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Abstract 

This work presents the results of the Radon (220Rn and 222Rn) measurements 
made with 486 chips of CR-39 (Allyl Dyglicol Poly Carbonate) MASL™ bared 
detectors, in a reticular mode distribution, inside of a cellar with average in-
door radon concentration 862 ± 49 Bq/m3. The exposure time was 3 months, 
in microclimate condition of constant temperature, humidity, barometric 
pressure and no airflow. After these 3 months, all the detectors were chemically 
etched in KOH 6.25 M solution at 60˚C ± 1˚C for 18 hours, following a very 
well established protocol for indoor radon survey by the Dosimetry Applica-
tions Laboratory of the Physics Institute of the National Autonomous Univer-
sity of Mexico, and later read automatically by CADIS (Counting Automatically 
Digital Image System). The results show that each one of the nine measured 
planes is not homogeneous presenting important differences of indoor radon 
concentration values. Specifically, the Radon (220Rn and 222Rn) concentration 
levels vary for each measured point within the cellar. It is a very important ob-
servation to consider for the calculation of dose and radiological risk. 
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1. Introduction 

It is very well known that radiation exposure originating from radon inhalation 
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(220Rn, 222Rn, and short-lived decay products or progeny) is almost half of the 
natural radiation, and significant indoor radon concentrations can cause lung 
cancer occurrence; therefore its evaluation deserves particular attention in order 
to minimize the radiological risk to the population [1] [2] [3] [4] [5].  

The measurement of indoor radon is an art, because the radon distribution in 
a room depends on many factors, as has been determined in several studies 
[6]-[11]. Some of these factors are: location, size and shape or the dwelling, con-
struction materials, ventilation system, and ventilation habits, architecture style, 
environmental temperature and measurement place temperature, humidity, type 
and distribution of objects or furniture inside a room, among others. All these 
factors make the radon measurements in each place unique.  

Because of the radon concentration, data obtained are the basis for calculation 
of the dose and risk of cancer and the public health. Therefore, the efforts of the 
analysis and measurements of radon should be exhaustive and very accurate 
[12]. The aim of this study is to measure the radon concentration distribution 
inside of a microclimate-controlled condition cellar, using 486 chips of bared 
CR-39 Nuclear Track Detectors (NTD) distributed in a reticular mode. 

Location 

The zone where is located the house and the underground cellar, under study, is 
shown in Figure 1. It is a residential area in the south part of Mexico City, with 
medium population density (3960 habitants per km2) with in general, sin-
gle-family houses. This zone is close to the volcanic chain called “Ajus-
co-Chichinautzin Sierra”, has a semi-tropical climate, and it is surrounded by 
forest and national parks. As complementary information, the National Auto-
nomous University of Mexico campus, with more than 349,515 students and 
40,578 academics [13], is located in this area, too. 
 

 
Figure 1. Location of the underground cellar, In the Xitle volcano area. 
(https://www.google.com/maps/) 
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The cellar with microclimate conditions studied is underground, inside of the 
lava of the extinct, 1600 years ago, “Xitle” volcano (from Nahuatl “Xictli” that 
means “belly button”) with the coordinates 19˚12'N 99˚15''W, and to 2300 me-
ters above sea level. This area has and high seismicity activity all the year round. 
The house and the underground cellar are shown in the plane of Figure 2. 

2. Methodology 

The measurements of radon concentration inside a cellar, were made with a re-
ticular grid, with 9 × 6 detectors in each of the 9 planes, from the top to the bot-
tom of the cellar, as can be observed in Figure 3. 

The cellar dimensions are 6.0 × 2.2 × 2.3 meters (length, width and height) 
with a total volume of 30.36 m3. The total exposure time to indoor radon and 
thoron was 3 months, with a main concentration of 862 Bq/m3 value measured 
along a year with two active certified monitors: the AlphaGUARD model D-2000 
and the Durridge Rad-7 [14], as is shown in Figure 4. The two times of opening 
the door can be observed in the discontinuities in Figure 4. The room is under-
ground, below the house construction, surrounded by volcano rocks (lava) from 
an extinct volcano in Mexico. The material has high porosity and can keep in 
radon gas, plus constant radon emanation from the volcanic ground. This room 
location characteristics made the microclimate conditions of the cellar, as radon 
(220Rn and 222Rn) concentration, indoor temperature, relative humidity, and ba-
rometric pressure constants. Figure 5 and Figure 6 show the measured data 
during 3 months of exposure to radon inside the room. The ventilation is very 
poor because the room remains closed during this time. The small door at the top 
was opened only two times in order to review the data and monitor operation.  

3. Chemical Etching and Its Readout Process 

After the 3 months of exposure time, the detectors were removed and chemically 
etched, all together, under the same conditions, for 18 hours in a 6.25 M KOH 
solution at 60˚C ± 1˚C, in a thermo-controlled regulated bath. After the chemi-
cal etching, the CR-39 detectors were washed in distilled water and dried, fol-
lowing a very well-established protocol in the laboratory [15] [16] [17] [18].  
 

 

Figure 2. Plane of the house and underground cellar, in a 
lava zone from extinct Xitle volcano. 
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Figure 3. Reticular distribution of the 486 passive nuclear track detectors, showing the 
position of each one. 

 

 

Figure 4. Indoor radon in the cellar during the experiment, measured with the Alpha-
GUARD certificated monitor. 

 

 

Figure 5. Measured values of temperature and relative humidity (automatic system), With the 
AlphaGUARD certificated monitor.  

 

 

Figure 6. Measured values of a barometric pressure (automatic system), With the Alpha-
GUARD monitor. 

 
All the detectors with the formed tracks were read on both sides, 10 fields each 

side with CADIS (Counting Automatic Digital Image System), developed at the 
PAD-IFUNAM laboratory. The average track density data of each detector, with 
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the spatial position in the cellar, was analyzed and plotted with an Origin Pro 
8.5.1 software. The radon concentration distribution is reproduced point by 
point for the 486 detectors, forming the map of the radon distribution inside the 
cellar. 

4. Results and Discussion 

The radon concentration levels obtained are shown in Figure 7. Each figure 
represents one level from top to bottom of the cellar. As we can observe, none of 
the planes shows a uniform radon concentration. 

With these experimental results it is shown that the concentration of radon 
(220Rn and 222Rn) cannot be considered homogeneous inside a room with micro-
climate and controlled conditions; and of course, there is also no homogeneity in 
indoor intramural radon concentration when there are variable conditions, as 
determined by other authors cited in this paper. 

So, to do the calculation of radiological dose or risk by radon or personal do-
simetry, it is suggested to make the precise measurements inside the room, in the 
area of interest. These experimental data confirm the results of the mathematical 
simulations of the works [6]-[11], where it is determined that radon is not ho-
mogeneous nor regular in its concentration in an interior. 

The experimental radon concentration value exhibits variations, ranging from 
10% to more than 60% of the average value measured with dynamic, certified 
and calibrated monitors. 

As can be observed in Figure 8, the radon concentration is not uniform in the 
total volume of the room, but in each layer, there are variations ranging from 
10% to 35%, already having taken in consideration the statistical variation of the 
measurement method. In addition to that there are also variations in each of the 
9 measured layers, giving this a very characteristic and peculiar distribution of 
radon concentration inside the cellar.  

It is also possible to observe the decrease of this one, which is smaller, in the 
area where the small door is located, and which was opened twice in this period 
of 3 months of continuous exposition. 

These results give us a clear indication that the distribution of radon in a 
room is not uniform.  

 

 
(a)                                         (b) 
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(c)                                         (d) 

 
(e)                                         (f) 

 
(g)                                         (h) 

 
(i) 

Figure 7. Radon concentration levels obtained, plane by plane, from the top (a) to the bot-
tom (i). 
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Figure 8. Radon (220Rn and 222Rn) concentration distribution, in each of the 9 
measured planes inside the cellar. (the dynamic of this data can be observed in 
this link: http://www.fisica.unam.mx/personales/espinosa/investigacion7.php). 

5. Previous Results from Other Research Groups and  
Relationship with This Work 

Zhuo et al. (2001) proposed in the paper entitled “Simulation of the concentra-
tions and distributions of indoor radon and thoron”; a simulation model, show-
ing probable patterns of radon gas circulation as a function of airflow, and 
three-dimensional radon distribution patterns, based on the radon emanation 
source and the airflow. The results are very valuable, and the radon pattern pre-
sented helps to understand the experimental results of this work [11]. 

Later on, Urusevik et al. (2008) published a theoretical study of the indoor 
radon distribution and its simulation using a mathematical model. The authors 
suggest a room with rectangular geometry and “infiltration outlets” of 20 × 20 
cm. The results are spectacular and very valuable, showing the spatial distribu-
tions of thoron and radon in a series of figures, identifying very well the influen-
cing parameters [9]. 

Gyorfi and Csige (2011), in the paper “Effect of atmospheric pressure varia-
tions on the 222Rn activity concentration in the air of a wine cellar”, perform the 
calculations and mathematical simulation using measurements of radon con-
centration variation in an underground cellar room, similar to the “motive” of 
this work, as function of the barometric variations of atmospheric pressure. The 
authors found a very peculiar rectangular pattern of distribution of radon inside 
of the cellar room, showing a greater concentration in the walls and ceiling [8]. 

In the same year De With and De Jong (2011) in their proposed “Simulation 
of thoron and thoron progeny concentrations in the indoor environment”, 
where the results showed some thoron accumulation on the center, and a distri-
bution on “layers” [10]. 

Akbari and Mahmoudi (2012) presented a numerical simulation of the indoor 
radon transportation effects, as function of the temperature and relative humid-
ity. The results show a decreasing in radon concentration based on the increase 
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of these variations [6]. 
These published works and many others show the scientific interest and re-

levance of the knowledge about the distribution of radon and thoron gases, 
product of the radioactive disintegration chains of the natural uranium and tho-
rium contained in our planet Earth. 

6. Conclusions 

The distribution of indoor radon concentration inside of an enclosure is not 
uniform or homogeny; on the contrary, each place specifically presents radon 
concentrations and peculiar distributions. Because of that, the evaluation of the 
radon concentration as well as its distribution is a requirement to determine 
health risks to the population. 

The evidence of radon non-homogeneous distribution inside a room is availa-
ble, both via simulation and experimental measurements specifically, which con-
firm that the indoor radon concentration distribution is very peculiar and local. 

It is very important, both from a scientific and health point of view, to under-
stand and know the dynamics of radon gas (220Rn and 222Rn) in different media, 
depending on the possible parameters that affect it. 

About the dynamics in this case, a small flux of outdoor radon through the 
concrete and brick walls cellar, and the different density between radon gas and 
the air in the room, can make this distribution, from the floor to the ceiling in-
side the complex. 

These variations of indoor radon concentration should be considered in most 
cases to have real data on indoor radon concentration, areas of greater exposure 
and areas of lower radiological risk, both for its mitigation and for its control. 

All these models and simulations, plus experimental work and measurement, 
will serve to know and better understand the behavior of the radon gas dynam-
ics, depending on the different environmental factors, and thus be able to make a 
more accurate calculation of doses and the radiological risk in public health by 
radon. 
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