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Abstract 
This article considers disturbances caused by abiotic and biotic factors and 
human impact in the ecological region extending from subalpine forest to the 
upper tree limit. Both abiotic and biotic factors may cause reversible or irre-
versible disturbances. Disturbances by mass movement and avalanches give 
the subalpine forest and the treeline ecotone a distinct spatial pattern charac-
terized by forest on safe topography and sites that preclude forest. Removal of 
the upper subalpine forests by humans has enlarged the snow-catchment area 
of avalanches and elongated the avalanche pathways. Consequently, avalanche 
destructive potential has increased. Hazards will probably increase due to cli-
mate change. External factors, like cyclonic storms, may cause fundamental 
disturbances. Fires have played a major role in the removal of high-elevation 
forests. Forest destruction by fire is often followed by soil erosion. Wild fires 
are likely to increase as a result of warming climate and would possibly pre-
vent climatically-driven treeline advance. Cyclic or episodic mass outbreaks of 
defoliating insects and bark beetles, and pathogens also cause severe distur-
bances. Oversized populations of wild ungulates impede tree regeneration and 
can cause local soil erosion. Inadequate game management is the primary 
cause of intolerable ungulate numbers. Due to man-caused habitat fragmenta-
tion, the animals’ impact on the remained habitats has increased. Subalpine 
forest may recover from disturbance or become replaced by a substitute for-
mation (e.g. krummholz). A subsequent absence of natural disturbances may 
also be considered a disturbance initiating a new development. Both natural 
and anthropogenic disturbances may counteract positive influences of climat-
ic warming on subalpine forests and treeline. Effective measures to reduce or 
prevent abiotic and biotic disturbances of high-elevation forest may contri-
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bute to greater safety for people living in the endangered areas of the 
mountain valleys and also improve other ecosystem services of the subalpine 
forest. 
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1. Introduction 

Treeline is the transition zone (ecotone) reaching from closed subalpine or 
northern forests to the outliers of tree growth in the mountain or arctic tundra. 
The transition zone is characterized by a mosaic of usually scattered and cli-
matically stunted groups and solitary trees interspersed with patches of subal-
pine or subarctic/arctic vegetation. The width of the ecotone may vary consid-
erably in dependence from the local conditions. 

Subalpine forests and the treeline ecotone are strongly influenced by abiotic 
(e.g., climate, landslides, avalanches, soil erosion, wild fires) and biotic factors 
(defoliating insects, herbivores, bark beetles). Theoretically, on an ideal smooth, 
uniform slope with uniform climate, and soil, the treeline would run parallel to 
the contour lines. The treeline could then coincide with the position of an iso-
therm (mean air or soil temperatures) above which trees could not exist. In na-
ture, however, and at a local scale treeline position is usually not identical with 
the position of an apparent critical isotherm. The differences are due to the in-
fluence of local topography on site conditions, and disturbances which might be 
equally important.  

We desist from entering the general discussion about the term “disturbance” 
[1] [2] [3]. In the context of the present paper we consider changes caused by 
natural abiotic and biotic factors as disturbances. These are “normal” events in 
the high mountain environment and may occur at almost regular intervals or 
episodically. Disturbances can be caused by both local agents (e.g., avalanches, 
rockfalls, and debris slides) and large-scale events such as severe cyclonic storms, 
extremely snow-rich winters, and lengthy droughts (Figure 1). Both abiotic and 
biotic factors may cause fundamental reversible or irreversible disturbances in 
subalpine forests and in the treeline ecotone. The time span may also play an 
important role in this respect. Thus, total removal of a forest by a larger 
landslide, for example, is unlikely to be compensated by regrowth in the forseea-
ble future. On the other hand, wind throw or burn area will be recolonized by 
forest, if no adverse factors prevail within less than a hundred years. 

Gravitational mass movements such as landslides, debris avalanches, and 
rockfalls are abrupt and rapid, and they are usually very destructive as are also 
snow avalanches. Solifluction and soil creep, on the other hand, are mostly rela-
tively slow processes. These are usually restricted to comparatively small areas  
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Figure 1. The influence of disturbance factors and disturbances on subalpine forest 
and the treeline ecotone. 

 
in the treeline ecotone. They play a minor role in the subalpine forest. Biotic 
disturbances such as defoliation during mass outbreaks of leaf-eating insects and 
bark beetles, for example, usually cover several years. Not least, the successional 
development of the forests stand plays a decisive role [4].  

In addition to natural disturbances, historical anthropogenic impact has been 
influencing species composition, age structures, and dynamics of the current 
high-elevation forests and the treeline ecotone on landscape and local scales [5] 
[6].  

Although abundant literature exists on disturbances in high mountain areas 
(e.g., review in [7]), relatively little attention has been paid to their specific role 
in subalpine forests and treeline causation, elevational position, physiognomy 
(spatial patterns, growth forms, etc.) and dynamics. There however are a few ex-
ceptions (e.g., [5] [7]-[21]. Nevertheless, disturbances may overrule positive in-
fluences of the warming climate on subalpine forests and treeline (e.g., [5] [12] 
[16] [22] [23] [24] [25]).  
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In this review article, the effects of both natural and human disturbances on 
subalpine forest and treeline spatial pattern, physiognomy, ecological conditions, 
and dynamics are considered by means of examples from outwith the tropics 
(the extratropical zones, Midlatitudes to the Subarctic).  

2. Abiotic Disturbances 

Landslides, debris avalanches, snow avalanches, and mudflows are the most 
spectacular disturbances on steep mountains. Mass movement may destroy sub-
alpine forests completely and impede or prevent recovery. Otherwise, distur-
bances (e.g., wild fires) can facilitate expansion of certain tree species while be-
ing harmful to others (see below).  

2.1. Mass Movement 

Mass movement from above the treeline occurs on steep mountain terrain in all 
climatic zones. Weathering debris translocated from usually steep, rocky upper 
slopes accumulates on the lower, more gentle slopes (e.g., trough shoulders, old 
up-lifted valley terraces) as talus cones, for example. Merged talus cones often 
mantle the entire footzone of rockfall cliffs. Recurrent supply with slope debris 
from the upper slopes interrupts soil formation and may prevent the forest from 
reaching its potential climatic limit. Single trees and tree groups, however, may 
occasionally become established on structural benches and ledges far above this 
zone of disturbance where the trees are relatively safe from gravitational distur-
bances (Figure 2). 
 

 
Figure 2. Steep valley side (Trail to Baring Basin, Logan Pass, Montana) of which the 
lower part is characterized by slightly dipping strata of sedimentary rocks with steep ris-
ers (structural benches) alternating with more gentle treads. Subalpine fir (Abies lasi-
ocarpa) and alder scrub (Alnus sinuata) occupy most of the treads, whereas slope debris 
has largely prevented a closed plant cover on the comparatively small area at the right 
handside. Nevertheless, fir and alder have been invading the debris slides’ runout area. 
The uppermost occurrences of fir are found on narrow ledges on the steep upper slope. 
Photo by F.-K. Holtmeier. 
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Mass movements may take place at different velocities. Large debris ava-
lanches are usually fast and highly destructive. They eliminate trees often down 
to the distal end of the runout. Runouts may reach far down into the subalpine 
forest. Many landslides occur after glacier retreat. The valley sides warm up and 
become destabilized. Landslides will probably become more frequent in the fu-
ture due to thawing permafrost (Figure 3) at high elevations [26] [27] [28]. In 
the long-term (>100 years), consolidated landslide debris will probably be colo-
nized by forest. By contrast, slow processes such as talus creep and solifluction 
do not necessarily prevent tree establishment [22].  

On unstable slope debris, soil formation usually remains at an initial stage for 
a long time. In such sites, limited availability of moisture and nutrients may be 
critical for tree establishment, particularly on sun-facing slopes. In the 
long-term, fine mineral and organic material from pioneer vegetation accumu-
lating between the blocks, can improve site conditions. In the absence of new 
disturbances, willows, larch, spruce and pine trees or “true” krummholz [29] 
such as green alder (Alnus viridis) and prostrate mountain pine (Pinus mugo) 
may gradually colonize debris mantles and talus cones.  

2.2. Snow Avalanches  

Snow avalanches often cause severe disturbances to subalpine forests (outside 
the tropics). Avalanche formation depends on multipe factors. Any avalanche 
combining high density with high velocity (v2) has a great destructive potential 
[30] [31] [32]. Solid material (blocks, broken and uprooted trees) carried down-
slope with the snow masses increases the destructiveness of avalanches.  

There are two main groups of avalanches; loose-snow avalanches and slab 
avalanches. The latter consist of more compacted snow. Slab avalanches are  
 

 
Figure 3. View on the south-west exposed mountain slope (Dos Suors) above Pontresina 
village (Upper Engadine, Switzerland). Thawing permafrost under coarse block debris in 
the glacial cirque (2800 m) may trigger a disastrous debris and mud outburst that would 
probably follow the gullies and destroy everything on its way. Photo by F.-K. Holtmeier. 
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usually confined to discrete areas on mountain slopes. Occasionally, however, 
the entire mountainside may become affected (Figure 4). 

While loose-snow avalanches are usually small and relatively harmless, slab 
avalanches, consisting of more compacted snow, are highly destructive. Slab 
avalanches consisting of water, largely saturated snow, ice and entrained soil or 
rock material (=slush avalanches) may reach extremely high densities (>1000 
kg/m3) and therefore have a high destructive potenial. Nevertheless, rapidly 
moving powder-snow avalanches preceded with a dense cloud of ice crystals 
may also cause severe damage. The blasts can reach maximum speeds of >300 
km/h [32] [33] [34] [35] [36]. Such an impact the forest cannot usually with-
stand, especially as the trees are impacted several meters above the ground.  

In general, dry flowing avalanches are the most destructive (highest product of 
speed squared and flow density). In addition, snow glides can occur, especially 
on smooth grassy slopes. The speed of gliding snow glide is usually low (1 - 100 
mm/d). Trees, however, may become uprooted or broken and the ground 
eroded. 

When mountain people have removed the upper subalpine forests to expand 
the alpine grazing areas, the snow-catchment area of avalanches becomes en-
larged and the avalanche pathways elongated. Hence, the destructiveness of ava-
lanches considerably increased. While dense forests with a closed canopy may 
prevent avalanche formation, open, snow-collecting forests (e.g., former forest 
pastures) are prone to avalanche formation within the tree stands themselves 
[37]. In any case, no forest can withstand avalanches that start at high elevation. 
Most (about 60%) of the highly destructive avalanches are released far above the 
anthropogenic forest limit [38] [39]. They often affect comparatively large areas 
as for example the disastrous avalanche event, that occurred near Vinadi (Lower 
Engadine, Grison) on 18 February 1962. Three slab avalanches started next to 
each other far above the forest at an altitude of about 2800 m. On an area  
 

 
Figure 4. Three slab avalanches that started next to each other destroyed about 100 hec-
tares of protection forests (spruce, mountain pine, larch) above Vinadi (Lower Engadine). 
Photo by H. Turner, Zürich. 
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measuring about 1500 m in width and 3600 m in length (>5 km2) about 100 ha 
of a 120 years-old conifer forest was completely destroyed [40] [41]. The mixture 
of snow and broken or uprooted trees had increased the destructive force of the 
avalanche (cf. Figure 4). 

Intervals between avalanches can vary between several times a year to once in 
a few hundred years [32]. Mountain slopes with an inclination of 30˚ - 45˚ are 
particularly prone to avalanches. On steeper slopes (>50˚), no big snow masses 
normally accumulate that could produce avalanches. From low-angle terrain 
(<28˚) avalanches are usually absent [30] [35]. Drifting snow, forming leeward 
cornices and accumulation of snow in gullies, increases the risk of avalanches. 
Snow-rich gullies are particularly prone to avalanche release. Collapsing cornices 
often trigger avalanches. Gullies channelize avalanches. In converging gullies, 
avalanche snow mass and destructive energy may increase. Avalanches often de-
stroy the forest down to the lower slope foot zone. Thus, they create a spatial 
pattern of avalanche pathways alternating with strips of undamaged high-stem 
forest (Figure 5). As the forest belt narrows towards high-lying valley heads, in-
tense fragmentation of the forest and decline of the treeline towards the valley 
heads, are all typical of this area (“Valley phenomenon”).  
 

v 

Figure 5. East-facing slope of the Ferleiten Valley (Grossglockner, Austria). The subal-
pine forest belt is split up by avalanche pathways. High-stem forest is restricted to safe 
terrain separating the avalanche pathways. Green alder (Alnus viridis) locally occupies 
the avalanche pathways and forms dense stands in the runouts. Photo by F.-K. Holtmeier. 
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Both debris slides and avalanches, not only destroy most trees in their path-
ways, but also cause distinct changes in the physiognomy of surviving trees. The 
distribution pattern of intolerant tree and scrub species also changes. The latter 
are less susceptible to mechanical damage by avalanches and debris slides.  
Norway spruce (Picea abies), European larch (Larix decidua), and Swiss stone 
pine (Pinus cembra) occasionally become established in avalanche and debris 
flow pathways. The trees can only exist in these sites as long as their stems are 
flexible enough to bend down under the pressure of the snow masses without 
breaking off [22] [42]. Stems that lose their elasticity can no longer resist ava-
lanches. Larch and spruce are more flexible than Swiss stone pine. In response to 
disturbance through snow creep, snow slides and avalanches, trees that survive 
display a multitude of growth forms reflecting mechanical impacts (e.g., [5] [43] 
[44]). 

At short avalanche intervals (a few years) elimination of occasional young 
trees is very likely. Avalanches may also remove ground vegetation and soil. 
Young evergreen conifers that survived avalanches often fall victim to parasitic 
snow fungi (Herpotrichia juniperi, Herpotrichia coulteri, Gremeniella abietina, 
Phacidium infestans) [43] [45] [46].  

Natural succession usually starts mainly with grasses, tall herbs, and willows. 
Young growth of subalpine conifers and deciduous trees is also found. During 
long intervals (e.g., ≥60 yrs) between avalanche events, even trees intolerant of 
stem breakage and almost unable to recover from avalanche disturbances (Pinus 
cembra) may become established in the avalanche pathways. These trees can 
grow to several meters in height before the next destructive avalanche breaks 
them or turns them over. The pathways of large recurrent destructive avalanches 
hardly ever recover with mature forest in the long-term (>100 yrs [47] [48]).  

“True Krummholz” [29] is characterized by inherent decumbent growth, like 
prostrate mountain pine (Pinus mugo), green alder (Alnus viridis), and willows 
(Salix sp.). This characteristic provides a clear advantage. In cases of low distur-
bance frequency, these krummholz species may allow the colonization of ava-
lanche-prone terrain, talus cones and slope debris mantles. The krummholz spe-
cies can recover from breakage through sprouting from the root stock and/or 
release of vertical stems from layered branches [29] [43] [44] [49] [50] [51] [52]. 
Birch (Betula pubescens) is also found in such locations. These are probably the 
only sites within the subalpine forest zone where birch may persist in the 
long-term [5] [22] [53]. In the Rocky Mountains, dense clonal stands of trem-
bling aspen (Populus tremuloides) often occupy avalanche pathways (Figure 6). 
“Krummholz” may be considered a substitute formation of the high-stemmed 
subalpine forests in such places. Similar substitute formations also exist in other 
high mountains, as for example in the Carpathian Mountains [54] and in the 
Himalayas (e.g., [5] [55] [56] [57] [58] [59]). 

While the substitution of normal, erect tree species and facilitation of woody 
scrub are typical of slopes prone to recurrent avalanches and debris slides, it de-
pends however on slope aspect and substrate as to whether prostrate mountain  
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Figure 6. Dense aspen (Populus tremuloides) stands have colonized this avalanche path-
way on a mountain side at Berthoud Pass, Colorado Front Range. The aspen stands con-
sist of different clonal groups as is reflected in the autumn colours. Photo by F.-K. Holt-
meier. 
 
pine or green alder are found in such places. Drought-tolerant prostrate moun-
tain pine typically occurs on sun-exposed slopes and carbonatic substrate. Green 
alder, on the other hand, occupies corresponding sites on shady and moist 
slopes, seemingly with a preference for silicate substrate. Obviously, however, it 
is soil moisture, rather than soil acidity, that makes the difference (e.g., [47] 
[60]). Soil moisture (meltwater, seepage) is increased by late-lying avalanche 
snow.  

Thus, on both sunny avalanche slopes and areas with shady aspects, thickets 
of green alder and prostrate mountain pine may be found next to each other. 
The small-scale distribution of these krummholz species however usually varies 
due to the local climatic conditions. On sun-facing avalanche-controlled slopes 
in the relatively continental Upper Engadine (Switzerland), for example, green 
alder is mostly found in moist (and nutrient-rich) gullies, along rivulets and at 
the lower rim of screes, where seepage comes near to the surface. In such areas, 
extensive stands of Pinus mugo may cover the relatively dry terrain. On ava-
lanche-affected moist north-facing slopes, prostrate mountain pine is usually re-
stricted to less snow-rich and drier microtopography, such as small ridges sepa-
rating gullies (Figure 7), while being outcompeted by green alder in the moist 
locations [47] [48] [60]. Late lying avalanche snow masses support parasitic 
snow fungi infection of prostrate mountain pine in such sites. 
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Figure 7. Distribution of Alnus viridis, Pinus mugo, Pinus cembra, and Larix decidua on 
the northeast-facing slope of the Bernina Valley (Upper Engadine). Alnus viridis grows in 
the avalanche prone gullies with late-lying snow and just below the steep rockwalls (upper 
slope). Pinus mugo occupies the relatively dry ridges. Pinus cembra is restricted to sites 
safe from avalanches, while scattered Larix decidua is found at the outer rim of the ava-
lanche pathways and in the runout. 
 

In the case of increasing winter precipitation due to climate change more 
snow will probably accumulate above the subalpine forests. Thus, the risk of dis-
astrous avalanches will increase [61] [62] [63], particularly when big snow 
masses accumulate during a few days of extreme synoptic conditions. In addi-
tion, damage to vegetation and soils by gliding snow will increase.  

2.3. Severe Storms  

Severe storms may cause windthrow and also stem and crown breakage on wide 
areas. In the Alps, for example, winter storms like Vivian (1990) and Lothar 
(1999) destroyed mountain forests in many high-mountain valleys (e.g., [64]). Storm 
damage was positively correlated with the height of tree stands and stem diameter. 
Tree stands on soaked, fine-textured soil were particularly affected.  

Windthrow causes abrupt changes of the ecological conditions in the wind-
throw areas (cf. Figure 1). The amount of litter and litter quality change com-
pletely, and the heat and water balance of the topsoil also alter. Myorrhization is 
affected. Higher temperatures stimulate biological activity. Consequently, de-
composition and nutrient availablity increase. Bark beetles profit from the high 
amount of deadwood. Removal of deadwood can help to minimize bark beetle 
expansion. On the other hand, broken stems and standing deadwood reduce 
avalanche release within the windthrow areas. Wild ungulates (red deer, roe 
deer, and chamois) benefit from increased protein-rich forage supply on the 
disturbed areas. Natural reforestation of the windthrow areas largely depends on 
the distance from the seed sources. The smaller the area of windthrow is, the 
higher the seedling and young growth densities are [65].  

Trees in the treeline ecotone are usually less affected by storms. This might be 
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due to reduced tree stature and high mechanical resistance of the tree-
line-forming tree species (see also [66]). Nevertheless, permanent stress by 
strong winds from a prevailing direction may shape the trees’ growth form (e.g., 
[67] [68] [69] [70] [71]).  

2.4. Wildfires and Man-Ignited Fires  

Both wildfires and man-ignited fires have affected subalpine forests throughout 
landscape history (e.g., [5] and references therein [72] [73]). Fire types, fire fre-
quency, intensities and after-effects depend on a multitude of locally and regio-
nally varying preconditions: climate, location and orientation of mountain 
ranges and mountain valleys, slope exposure to prevailing winds, forests’ species 
composition, stem- and crown-density, spatial structures, and successional stag-
es [74]. Thus, generalization is problematic.  

On slopes controlled by upslope winds, fires may spread rapidly from the 
closed forests to higher elevation and affect subalpine forest and the treeline 
ecotone (Figure 8). As to the effects of fires, the different fire-tolerance of the 
tree species plays an important role. In the European Alps, for example, larch 
having a thick insulating cork-like bark and annually renewing needles, is highly 
fire-tolerant, whereas evergreen Swiss stone pine and spruce are very vulnerable. 
In the Rocky Mountains, whitebark pine is usually not much affected by light 
surface fires, whereas Engelmann spruce and subalpine fir are intolerant (e.g., 
[75] [76]).  

Wildfires are often associated with periods of drought. In the Rocky Moun-
tains, the number of forest fires has dramatically increased during the last dec-
ades (by about 73%). Higher spring temperatures, earlier snowmelt and subse-
quent dry summers have been the main driving factors [77]. Fire risk increases  
 

 
Figure 8. Burn area on Trail Ridge, Rocky Mountain National Park (Colorado) at about 
3440 m. View to WNW. The forest fire dates back to the 1870s. Driven by strong wind 
from the west, the fire spread upslope. Photo by F.-K. Holtmeier. 
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in parallel with accumulation of greater amounts of fuel on the forest floor (e.g. 
[77], for review), as for example, after mass outbreaks of bark beetles. Forests on 
dry southern aspects are particularly prone to destruction by fire (cf. Figure 1). 
While fires are most destructive to the closed subalpine forest stands, scattered 
trees and open tree stands in the treeline ecotone are relatively seldom affected. 
Even if tree individuals or scattered tree stands are ignited by lightning, for ex-
ample, the fire will usually not spread over a great distance from the point of ig-
nition (see also [66]). Broad persistent avalanche pathways may act as natural 
fire breaks. 

In harsh treeline environment, recovery from burning by natural succession 
takes many decades (e.g., [78]) (cf. Figure 8). In the subalpine forests, the ab-
sence of wildfires (light surface fires), however, may be considered as a (second-
ary) disturbance. Shade-tolerant tree species (e.g., spruce, subalpine fire, moun-
tain hemlock = Tsuga mertensiana) that were suppressed by fire, may rapidly 
outcompete the light demanding tree species. This is of particular importance 
for example in habitats where whitepark pine is seral [79]. In the long-term, 
natural regeneration will fail and the forests may become overmature.  

Man-caused fires have played a major role in the removal of high-elevation 
forests (see below). Lightning-ignited fires are comparatively rare (e.g., [80]). In 
most high mountains of Central Asia overgrazing and particularly burning still 
are the most important disturbances to the high-elevation forests (e.g., [59]). 
Forest fires are likely to increase as a result of warming climate (e.g., [73] [74] 
[81]-[88]). Increased wild fires would possibly prevent climatically-driven tree-
line advance (e.g., [88]). For the Swiss Alps, the influence of forest fires has been 
predicted to be even more important than the direct effects of climate change 
[83]. 

Total forest destruction by fire is often followed by soil erosion (Figure 9). 
Erosion intensity, however, varies depending on a multitude of local factors. 
Slope gradient, intensity and duration of heavy rain and surface runoff, high 
amounts of melt water, soaked soil (water-saturated soils, avalanches), and sub-
strate susceptibility are involved. 

3. Biotic Disturbances 

The main types of biotic disturbances are 1): mass outbreaks of phyllophagous 
insects and bark beetles, 2) damage caused to trees, shrubs, ground vegetation 
and soil by oversized populations of large herbivorous mammals, and 3) patho-
gens and diseases (e.g., blister rust, parasitic snow fungi). 

3.1. Mass Outbreaks of Leaf-Eating Insects and Bark Beetles 

Mass outbreaks of leaf-eating insects and bark beetles (cf. Figure 1) depend on 
relatively slow population cycles at intervals of eight to ten years (e.g. [89]-[95]). 
Outbreak dynamics and intensities are controlled by multiple and partly inte-
racting factors such as thermal deficiency (deep winter frosts), periods of 
drought, forest composition, and stage of development. For example, if lasting  
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Figure 9. A big forest fire (“Red Eagle Burn”) destroyed subalpine forest and krummholz 
(Pinus albicaulis) at treeline near Divide Peak (Glacier National Park, Montana) in July 
2006. As no organic layer was left, the soil is prone to erosion. Photo by F.-K. Holtmeier. 
 
droughts and poor forest condition coincide, an eruption of bark beetle will be 
likely [77].  

3.2. Disturbance by Bark Beetle 

Mass outbreaks may be local or affect comparatively large forested areas. Nor-
mally, mountain pine beetles kill trees across relatively sparse areas and with 
minor effects on individual forest stands. On the other hand, outbreaks may be 
epidemic (e.g., [96] [97] [98] [99]). 

Bark beetle infestations (e.g. Dendroctonus ponderosae, Dendroctonus rufi-
pennis) depend on the trees’ phloem thickness. Only if the phloem is thick 
enough, are the beetles able to excavate galleries for oviposition (e.g., [100]). 
Thus, tree stands with a high proportion of mature trees are prone to bark beetle 
attacks. Systematic fire suppression has been supposed to support bark beetle 
mass outbreaks, as trees grow older and bigger in diameter [101]. Bark beetle at-
tacks will not end until the beetles have killed all thick trees or man and/or wild-
fires have removed them. 

Development of forests affected by bark beetle differs depending on whether a 
single fire or several fires interact with natural succession and beetle population 
dynamics ([4] [100], and further references therein). Mountain pine beetle and 
spruce beetle mass outbreaks have lasting effects on the mountain forests com-
position, structure, and dynamics. Thus, in spruce-fir forests (Picea engelmannii, 
Abies lasiocarpa) in Colorado 90% of the trees were spruce and 10% subalpine 
fir before a spruce beetle outbreak. Afterwards, the proportion had almost re-
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versed (20% spruce, 80% subalpine fir [4] [102] [103]). Mass-outbreaks of bark 
beetles may also have far-reaching socio-ecological consequences (for review see 
[104]). A change in fire control would probably have a mitigating effect on mass 
outbreaks of bark beetle and their effects on subalpine whitebark pine forests.  

3.3. Disturbance by Autumnal Moth and Winter Moth 

In northernmost Finland and adjacent Norwegian areas, hundreds and in places 
up to thousands of square kilometers of subarctic mountain birch forests were 
destroyed, or else severely affected during the peak of a major mass outbreak of 
the autumnal moth (Epirrita autumnata) during the 1960s, for example. In the 
past, mass outbreaks occured at intervals of 9 - 11 years [89] [105]. During the 
last decades, however, the clear cyclicity of outbreaks has disappeared in the 
more continental areas or else become more episodic [92] [105].  

Depending on the local conditions, however, defoliation may occasionally be 
restricted to smaller areas, such as a single mountain slope ([4] [5], many refer-
ences therein). For example, a mass outbreak of the autumnal moth on Ailigas 
mountain (620 m, east of Karigasniemi village, Finnish Lapland) in 1927 caused 
a depression of the upper birch forest limit [106]. Afterwards, birch forest has 
not moved upslope again (personal observation 2008). There is some evidence 
[107] [108] that also in northernmost Finnish Lapland the birch treeline had de-
clined due to Epirrita outbreaks. This has been concluded from numerous rotten 
birch stumps far above the current mountain birch forests [108]. During the last 
two decades the winter moth (Operophtera brumata) expanded to the northeast 
of northern Fennoscandia. A warmer climate has possibly been the driving fac-
tor. This area was previously occupied by the autumnal moth only [109]. The 
overlapping disturbances through both geometrids will probably have lasting 
ecological consequences for the mountain birch, especially when combined with 
overgrazing by reindeer.  

3.4. Disturbances by Larch Bud Moth 

In the Central Alps, larch bud moth (Zeitraphera diniana) eruptions have caused 
complete needle loss in pure larch forests at intervals of eight to ten years. Larch 
bud moth usually attacks subalpine larch stands within the so-called warm slope 
zone. Larch stands in the treeline ecotone and also just above the valley bottom, 
are relatively safe from defoliation [4] [5] [110]. The absence of defoliation be-
low and above the warm slope zone is very likely due to delayed needle flush, 
rather than to extremely low frost temperatures. The over-wintering eggs of the 
larch bud moth are highly frost tolerant. Even temperatures below −40˚C would 
not kill them. If the caterpillars, however, hatch before needle flush they will die 
from starvation [110]. Larch bud moth mass-outbreaks are associated with re-
duction of diameter growth and failure of seed production [4] [22] [111] [112] 
[113]. Complete dieback of larch may occur after two consective summers with 
total needle loss. After complete defoliation, the larch bud-moth caterpillars may 
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attack young successional Swiss stone pines in the forest understorey. The pines 
damaged by the larch bud moth are highly susceptible to secondary noxious in-
sects. Thus, they are at greater risk to be killed than the larch trees in the over-
storey [114] [115].  

Disturbance through the larch bud moth could be reduced by giving free rein 
to natural succession: This would support Swiss stone pine, Norway spruce, and 
arboreous mountain pine (Pinus montana). Larch, however, is preferred as it has 
a higher economic value compared with the other conifer species. Therefore, in-
stead of reducing the proportion of larch, artificial disturbances are used in the 
present mixed larch-stone pine forests to facilitate the establishment of larch 
seedlings. These disturbances include removal of the ground vegetation, expo-
sure of the mineral soil, and creation of sunlit microsites. Facilitation of larch 
would probably be appropriate in the lower subalpine forest, where production 
of high-quality timber (construction wood) can be expected. In the upper subal-
pine forests, however, severe high-elevation climate impairs the growth of mer-
chandable timber. 

While from a short-term perspective, the mass outbreaks appear as “ecological 
catastrophes”, they can turn out to be a factor stabilizing the existing pure or 
larch-dominated forests in the long-term. The outbreaks interrupt the natural 
succession towards the climax stage that would be dominated by Swiss stone 
pine. Although the recurrent larch bud moth eruptions did not eliminate larch 
forests, they however reduce their esthetic value. The seasonally changing bright 
foliage colours of this deciduous conifer make them very attractive for tourists 
[47] [60]. 

3.5. Disturbances by Pathogens 

In addition to outbreaks of leaf-eating insects and bark beetles, pathogens (cf. 
Figure 1) are strong disturbance factors (for reviews see [4] [5] [116]). The role 
of snow fungi infections as strong disturbance factors has already been ad-
dressed in context with avalanche disturbances. However, these fungi can also 
cause severe damage to high-altitude afforestation and spontaneous young 
growth (e.g., [16] [117] [118] [119] [120]). 

Disturbance by blister rust (Cronartium ribicola) is another example. Blister 
rust was accidentally introduced from Europe to North America in 1910 [121]. 
While European Swiss stone pine is highly resistant to this fungal disease, blister 
rust has destroyed extensive whitebark pine stands in the Rocky Mountains. It 
appears that blister rust is threatening the existence whitebark pine of this pine 
species in the Rockies. Subalpine whitebark pine forests are important habitats 
of many animal species, among them grizzly bear (Ursus arctos horribilis) that 
relies on the heavy energy-rich seeds of whitebark pine for hibernation [122] 
[123]. Thus, the economic losses due to expanding blister rust, however, are by 
far less important than its ecological impact on the animals’ habitat.  

Pines affected by blister rust are highly prone to assaults by mountain bark 
beetle [124] [125]. Not only whitebark pine at lower elevations but also pine 
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stands and young growth at the subalpine forest limit are affected. In the 
long-term, the entire subalpine ecosystem will be seriously disturbed by this in-
vasive pathogen [122] [126] [127] [128] [129]. In the treeline ecotone, solitary 
whitebark pines providing shelter from wind may facilitate the establishment of 
Engelmann spruce and subalpine fir at their downwind edge and initate the de-
velopment of tree islands [130] [131]. Thus, blister rust is acting opposite to a 
possible climatically-driven forest advance to greater elevations.  

3.6. Disturbances by Oversized Populations of Wild Ungulates 

Animals’ impacts must be considered in the mountain landscape context. Com-
position, age structures and dynamics of subalpine forest and the present tree-
line landscape have been continuously influenced by human activities (e.g., pas-
toral and forest use, mining, charcoal production). As kind and extent of man’s 
influences vary regionally and locally, the possibility of generalization is limited. 
Conclusions by analogy would run the risk of disguising problems and prevent-
ing in-depth effects. 

Disturbances by oversized ungulate populations usually are more locally re-
stricted than those caused by mass outbreak of insects. Wild ungulates, particu-
larly cervids have locally suppressed tree regeneration and self-maintenance of 
tree stands at the altitudinal treeline. Treeline tree species become affected at 
varying intensities [116].  

Originally, ungulate-populations were controlled by natural regulation when-
ever they exceeded the habitat carrying capacity [4]. This has changed due to 
human impact. In most cases, inadequate game management and habitat frag-
mentation due to landscape use are the primary causes of “over-sized” deer pop-
ulations [4] [5] [116], for further references. In the Alps, for example, natural 
seasonal migration routes of red deer from the mountains to the foreland have 
become interruped by expanding landscape use, roads, highways, railway, and 
channels. Seasonal migrations had prevented overuse of the alpine summer 
grazing areas. The riparian forests in the mountain foreland and also on the 
bottoms of the mountain valleys, had previously been important winter grazing 
habitats. In addition, expanding tourism and infrastructure in the Alps have 
caused considerable habitat losses. Consequently, impact of wild ungulate popu-
lations on the remained high elevation habitats has increased. Now, it often ex-
ceeds the carrying capacity of the fragmented habitats. Natural young growth in 
the subalpine forest and in the treeline ecotone usually suffers more from wild 
ungulates than afforestation at high elevation [119] [132].  

In northernmost Finland, excessively high numbers of semi-domesticated 
reindeer are an important disturbance factor in the treeline ecotone and moun-
tain tundra [22] [116] [133]. In the overgrazed areas, soil erosion has increased 
(Figure 10). As in the case of over-sized red deer populations, the problem is 
man-made ([4] [22] [134] [116] for details). In some neighbored areas of north-
ern Finnmark (Norway), the effects of overgrazing on ground vegetation and 
soil erosion were already visible on satellite images taken more than twenty years  
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Figure 10. On the north-facing slope of Koahppeloaivi (northernmost Finland), the soil 
has eroded completely from convex, wind-swept topography after reindeer disintegrated 
the plant cover, and birch stands declined due to recurrent defoliation by the autumnal 
moth (Epirrita autumnata). Photo by F.-K. Holtmeier from about 300 m above ground. 
 
ago [13]. Only reduced reindeer numbers combined with pasture rotation would 
help to ensure carrying capacity of the summer grazing areas in the long-term 
[135] [136].   

The greatest disturbance to the treeline birch stands, however, is probably the 
combined effect of overgrazing by reindeer and defoliation during episodic mass 
outbreaks of the autumnal moth [94] [137] [138] [139] [140]. Mass outbreaks of 
the autumnal moth and subsequent very cold summers combined with an in-
creased reindeer impact probably enforced birch decline in the past [108]. Ef-
fects on seedlings and saplings may locally overrule positive influences of 
changing climate (e.g., [5] [16] [141]). On the other hand, warming climate has 
been suggested decreasing phenolic substances in dwarf birch (Betula nana). As 
a result, higher palatability of the leaves may increase reindeer grazing pressure 
and adversely affect climatically-driven expansion of this dwarf shrub [142] 
[143].  

4. Anthropogenic Disturbances  

Anthropogenic disturbances are those that humans have been causing to treeline 
forests. Pastoralism, cutting trees for fuel, construction, and ore mining (con-
struction wood, charcoal production) have influenced subalpine forests 
throughout history. In addition, winter mass-tourism, alpine skiing and asso-
ciated infrastructure have become a severe disturbance affecting both the subal-
pine forests and the treeline ecotone.  

In many high mountains, pastoral use of the subalpine and alpine zones dates 
back many centuries or even several thousands of years (e.g., [5] [22] [144]-[150]). 
High-elevation forests were removed to expand the seasonally used alpine graz-
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ing areas into the subalpine zone, wherever accessible to domestic ungulates. 
Thus, grazing pressure was especially intense on relatively gentle topography, 
such as trough shoulders and similar terrain (Figure 11). In glacially-moulded 
valleys, the upper limit of closed subalpine forests became usually located to the 
upper rim of steep trough walls. Pastoral use impeded natural regeneration of 
high elevation forests, and many tree stands such became over-mature.  

Fire has been used for the past 4500 years to create alpine pastures. In some 
areas, fire clearing probably started already during the Neolithic [151] [152]. The 
pastures were burned to remove dwarf shrub vegetation (“weeds”) and to main-
tain or increase pasture productivity. In the Central Alps, highly fire-tolerant 
larch could expand at the costs of less-tolerant evergreen Swiss stone pine and 
spruce. In addition, these evergreen conifers were systematically removed to 
create open, light-flooded larch stands where cattle could graze (subalpine forest 
pastures). Under natural conditions, pure larch stands would have been re-
stricted to disturbance sites with open mineral soils and sparse ground cover, 
such as runouts of debris slides and talus cones (Figure 12) [47].  

Increasing pure larch forests fuelled mass outbreaks of the larch bud moth. In 
the Alps, most forest fires were caused by human beings [80]. In the central 
Alps, clearing alpine pastures by fire considerably decreased during the last 2000 
years, probably because forests had been removed long ago from subalpine areas 
suitable for pastoral use [148]. In many mountain ranges, lasting effects were 
caused by mining activities combined with consumption of immense quantities 
of wood (construction, fuel, charcoal production for ore melting). On the heavily 
grazed subalpine/alpine pastures and on clear-cut areas, soil erosion increased 
considerably. On the other hand, exposed mineral soil facilitated establishment 
of wind-mediated tree species (e.g., larch, spruce, mountain pine, birch, aspen, 
willows). 
 

 
Figure 11. On this SE-facing slope, subalpine Swiss stone pine forest was removed from 
relatively gentle terrain area for pastoral use. Downslope view from Alp Surovel (Val Ro-
seg, Upper Engadine, Switzerland). Photo by F.-K. Holtmeier. 
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Figure 12. Larch has colonized the avalanche runout. A few Swiss stone pines are ad-
mixed. Small pure Swiss stone pine stands are found on rocky cliffs above the talus cone. 
Alp Misaun, Roseg Valley (Upper Engadine). Photo by F.-K. Holtmeier. 
 

In the high mountains across Europe, the situation has however changed, 
mainly due to the widespread decline of pastoral use and mining [5] [25] [153] 
[154]. In the absence of grazing-pressure, grasses can grow to full length. Long 
downslope-leaning grasses not only reduce surface roughness but also keep 
snowpack temperatures near the ground around the freezing point. Thus, the 
risk of snow gliding and avalanches has been increasing. Therefore, with some 
reservation the decline of centuries-long pastoral use may also be considered a 
disturbance. In the European Alps, forest cover has increased by about 4% since 
the 19th century. Landuse change and afforestation have been the main driving 
factors. In the medium-term (decades), growing biomass and accumulation of 
deadwood will increase the susceptibility to disturbances by bark beetle erup-
tions, windthrow and fire [155]. In most high mountains of Central Asia over-
grazing and particularly seasonal burning were and still are the most important 
disturbances to the high-elevation forests (e.g., [59]). 

In the reindeer herding areas, only reduced reindeer numbers combined with 
pasture rotation would help to ensure the carrying capacity of summer grazing 
areas in the long-term [135] [136]. 

In many high-mountains, alpine skiing associated with the creation and 
maintenance of unobstructed ski runs from the Alpine down to the valley floor 
has become a severe disturbance affecting both the trees in the treeline ecotone 
and subalpine forests. On the ski slopes, destruction of the ground vegetation 
and soil erosion due to the skiers, and the use of heavy equipment are common, 
though locally more restricted than disturbances by mass movement, avalanches 
and historical pastoral usage.  

5. Concluding Remarks 

Disturbances caused in subalpine forests through abiotic factors have been om-
nipresent on steep mountain slopes throughout the Holocene. Mass movement 
and avalanches have prevented long-term forest establishment on many steep 
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mountain slopes. Disturbances disregarded whether natural or anthropogenic, 
cause, direct and indirect damage (removal, spatial distribution, age structure, 
sucessional stage, susceptibility, etc.) to subalpine forests. Disturbances are 
usually locally restricted. They may be abrupt (e.g., by avalanches) or gradual, 
episodic or periodic (cyclic) (e.g., insect mass-outbreaks).  

All abiotic disturbances, disregarded of whether caused by avalanches, debris 
slides or windthrow, are associated with alterations of the ecological conditions. 
In the cases where there has been a destruction of subalpine forest stands, there 
is in place an environment with high light intensity, reduced water-holding ca-
pacity of the soil and subsequent increase of surface runoff and soil erosion. 
Such conditions are highly stressful for the ground vegetation and tree seedlings. 
Heavily affected subalpine forests and tree stands in the treeline ecotone may or 
may not recover from disturbance. Depending on whether adverse factors will 
prevent this, such as recurrent disturbances by avalanches, it may follow that 
substitute formations such as krummholz may take the place of the original 
high-stemmed subalpine forests in such places.  

In many high mountains, pastoral use, fire and mining have been the most 
important disturbance factors throughout history. The cessation of traditional 
pastoral use and surface fires in subalpine forests may be considered a “second-
ary disturbance”. The same applies to the absence of light surface fires (fire sup-
pression), that have been of major importance in natural succession of whitebark 
pine forest in the Rocky Mountains, and, for example, for larch-Swiss stone pine 
forests in the Central Alps. 

Although disturbances through mass-outbreaks of insects and bark beetles 
and pathogens are natural in subalpine forests, they have increased due to the 
anthropogenic impact. Forest management can mitigate the effects.  

Changes due to irruptions of the autumnal moth and the winter moth in the 
mountain birch forests of the European Subarctic combined with heavy grazing 
pressure by too many reindeer will have lasting ecological and economic conse-
quences. In the long-term, only reduced reindeer numbers combined with pas-
ture rotation would ensure carrying capacity of the grazing areas.  

Natural disturbances are likely to increase due to climate change. Mountain 
areas such as the Alps, the Scandinavian mountain range, and the Rocky Moun-
tains will probably become seriously affected.  

Maintenance of subalpine forests and afforestation up to the potential tree 
limit have been and still are mandatory to create new protective subalpine fo-
rests preventing avalanche formation. Successful natural regeneration above the 
anthropogenic forest limit is of primary importance in this context. Pastoral use 
should be terminated or reduced at least to the lowest possible intensity. Wild 
ungulate populations must be strongly controlled and adjusted to the tolerable 
carrying capacity of the habitats. In combination, these measures may contribute 
to greater safety for people living in the endangered areas of the mountain val-
leys and also improve other ecosystem services of the subalpine forest (Figure 
13). 
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Figure 13. Some ecosystem services of subalpine forests. 
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