-flow plane where rx x=  as ry  approaches 0. 
The crosses “+” mark the positions of the reference points. (a) Baseline; (b) S-20, the ref-
erence point locates above the riblet tip; (c) S-40, above tip; (d) S-20, above valley; (e) 
S-40, above valley. Discussion of the figure is referred to [55]. 
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their inclination angles do not change much. According to the transient growth 
(STG) theory, the NWCS of VVCS11 is meant to be dominated by the internal 
shear layers (or vorticity sheets) and represents an averaged motion of near-wall 
vortices. In the cases with riblets, the spanwise size of NWCS is influenced by the 
inhomogeneous distribution of the wall surfaces. As ry  increases, the NWCS 
remains attached to the wall until it disappears when 130ry+ > . 

The statistical CS in terms of VVCS quantitatively reveal the interaction be-
tween riblets and the near-wall vortical structures, enabling one to have an in-
sight into the drag reduction mechanism. The lift-up of the ASCS in the riblet 
case was illustrated through examining the wall-normal distance of ASCS cores 
against the reference wall distance, ( )y rD y , showing that yD  in the riblet case 
at 0.1r refy δ <  is higher than that in the smooth wall case, and no distinct 
variation of yD  at 0.1r refy δ >  was observed for all configurations of inter-
est.  

4. Concluding Remarks 

The information in turbulent fields at two points and two times has extensively 
improved our understanding of the physics of turbulent flow in recent years. 
The major new achievement is that turbulence contains a remarkable degree of 
order. It can be expressed statistically in space-time correlations, in both Eule-
rian and Lagrangian frames of reference, which play a critical role in theories of 
turbulence. Approximately sixty years have passed since the earliest observations 
of coherent motions in TBL, but progress in applying these techniques to engi-
neering is rather slow and the connection to a computational fluid model is still 
elusive. Recently, statistical structures based on velocity-velocity, velocity-vortici- 
ty, and other cross-correlations of other variables have shown their merits of 
quantifying coherent motions in turbulence. Such correlations as a type of expe-
rimental and numerical data analysis that have been, and will be, widely used in 
investigation of various types of turbulent flows.  
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Nomenclature 

Ma  Mach number 

ER  Eulerian correlation coefficient 

LR  Lagrangian correlation coefficient 

ijR  two-point correlation coefficient of iu  and jω  ( , 1, 2,3i j = ) 

Re  Reynolds number 

Reτ  Reynolds number defined with the friction velocity 

Reθ  Reynolds number defined with the momentum loss thickness of  
turbulent boundary layer 

t time (s) 

U mean velocity (m∙s−1) 

CU  propagation speed (m∙s−1) 

( )1 2 3, ,u u u  or ( ), ,u v w  velocity components in the streamwise, wall normal and spanwise 
directions, respectively (m∙s−1) 

( )1 2 3, ,x x x  or ( ), ,x y z  coordinates in the streamwise, wall normal and spanwise directions, 
respectively (m) 

δ  thickness of turbulent boundary layer (m) 

ν  kinematic viscosity (m2∙s−1) 

φ  or ψ  fluctuations of a variable or component 

( )1 2 3, ,ω ω ω  or ( ), ,x y zω ω ω  vorticity components in the streamwise, wall normal and spanwise 
directions, respectively (s−1) 

Subscripts  

i or j coordinate indices, ( , 1, 2,3i j = ) 

r reference point 

x, y, z coordinate indices for the streamwise, wall normal and spanwise  
directions, also represented by 1, 2 and 3, respectively 

Superscripts  

+ normalized with wall units 
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