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Abstract 
Numerical study is performed to investigate the swirling flow around a rotating disk in a cylin-
drical casing. The disk is supported by a thin driving shaft and it is settled at the center of the cas-
ing. The flow develops in the radial clearance between the disk tip and the side wall of the casing 
as well as in the axial clearance between the disk surfaces and the stationary circular end walls of 
the casing. Keeping the geometry of the casing and the size of the radial clearance constant, we 
compared the flows developing in the fields with small, medium and large axial clearances at the 
Reynolds number from 6000 to 30,000. When the rotation rate of the disk is small, steady Taylor 
vortices appear in the radial clearance. As the flow is accelerated, several tens of small vortices 
emerge around the disk tip. The axial position of these small vortices is near the end wall or the 
axial midplane of the casing. When the small vortices appear on one side of the end walls, the flow 
is not permanent but transitory, and a polygonal flow with larger several vortices appears. With 
further increase of the rotation rate, spiral structures emerge. The Reynolds number for the onset 
of the spiral structures is much smaller than that for the onset of the spiral rolls in rotor-stator 
disk flows with no radial clearance. The spiral structures in the present study are formed by the 
disturbances that are driven by a centrifugal instability in the radial clearance and they are pene-
trated radially inward along the circular end walls of the casing. 
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1. Introduction 
Flows around a rotating body and swirling flows around a stationary body give simple but important phenomena 
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including Kármán flow, Bödewadt flow and Taylor vortex flow, and they have engaged historical interests in 
theoretical, experimental and numerical studies. The cylindrical rotor-stator cavity flow is the flow between a 
rotating disk and a stationary disk enclosed by an outer casing, and it presents one of the three-dimensional cross 
flow models [1] [2]. The rotation of the disk makes an Ekman layer on the rotating disk and a Bödewadt layer 
on the stationary disk. With an increase of the rotation rate of the disk, various flow patterns appear [3], and the 
development of the flow has been investigated by experimental [4] and theoretical [5] approaches. In case of a 
narrow axial clearance [6], the first instability of circular waves appears in the boundary layers on the rotating 
and the stationary disks, and the secondary instability of the spiral rolls emerges via Hopf bifurcation. Then, the 
solitary waves and the flows including turbulent spots appear. When the axial clearance is wide, the boundary 
layers are separated and the basic flow has a core region. In this flow, transitions appear through circular rolls, 
spiral rolls and wavy turbulence [7]-[9]. Two types of instabilities appear: type I instability based on the inflec-
tion of the velocity profile, which initializes spiral rolls at higher rotation rate, and type II instability concerned 
with the Coriolis force and viscous force, which promotes circular waves and spiral rolls at lower rotation rate 
[10]. When the axial clearance is very wide and it is comparable with the radii of the rotating and stationary 
disks, the axial flow becomes dominant and the vortex breakdown phenomena may emerge [11]. 

Rotating flows can be found in fluid machinery and chemical reactors and they are examined to improve their 
performance [12]. When the flow around a rotating disk in a cylindrical casing represents a model of the flow in 
hard disk drives and stirrers, the radial clearance between the disk tip and the side wall of the casing is inevitable. 
Schouveiler et al. [13] implied that the radial clearance bores new spiral flows. Al-Shannag et al. [14] numeri-
cally examined the flow around corotating two disks connected by a central hub and showed the effect of the 
velocity fluctuation in the radial clearance on the interdisk flow. Hendriks [15] predicted a more realistic flow in 
a hard disk drive. He obtained Taylor vortices formed between the rotating disk and the side wall of the casing 
and found the jet-like radially outward flow on a rotating disk. Washizu et al. [16] examined the effect of a rib 
mounted on the sidewall of the casing and estimated the pressure fluctuation on the rotating disk. In these stu-
dies, while the characteristics of the unsteady flows were predicted, the effect of the rotation rate and the geo-
metrical size of the disk were not clear. When the thickness of the rotating disk is comparable to the axial length 
between two circular end walls of the casing, the flow system in the radial clearance turns to Taylor-Couette 
system where the rotating disk corresponds to the inner cylinder. In Taylor-Couette system, the finiteness of the 
cylinder length breaks the idealization of axial periodicity of the dynamical structure in the flow [17] [18]. This 
means, even in the flow around a rotating disk, the end-wall effect on the onset and the development of Taylor 
vortices is one of the interesting topics of this flow. Watanabe and Furukawa [19] [20] numerically and experi-
mentally investigated the flow around a rotating disk confined in a cylindrical casing. The disk driven by a thin 
shaft is settled at the center of the casing, and the flow field is symmetric with respect to the radial, azimuthal 
and axial directions. The radius of the disk is smaller than the inner radius of the casing. In the radial clearance 
between the disk tip and the side wall of the casing, the centrifugal instability causes flow disturbances and 
wavy flow appears. Several details about the effect of the radial clearance on the flow structure were numerical-
ly investigated by some of the authors [21]. 

In this study, we estimate the effect of the axial clearance (aspect ratio) and the rotation rate. The sizes of the 
outer casing and the radius of the disk are fixed, and three disks with different thicknesses are introduced in or-
der to adjust the aspect ratio. The flow fields with these disks show systematic development of flow structures, 
as well as structures special to each field. 

2. Geometrical Model and Formulation 
The schematic sketch of the flow field is shown in Figure 1 where the dimensionless sizes mentioned below are 
introduced. In the experiments we have assumed, the radius (Rd) and the thickness of the disk are 0.127 m and 
0.03 m, respectively, and the inner radius and the height of the outer casing are 0.142 m and 0.04 m, respectively. 
The disk has a driving shaft of radius of 0.01 m at its center. The disk is placed at the center of the casing, and 
the axial clearance and the radial clearance are 0.005 m and 0.015 m, respectively. Two more disks with thick-
nesses of 0.032 m and 0.028 m are used. The angular velocity of the disk and the driving shaft is Ω. The refer-
ence velocity is the azimuthal velocity component at the tip of the rotating disk ΩRd and the reference length is 
the radius of the rotating disk Rd. All physical variables are made dimensionless by these reference values. The 
coordinate system is a cylindrical system (r, θ, z), and its origin O is at the center of the lower end wall disk of  
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rc = 1.1181, rd = 1.0, rs = 0.0787, hc = 0.3150 

Disc 32: hd = 0.2520, hl = hu = 0.0315 
Disc 30: hd = 0.2362, hl = hu = 0.0394 
Disc 28: hd = 0.2205, hl = hu = 0.0472 

Figure 1. Schematic sketch of the flow field and the coordinate sys-
tem. The lengths are normalized by the disk radius of 0.127 m.         

 
the casing. For the disks of thicknesses of 0.032 m, 0.030 m and 0.028 m, the aspect ratios Γ defined by the frac-
tion of the dimensionless axial clearance hu (=hl) to the dimensionless disk radius rd are 0.0315, 0.0394 and 
0.0472, respectively. Schouveiler et al. [3] have noted that these aspect ratios are intermediate and the basic flow 
between the rotating disk and the stationary disk is a mixed basic flow. The rotating hub (shaft) at the disk center 
increases the velocity fluctuations [22], while the stationary hub decreases the fluctuation [23]. The effect of the 
central hub on the flow is estimated by the curvature parameter. In this paper, the curvature parameter defined 
by ( ) ( )d s d sr r r r+ −  is evaluated as 1.171. Poncet et al. [10] investigated the effect of the rotating hub on the 
flow. From their result, this value of the curvature parameter remains small enough and it does not have an in-
fluence on the critical Reynolds numbers for the onsets of circular waves and spiral rolls. 

The discretization method is based on the finite difference method and the details of the numerical method 
can be found in our previous paper [19]. The Navier-Stokes equations and the equation of continuity are 

( )T 1
Re

p
t

∂
+∇ = −∇ + ∆

∂
u uu u ,                               (1) 

0∇⋅ =u                                         (2) 
where t is the time made dimensionless by 1/Ω, u is the velocity vector with its radial component u, azimuthal 
component v and axial component w, p is the pressure and Re is the Reynolds number defined by 2

dR νΩ , 
where ν is the kinematic viscosity of the fluid. The staggered grid is adopted, and no singularity at the corners 
between moving and stationary boundaries appears. 

The boundary conditions are given by the following equations: 
On the inner stationary side of the casing 

0,   0,   0,   0 ,   0s cu v w p z r r r z= = = ∂ ∂ = ≤ ≤ =                    (3) 

0,   0,   0,   0 ,   0c cu v w p r r r z h= = = ∂ ∂ = = < <                    (4) 

0,   0,   0,   0 ,   s c cu v w p z r r r z h= = = ∂ ∂ = ≤ ≤ =                   (5) 

On the rotating shaft and the rotating disk 
0,   ,   0,   0 ,   0s d s lu v r r w p r r r z h= = = ∂ ∂ = = < <                   (6) 

0,   ,   0,   0 ,   d s d lu v r r w p z r r r z h= = = ∂ ∂ = ≤ ≤ =                   (7) 

0,   1,   0,   0 ,   d l l du v w p r r r h z h h= = = ∂ ∂ = = < < +                 (8) 

0,   ,   0,   0 ,   d s d l du v r r w p z r r r z h h= = = ∂ ∂ = ≤ ≤ = +                (9) 

0,   ,   0,   0 ,   s d s l d cu v r r w p r r r h h z h= = = ∂ ∂ = = + < <                (10) 

Initially, the flow is at rest and the disk is suddenly begins to rotate at a prescribed Reynolds number at t = 0. 
The flow is observed in the axial section (i.e. (r, θ) plane), radial section (i.e. (θ, z) plane) and azimuthal sec-

tion (i.e. (r, z) plane). The vortex structure of the flow is represented by the contour of the normalized helicity, 
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nH ⋅
=

u
u

ω
ω

                                   (11) 

where ω is the vorticity vector. 

3. Flow Patterns 
In this section, we mainly show the result of the flow at Γ = 0.0394. 

3.1. Steady Vortex Flow in the Radial Clearance (Re = 6300) 
When the Reynolds number is low, Taylor vortices appear in the radial clearance between the rotating disk tip 
and the side wall of the casing.  

Figure 2 shows the contour of the helicity of the flow at Re = 6300. Figure 2(a) represents the flows at dif-
ferent times in the (r, θ) plane. The axial position z is 0.00984 and it is close to the lower stationary end wall of 
the casing. The central red circle denotes the driving shaft and the yellow region surrounding the shaft corres-
ponds to the rotating disk. The disk is rotating in the counterclockwise direction. The flow at t = 60 is under de-
velopment and its flow pattern is not axisymmetric. Figure 2(b) depicts the helicity in the (θ, z) plane. The azi-
muthal direction is horizontal. The radial position r is 1.10 and it is just inside of the side wall of the casing. 

 

 
t = 60                     t = 300 

(a) 

 
t = 60 

 
t = 300 

 
−0.80          0.80 

(b) 

 
t = 60                     t = 300 

(c) 

Figure 2. Contour of the helicity at Γ = 0.0394 and Re = 6300. (a) Flow in the (r, θ) plane 
at z = 0.00984; (b) Flow in the (θ, z) plane at r = 1.10; (c) Flow in the (r, z) plane at θ = 0.0.  
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While the flow at t = 60 fluctuates in the azimuthal direction, the flow at t = 300 is well formed. Figure 2(c) 
shows the helicity in the (r, z) plane, where the radial clearance appears at the right side. In this figure, the warm 
color regions and the cold color regions represent the vortices rotating in the clockwise and counterclockwise 
directions, respectively. 

After the sudden start of the disk rotation at t = 0, the flow at t = 60 is under development and the profile of 
the helicity exhibits its variation in the radial and azimuthal directions, and the flow pattern becomes axisymme-
tric by t = 300 (Figure 2(a)). This axisymmetric pattern was kept well beyond t = 400 and it was a final state. 
The azimuthal variation is also seen at t = 60 in Figure 2(b). At t = 300 in Figure 2(b), four straight bands (blue, 
red, blue and red from top to the bottom) appear, which correspond to four vortices formed in the radial clear-
ance shown in Figure 2(c). In the rotor-stator flow system without the radial clearance, the Reynolds number for 
the onset of the flow instability is estimated 50,000 [3] and it is much higher than 6300 in Figure 2. This fact 
shows that the instability causing the vortex flow in the radial clearance is based on the different mechanism 
from that in the rotor-stator flow. 

3.2. Transition from Bead-Like Flow to Polygonal Flow (Re = 7000) 
When the Reynolds number is higher, a periodic pattern in the azimuthal direction appears in the fully devel-
oped flow. Figure 3 gives the flow at Re = 7000. Figure 3(a) shows the flow just below the rotating disk. At t = 
70, small vortices (about thirty) periodically align in the azimuthal direction. In this paper, the flow with a series  

 

 
t = 70                     t = 230 

(a) 

 
t = 70 

 
t = 230 

 
−0.80          0.80 

(b) 

 
t = 70, θ = 0.449             t = 230, θ = 0.823        

(c) 

Figure 3. Contour of the helicity Hn at Γ = 0.0394 and Re = 7000. (a) Flow in the (r, θ) 
plane at z = 0.0374; (b) Flow in the (θ, z) plane at r = 1.09; (c) Flow in the (r, z) plane.    
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of these small vortices is named as a bead-like flow. The bead-like flow at this Reynolds number is not stable 
but it is transitory. The small vortices around the disk merge with each other at t = 120 to 200 and another stable 
state appears. The flow at t = 230 has polygonal (heptagon) flow around the disk tip. 

The flow in the (θ, z) plane is shown in Figure 3(b). The vortex structure appears on one side of the end walls 
of the casing (in this case, the lower side of the casing), and the flow is not symmetric in the axial direction even 
though the geometrical configuration is symmetric. The spatial variation on one side of the end wall is also 
found in the (r, z) plane of the radial clearance in Figure 3(c). At t = 70, three main vortices emerge in the radial 
clearance. In addition to these three vortices, the lowest thin end vortex (the warmer color region at the corner 
between the side wall and the bottom end wall of the casing) appears, which is almost collapsed by the counter-
clockwise rotating vortex (the cold color region above the lowest end vortex). Along the boundary between 
these two vortices, where the bead-like pattern in Figure 3(a) appears, the flow is radially outward. The col-
lapsing motion appears periodically in the azimuthal direction and it results in the formation of the bead-like 
flow. When the polygonal flow appears at t = 230, the amplitude of the deformation motion becomes large. 

The counterclockwise rotating vortex causes radially outward flow near the bottom end wall. In Taylor- 
Couette system with finite cylinder length, the vortex with radially outward flow on the end wall is denoted as 
an anomalous vortex and the existence of the anomalous vortex explains one of the reasons why multiple flow 
modes appear [24]. In this study, the transition from the bead-like flow to the polygonal flow took place when 
the anomalous vortex emerged only on one side of the end walls of the casing. The polygonal flow with several 
vortices was also found in the flow between corotating disks with a central hub [25] [26]. These vortex flows 
have much larger flow structures than those found in the present study. 

3.3. Steady Bead-Like Flow (Re = 8000) 
Figure 4 shows the steady bead-like flow at Re = 8000, which does not transit to another flow pattern. This type 
of the steady bead-like flow has also been found experimentally [19]. In Figure 4(a), the axial positions z = 
0.0374 and 0.278 are just below and just above the rotating disk, respectively. The bead-like flow with thirty  

 

 
z = 0.0374              z = 0.278 

(a) 

 
 

−0.30              0.30 

(b) 

 
(c) 

Figure 4. Contour of the helicity Hn at Γ = 0.0394 and Re = 8000. (a) Flow in the (r, θ) 
plane; (b) Flow in the (θ, z) plane at r = 1.09; (c) Flow in the (r, z) plane at θ = 0.335.     
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small vortices appears around the disk tip. In Figure 4(b), azimuthal variations of the helicity appear along the 
lower and upper end walls. The structure of this bead-like flow is two layered and it is symmetric in the axial 
direction. This structure is different from that of the transitory flow at t = 70 in Figure 3(a). 

In the radial clearance, two main vortices appear as shown in Figure 4(c), and the flow is radially inward at 
the boundary between main vortices. Another two small vortices emerge at the corners between the side wall 
and the end walls of the casing. The flows between the main vortices and the small vortices are radially outward 
and the bead-like flow appears near their boundaries. The azimuthal change of these boundary positions makes 
the flow structure depicted in Figure 4(b). 

3.4. Coexistence of Bead-Like Flow and Spiral Structures (Re = 12,000) 
While the flow is radially outward in the Ekman layer on the rotating disk, the flow is radially inward in the 
Bödewadt layer on the stationary end wall of the casing. 

As the Reynolds number increases further, new flow structures appear around the disk tip. Figure 5 shows the 
flow at Re = 12,000. Figure 5(a) represents the flows at the axial positions near the bottom end wall of the cas-
ing (z = 0.00984) and below the surface of the rotating disk (z = 0.0374), respectively. Near the end wall, the 
bead-like flow develops just inside of the side wall of the casing. The spiral structures (small red triangle regions) 
appear around the disk tip. Though the one to one correspondence between the spiral structure and the small 
vortex in the bead-like flow is expected, the numbers of the spiral structures (28) is smaller than that of the small 
vortices (30). This inconsistency suggests that the flow is not yet well developed and it may still be in a transient 
state. 

The two layered bead-like flow in Figure 5(b) is less coherent than that in Figure 4(b), while the flow direc-
tions are similar in Figure 4(c) and Figure 5(c). 

 

 
z = 0.00984              z = 0.0374 

(a) 

 

 
(b) 

 
(c) 

Figure 5. Contour of the helicity Hn at Γ = 0.0394 and Re = 12,000. (a) Flow in the (r, 
θ) plane; (b) Flow in the (θ, z) plane at r = 1.09 and t = 300; (c) Flow in the (r, z) 
plane at θ = 0.860 and t = 300.                                                       
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3.5. Spiral Structures (Re = 20,000) 
At much higher Reynolds number, the well-formed bead-like flow decays and the spiral structures extending 
toward the center of the disk are established. As an example of this flow, Figure 6 shows the structure at Re = 
20,000. When the flow is visualized with the contour level from 0.3 to 0.5, the spiral structure with negative 
front angles is well formed. However, when the value of the helicity is from 0.0 to 0.3, no clear spiral structure 
is found and the coherent structure is not well extracted. 

3.6. Bead-Like Flow near the Midplane at the Aspect Ratio of 0.0315 (Re = 10,000) 
When the disk is thicker and the aspect ratio Γ is 0.0315, one layered bead-like flow appears. Figure 7 presents 
the flow at Re = 10,000. Figure 7(a) shows that twenty two small vortices appear around the disk tip. The axial  

 

 
Figure 6. Contour of the helicity Hn in the (r, θ) plane at Γ = 0.0394, Re = 20000, z = 
0.00984 and t = 300.                                                        

 

 
(a) 

 

 
(b) 

 
(c) 

Figure 7. Contour of the helicity Hn in plane at Γ = 0.0315 and Re = 10,000. (a) Flow 
in the (r, θ) plane at z = 0.0156; (b) Flow in the (θ, z) plane at r = 1.03; (c) Flow in the 
(r, z) plane at θ = 0.224 and t = 300.                                                 
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position where these small vortices emerge is around the midplane in the axial direction (around z = 0.156 in 
Figure 7(b)). This axial position is different from the positions of the small vortices in Figure 4(b). This flow 
includes two Taylor vortices in the radial clearance. Their boundary is near the axial midplane and the flow is 
radially outward there (Figure 7(c)). 

4. Flow Pattern Diagram 
The Reynolds number dependences of the flow patterns at Γ = 0.0315, 0.0394 and 0.0472 are shown in Figure 8. 
In the diagrams, the blue lines and the red lines denote the lower bound and the upper bound of the Reynolds 
numbers that restrict the ranges where constant flow patterns appear. Please note that these lines are not plotted 
proportionally on the Reynolds number coordinate. 

Figure 8(a) represents the diagram at Γ = 0.0315. When the Reynolds number (Re) is below 8200, a steady 
vortex flow with Taylor vortices appears in the radial clearance. In the present study, the lower limit of the 
Reynolds number for the onset of the Taylor vortices is not estimated because the axial lengths of the disk and 
the casing are too short to distinguish the Taylor vortices from the vortices intruded by the Ekman effect. The 
two layered bead-like flow is found at the Reynolds number from 8300 to 9700. The one layered bead-like flow 
in Figure 7(b) appears for 9800 ≤ Re ≤ 14000. The coexisting flow of the bead-like flow and the spiral struc-
tures do not appear at Γ = 0.0315. Instead the spiral structures are confirmed at least up to Re = 30,000. 

The diagram at Γ = 0.0394 is shown in Figure 8(b). The lower critical value for the onset of the transitory 
bead-like flow is between 6400 and 6500. At the Reynolds number above 7400, the two layered bead-like flow 
appears. This flow does not transit to another flow pattern. For 10,000 ≤ Re ≤ 18,000, spiral structures elongat-
ing radially inward emerge and they coexist with the two layered bead-like flow. At 19,000 ≤ Re, the bead-like 
flow ceases and the spiral structures dominate the flow field. 

 

 
Figure 8. Flow pattern diagrams at Γ = 0.0315 (a), 0.0394 (b) and 0.0472 (c).                                     
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The flow patterns at Γ = 0.0472 is depicted in Figure 8(c), where the disk is thin and the axial clearance is 
large. As the Reynolds number increases, the basic Taylor vortices and two layered bead-like flow appear. The 
bead-like flow coexists with the spiral structures for 8600 ≤ Re ≤ 17,000. The spiral structures expand at the 
Reynolds number beyond 18,000. 

A systematic transition with the increase of the Reynolds number is found at all aspect ratios. First, Taylor 
vortices emerge in the radial clearance. Then, the bead-like flow appears, which has two layered structure con-
sisting of small vortices near the end walls of the casing. At the higher Reynolds number, the flow has spiral 
structures around the disk tip. Some of the flow patterns such as the bead-like flow and the polygonal flow are 
also found in our experimental investigations [19] [20]. However, the transition mechanism is still unclear and it 
is one of the future studies. 

The flow at Γ = 0.0394 contains the bead-like flow that has a vortex structure on one side of the end walls and 
transits to the polygonal flow. The bead-like and polygonal flow has an asymmetric structure in the axial direc-
tion and it appears at the relatively narrow range of the Reynolds number from 6500 to 7300. These flows are 
obtained from the numerical results of the governing equations. In experiment, these flows may be established, 
for example, by adjusting the acceleration ratio of the flow [27]. 

At the aspect ratios of 0.0315, 0.0394 and 0.0472, the numerically estimated Reynolds numbers for the onset 
of the two layered bead-like flow are 8300, 7400 and 6900, respectively, and the Reynolds number for the onset 
of the spiral structures are 15,000, 10,000 and 8600, respectively. That is, as the aspect ratio increases and the 
axial clearance widens, the flow tends to be unstable. This is supported by the fact that the upper limit of the 
Reynolds number for the spiral structures, above which the flow turns out to be turbulent, also becomes smaller 
with the increase of the aspect ratio. 

In the enclosed rotor-stator flow with no radial clearance, the Reynolds numbers for the onset of the first un-
steady instability of spiral rolls are 70,000, 50,000 and 40,000 for the aspect ratios Γ of 0.0315, 0.0394 and 
0.0472, respectively [3]. These values are an order of magnitude greater than the values for the two layered 
bead-like flow. Therefore, it can be said that the instabilities such as the Type I and Type II in the rotor-stator 
flow [22] are different from the instability of the flow in the present study. When the rotating disk and the casing 
are regarded as an inner cylinder and an outer cylinder, respectively, the flow around the rotating disk makes 
Taylor-Couette system governed by the centrifugal instability. In the Taylor-Couette system with infinite cy-
linders, the outer to inner radius ratio is used to estimate the critical Reynolds numbers for the onset of steady 
Taylor vortices [28] and wavy Taylor vortices [29]. The radius ratio in the present study is 0.894, and the critical 
Reynolds numbers for the steady and wavy Taylor vortices are about 1100 and 1200, respectively. This supports 
that the instability of the flow with the radial clearance originates from the centrifugal instability. 

5. Conclusion 
The flow around a rotating disk with axial and radial clearances has been investigated by a numerical approach 
for three sizes of disk thickness. The effect of the aspect ratio and the Reynolds number on the flow patterns, 
and the development scenario have been examined. The range of the Reynolds number is from 6000 to 30,000. 
When the Reynolds number is small, Taylor vortices appear in the radial clearance between the rotating disk tip 
and the side wall of the outer stationary casing. Then, the bead-like flow consisting of a series of small vortices 
around the disk appears. The two-layered bead-like flow has vortex structures on the both end walls of the cas-
ing. The critical Reynolds number for the onset of the two layered bead-like flow increases as the axial clearance 
becomes narrower. Other than this bead-like flow, two kinds of the bead-like flows are found. The one is the 
flow that has a vortex structure only on one side of the end walls of the casing. This flow tends to transit to a 
polygonal flow. This axially asymmetric flow is found at the Reynolds number lower than that for the two- 
layered bead-like flow. The other is the flow that includes a vortex structure along the axial midplane. The axial 
position where the bead-like flow appears is near the boundary of the vortices in the azimuthal plane, where the 
flow is radially outward. As the Reynolds number further increases, spiral structures are formed around the disk 
tip. The Reynolds number for the appearance of the spiral structures is an order of magnitude smaller than the 
Reynolds number for the onset of the spiral rolls in the rotor-stator flow. 
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Nomenclatures 
hc:  Casing thickness made dimensionless by Rd       (-) 
hd:  Disk thickness made dimensionless by Rd       (-) 
hl, hu:  Dimensionless lower and upper axial clearances, hl = hu = (hc − hd)/2  (-) 
Hn:  Normalized helicity            (-) 
p  Pressure made dimensionless by ρ(Ω Rd)2       (-) 
r:  Radial coordinate made dimensionless by Rd       (-) 
rc:  Inner radius of the casing made dimensionless by Rd     (-) 
Rd:  Disk radius = 0.127            (m) 
rd:  Radius of the disk made dimensionless by Rd = 1.0      (-) 
rs:  Radius of the driving shaft made dimensionless by Rd     (-) 
t:  Time made dimensionless by 1/Ω         (-) 
u:  Velocity vector with components u, v and w made dimensionless by ΩRd  (-) 
z:  Axial coordinate made dimensionless by Rd       (-) 
Γ:  Aspect ratio = hu/rd            (-) 
ν:  Kinematic viscosity of the working fluid        (m2/s) 
θ:  Azimuthal angle            (-) 
ρ:  Density of the working fluid    (kg/m3) 
Ω:  Angular velocity of the disk and the driving shaft      (1/s) 
ω:  Vorticity vector made dimensionless by Ω       (-) 
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