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Abstract 
Photoautotrophic suspension cultures have been established from various 
model and crop plants and proved to be valuable and robust experimental 
system to assess coordinated responses of primary and secondary metabolism 
to metabolic and stress related signals. The use of suspension cultures com-
bines the ease of handling microalgae in microtiter plates with the advantage 
of testing physiological responses of higher plants, notably in combination 
with the assessment of the response of photosynthetic activity by PAM chlo-
rophyll fluorescence imaging as well as monitoring changes in secondary me-
tabolite production and ROS formation by steady state fluorescence of plant 
fluorophores or introduced fluorescent probes. Photoautotrophic cultures 
provide various advantages as fast, highly sensitive, robust and high-through- 
put experimental system for screening and characterization of the impact of 
toxic compounds on higher plants. This opinion article discusses and critically 
evaluates the potential of photoautotrophic cultures of higher plants in com-
bination with fluorescence imaging assays in microtiter plates as a comple-
ment to existing guidelines for testing the toxicity of chemicals in plants. 
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1. Introduction 

The very limited number of higher plant test systems currently used for toxic 
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compound screening and characterization suffer from various inherent limita-
tions. Toxicity tests on plants are mostly based on growth inhibition and routine 
assay parameters such as seed germination, root or shoot elongation, wet or dry 
weight, leaf or frond number are determined [1] [2] [3]. These tests are standar-
dized with ecologically relevant endpoints. However, currently used assays are 
time and space demanding and therefore unsuited to a rapid screening of tox-
icants and/or providing insight into the underlying physiological processes. 

As an alternative to the plant assays, surrogate toxicity tests on microalgae 
species are often conducted in microplates as the lifecycle of microalgae com-
pared to higher plants is shorter. Hence, the duration of the test can be reduced 
by almost an order of magnitude, from 21 days to only 72 to 96 hours [2] [4]. 
However, these tests involve the inherent uncertainty and thus major drawback 
of the limited results extrapolation since sensitivity to different toxicants was 
proven to be highly compound and species specific (reviewed in [5]). Thus, the 
extrapolation of results from algal toxicity tests to higher plant responses is li-
mited with a certain degree of uncertainty to the general determination of a neg-
ative effect of toxicants to photosynthetic organisms, but is not a surrogate for 
specific plant species of interest. 

Additional development and implementation of physiological, biochemical, 
and molecular endpoints to evaluate phytotoxicity are of interest [5] [6]. For 
example, [7] concludes that one bioassay parameter cannot generate sufficient 
information to evaluate comparative phytotoxicity based on shoot and root 
length, chlorophyll content and root hair damage. Therefore, there is a need to 
apply several comparative methods based on general stress bioindicators and to 
incorporate them into a broader series of tests for toxicity. An alternative solu-
tion to the slow growth inhibition tests, that does not give any insight into the 
targets, is method that directly or indirectly determines physiological parameters 
such as chlorophyll fluorescence (ChlF), multicolor fluorescence (MCF), reactive 
oxygen species (ROS) probes; oxygen evolution, carbon dioxide assimilation, 
respiration or transpiration. These methods are well established in ecophysiolo-
gy or cell physiology. When used in combination with higher plants, however, 
these methods are time consuming, greenhouse space and labor demanding for 
testing and routine maintenance, and introduce uncertainty into the results due 
to the variability among individual plants and/or plant organs. Given these limi-
tations, there is a need for more sensitive, faster and high-throughput screening 
systems. 

2. Photoautotrophic Higher Plant Suspension Cultures Are  
Underexplored in Toxicological Research 

Plant cell suspension cultures are individual cells of higher plants cultivated in 
axenic conditions in liquid medium. Plant cell suspension cultures provide sim-
ple model systems for basic plant science research such as the homogeneity of 
the material, direct and fast accessibility of each single cell to exogenous stimuli 
as well as easy access of the measured response without interfering cell layers 
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with diverse functions or shading, instant availability of biomass depending on 
the desired cell cycle phase or age of the culture [8] [9]. These features circum-
vent the challenges associated with the analyses of a multi-factorial plant com-
posed of multiple tissues and cell types exposed to diverse endogenous signals 
and external factors and/or stimuli. Plant suspension cultures are also valuable 
in the study of the effects of chemicals and environmental stresses, defense re-
sponse, secondary metabolite formation, ion transport, gene regulation, and 
signal transduction, biopharmaceutical production, uptake, metabolism, phyto-
remediation of toxic compounds and plant resistance to herbicides [9]-[15]. 
However, so far, only few toxicity tests have been performed with higher plants 
suspension cultures whereas only endpoints such as biomass after incubation 
times of more than one week have been determined [16] [17] [18]. 

While carbon autotrophy is a key property of intact higher plants, tissues or 
cells rapidly lose their photosynthetic ability, partially due to the effect of the 
sugars and plant hormones present in the culture medium [19]. Therefore, the 
photosynthetic activity of suspension cultures is typically low and/or photosyn-
thetically inactive. Photomixotrophic cultures are available from some species 
which are photosynthetically active but require the presence of exogenous sugars 
in the culture medium. Photoautotrophic (PA) cultures are available from vari-
ous dicotyledonous and very few monocotyledonous species, ranging from weed 
and model species to crop species which grow in the absence of any reduced 
carbon source [11] [19] [20] [21]. Such cultures combine the advantages of plant 
suspension cultures with carbon autotrophy. 

PA contain chloroplasts and thus anatomically and metabolically correspond 
to leaf mesophyll cells although differences exist (e.g., in chloroplast number and 
photosystem activity) [9]. PA cultures were shown to be a suitable model system 
for mimicking mesophyll cells and for studying the high light intensity acclima-
tion process [8]. The complexity and heterogeneity of the whole plant is thus in 
PA culture reduced to a population of single mesophyll-like cells or cell clusters. 
This miniaturization of plant experimental material down to individual cells of 
PA culture allows to use the high-throughput approach as these suspension cul-
tures can be handled in a similar way as microalgae (e.g., in microtiter plate as-
says) while retaining the features of a higher plant experimental system [17]. 

3. Photoautotrophic Response Monitoring via  
Fluorescence Imaging 

Stress responses of PA cultures reflect physiological reactions of plant primary 
and secondary metabolism that can be highly sensitively monitored by fluores-
cence imaging. Plant suspension cultures are used to assess the impact of various 
external stimuli on plant cells. These cultures provide simple model systems for 
plant science research as a uniform cell type is grown under controlled condi-
tions. Contrary to whole plants or plant organs, each single cell in plant suspen-
sion culture is exposed to a particular stimulus within seconds [10]. As a result, 
plant suspension cultures are used to assess fast and transient responses to vari-
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ous stimuli, e.g., to assess defense responses upon stimuli that mimic a pathogen 
infection via application of fungal elicitors [22] [23]. Even very weak or transient 
responses such as the activation of signaling components including the activa-
tion of MAP kinases, the release of second messengers or formation of ROS can 
be detected [24]. The introduction of the PA cultures for such studies made it 
possible to include the metabolic regulation by sugars and to also integrate the 
regulation of source-sink transitions, and photosynthesis studies including the 
impact of herbicides [10]. Notably, using PA suspension cultures a coordinated 
regulation of source-sink transition in combination with the activation of de-
fense responses has been established [24]. The deduced regulatory mechanism 
that coordinates the induction of sink metabolism and defense responses with a 
repression of photosynthesis can be verified in various plant pathogen interac-
tions supporting the use of PA cultures [25]. Since the rapid repression of pho-
tosynthetic activity in PA cultures by stress related stimuli is a general response, 
it can also provide a suitable parameter to assess the impact of toxicants. 

Photosynthesis is a key process of plant metabolism and is regulated and in-
fluenced by the energetic demand of the organism. Photosynthetic processes are 
also sensitive to damage to photosystems from biotic or abiotic factors, changes 
in environmental conditions including temperature, CO2 concentration, water 
availability, light quality and quantity [26] [27]. Changes in photosynthetic ac-
tivity therefore provide a useful stress biomarker which can be studied by chlo-
rophyll fluorescence [28]. Chlorophyll fluorescence is a result of excess incident 
photon excitation energy dissipation in photosystems and is one of three possi-
ble processes of photon energy conversion along with photochemistry and heat 
dissipation. Chlorophyll fluorescence can therefore provide an indirect mea-
surement of photosynthetic activity [29]. 

Pulse amplitude modulated (PAM) fluorometry measures ChlF induction ki-
netics. This method is based on excitation of dark-adapted photosynthetic ma-
terial (e.g., leaf or microalgal culture) with various light sources such as weak 
measuring light (detects fluorescence yield changes), actinic light (drives photo-
synthetic electron transport) and strong saturating pulses (saturates the capacity 
of PSII). This technique results in a characteristic fluorescence kinetic from 
which various ChlF parameters can be derived to analyze the functionality of the 
photosynthetic apparatus and underlying photochemical and non-photochemi- 
cal processes [28] [30]. A great advantage of this method is its noninvasiveness. 

Another advantage is the introduction of imaging approach into PAM fluo-
rometry allowing the quantitative “machine vision” with spatial resolution. The 
imaging approach differs from the conventional point fluorometry in that the 
fluorescence signal is captured from the measured area with charge coupled de-
vice (CCD) (e.g., camera). As a result, spatial reconstruction of the measured 
data for each pixel of the detector is possible, which allows visualization and 
quantification of the spatial heterogeneity of the photosynthetic activity [30]. 
Moreover, fluorescence imaging can be used to estimate leaf area for species 
with relevant leaf architecture [31]. Another advantage of imaging fluorescence 



A. Segečová et al. 
 

682 

techniques is very convenient high-throughput data acquisition of many samples 
at the same time (several plants, leaves or samples in microplates, depending on 
the detection area of the measuring device) i.e. avoiding any delay between 
measurements of individual samples. This is in contrast with the common fluo-
rescence microplate readers or non-imaging PAM fluorometers providing only 
point measurements. Imaging PAM fluorometer measures all samples in the fo-
cus area at one time point as a snapshot. Thus the introduction of PAM chloro-
phyll fluorescence imaging was crucial for precise and non-biased measurement 
of parallel samples expressing effects with rapid evolution [32]. This physiologi-
cal high-throughput approach based on PAM ChlF imaging directly assessing 
photosystem II activity provides the mean for detecting and studying biotic and 
abiotic stresses, toxicity testing, phenotyping in horticulture and agriculture for 
identification of tolerant varieties and targeted breeding for improved plant per-
formance [33] [34] [35] [36]. 

However, as noted in [27] the most useful diagnostic information is obtained 
when several measured parameters representing a range of plant physiological 
responses, are combined creating a multi-sensor stress-identification technique. 
Therefore, combining ChlF with other methods based on different stress mark-
ers will eventually result in the development of signatures specific to types of 
stressors and/or toxicants. 

A possible extension of ChlF imaging to monitor the toxicity responses is the 
application of MCF. MCF is based on the steady state auto-fluorescence of vari-
ous compounds of plant cells. As described in [37], plant material is excited by 
long wave UV light which gives rise to a continuous fluorescence emission with 
four characteristic peaks near to 440 nm (blue), 520 nm (green), 690 nm (red) 
and 740 nm (far-red). The blue-green fluorescence is emitted primarily by phe-
nolic compounds and other secondary metabolites, whereas the red and far-red 
fluorescence comes from chlorophyll. Changes in ratios calculated from these 
characteristic bands are sensitive to short-term stress (blue/red, blue/far-red) as 
well as to long term stress conditions (blue/green) [37] [38]. Various types of 
stress including biotic (pathogen infection) and abiotic (light quality and quan-
tity, water deficiency, pollution and toxicity, nutrients deficiency) were success-
fully detected by changes in MCF ratios [35] [37] [39] [40]. The use of MCF ra-
tios in turn allows the compilation of a plant stress-catalogue based on MCF 
signatures [27]. Therefore, we suggest adding MCF into our proposed experi-
mental platform for high-throughput screening of toxic compounds based on 
fluorescence imaging and PA cell cultures as additional biomarker to ChlF.  

Another approach to stress detection based on fluorescence imaging is the de-
termination of ROS production using fluorescent ROS probes. ROS such as 
singlet oxygen, superoxide and hydrogen peroxide are produced in different 
cellular compartments including chloroplasts, mitochondria, peroxisomes, 
plasma membrane and nuclei [41]. Changes in ROS are recognized as regulators 
of plant responses ranging from the biotic and abiotic stresses to the regulation 
of normal development [42]. ROS also play a role of oxidants of target mole-
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cules, primary elicitors of damage, propagators, and signal molecules for the ac-
tivation of defense or repair [43]. ROS can be detected histologically [44], how-
ever this approach is relatively laborious and destructive. Alternatively, ROS 
sensitive fluorescent probes allow real-time in vivo investigation of ROS produc-
tion. Moreover, with an imaging approach ROS probes can quantify as well as 
visualize the temporal and spatial changes in the ROS production. 

Numerous probes are available for specific or general ROS detection [41] [43] 
[45]-[50]. This approach was successfully used with higher plants [41] [42] [51] 
however, loading of the dye into the leaf material is problematic as the procedure 
can cause additional stress and thus additional ROS formation as well as the dis-
tribution of the dye is rather heterogeneous. To avoid this difficult to discrimi-
nate an uneven indicator distribution from an uneven ROS distribution, protop-
lasts are used instead of whole leaves which provides improved results [41]. 
Therefore, using a PA suspension cultures is an ideal compromise between the 
complex plant tissue and unicellular but fragile protoplasts as the probe is ap-
plied directly into the suspension of cells with intact cell walls. 

4. Potential of Fluorescence Imaging of PA Cell Suspension  
Cultures for Toxic Compound Screening 

As outlined above PA cell suspension cultures proved to be suitable higher plant 
experimental systems that combine the general advantages of cell suspension 
cultures to be able to determine even weak and transient physiological responses 
to external stimuli with the most important and prominent feature of higher 
plants, the carbon autotrophy due to the possession of chloroplast with photo-
synthetic activity [10]. The latter key metabolic process can be determined with 
high sensitivity and with both temporal and spatial resolution by PAM chloro-
phyll fluorescence imaging of photosystem activity [32]. Due to the specific na-
ture of cell suspensions, they can be grown under standardized condition and 
uniformly distributed like microalgae in microtiter plates. Thus, PA cell suspen-
sion cultures are suitable as robust and simple higher plant high-throughput 
screening systems for toxicants where physiological responses such as the pho-
tosynthetic activity, secondary metabolite and ROS formation can be quantita-
tively and highly sensitively determined by fluorescence imaging techniques. 

To obtain a proof of concept we have tested as a case study the impact of a 
photosynthesis inhibitor with known mode of action, 3-(3,4-dichloro-phenyl)- 
1,1-dimethylurea (DCMU). The phytotoxicity of DCMU is caused by blocking 
electron transport flow in PSII at the QB site terminating the photosynthetic 
light reactions and causing formation of singlet oxygen which results in lipid 
peroxidation (reviewed in [52]). As plant material we have used PA cultures of 
the model plant tomato (Solanum peruvianum, [53]) that is also an important 
vegetable crop plant. In our case study, ten concentrations of DCMU and deio-
nized water as a solvent control were pipetted into a 96-well microplate, in a vo-
lume of 100 μL per well, four wells as replicates for each concentration. Thereaf-
ter, 100 μL of cell suspension of a 14 days old PA suspension culture of S. peru-
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vianum was added. The DCMU concentrations were prepared to give final con-
centrations of 0.025 μM to 40 μM in the wells with PA culture cells. The micro-
titer plate was incubated in an illuminated growth incubator (AlgaeTron AG 
230, PSI, CZ) under the usual cultivation conditions of 100 μmol photons 
m−2·s−1, 25˚C and atmosphere enriched with 2% CO2. Twenty minutes after the 
exposure of the cell suspension with the DCMU the cells were dark adapted for 
10 minutes followed by the measurements of ChlF induction kinetics (Closed 
FluorCam FC 800-C, PSI, CZ). The imaging results are shown in Figure 1 and 
the quantitative evaluation of the data in Table 1. 

Figure 1 and the quantitative evaluation thereof shown in Table 1 demon-
strate that a concentration dependent negative effect of DCMU on photosyn-
thetic performance, determined via the ChlF parameter Fv/Fm can be detected. 
Figure 1 illustrates the possibility to visualize and quantify a dose dependent 
response of PA cultures to DCMU treatment with ChlF imaging with high preci-
sion and low variability. Moreover, it is possible to detect the negative effect on 
the photosynthetic capacity at DCMU concentrations as low as 0.5 μM DCMU 
within only 30 minutes after treatment. 

The case study demonstrates that it is possible to detect in a physiological  
 

 
Figure 1. Response of photoautotrophic cell suspension of Solanum peru-
vianum in a 96-well microtiter plate 30 minutes after treatment with vari-
ous concentrations of the photosynthesis inhibitor DCMU. (a) RGB image 
of the treated suspension; (b) Visualization of the PAM chlorophyll fluo-
rescence imaging parameter Fv/Fm values as calculated by the FluorCam 
software and false color representation of the values. The scale shows the 
range of average values of the parameter normalized to the highest meas-
ured value. 
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Table 1. Values of the PAM chlorophyll fluorescence imaging parameter Fv/Fm) of the 
Solanum peruvianum PA cell culture treated with DCMU for 30 min shown in Figure 1 
(averages and SD from 4 repetitions). 

Treatment 
Fv/Fm 

Average SD 

untreated 0.73 0.01 

0.025 µM 0.74 0.01 

0.05 µM 0.74 0.01 

0.1 µM 0.73 0.01 

0.5 µM 0.65 0.02 

1 µM 0.61 0.01 

2.5 µM 0.55 0.02 

5 µM 0.53 0.00 

10 µM 0.53 0.01 

20 µM 0.52 0.01 

40 µM 0.51 0.01 

 
phenotyping approach [54] the response of photosynthesis, as the key physio-
logical pathway of higher plants, in PA cell cultures at low toxicants concentra-
tions as well as short times and with low variability. It is apparent that the physi-
ological responses can be detected long before a negative impact is phenotypi-
cally visible (Figure 1(a)) and thus pre-symptomatically. In previous studies, it 
has been shown that the response of PA cultures is typically faster and more sen-
sitive compared to the reactions of organs in whole plants. Definitely this ap-
proach is much faster than the current standard toxicant tests with higher plants 
that measure growth responses and thus the required time is largely reduced 
from weeks to only minutes or hours. Due to the test in microtiter plate with at 
least 96 wells the throughput capacity is much higher compared to plants grown 
individually in pots in greenhouses and therefore the demand for required infra-
structures, space, consumables and personnel is very much reduced. As outlined 
above, in addition to photosynthesis also other established parameters indicative 
of plant stress responses can be sensitively and quantitatively measured by fluo-
rescence imaging. Since important key physiological responses are measured it is 
also possible to elucidate, eventually in combination with additional comple-
mentary physiological, biochemical and molecular methods, the mode of action 
of the tested toxicants. There is already a long experience in the use of the sug-
gested fluorescence detection methods in basic and applied plant science stress 
response research. In summary, the combination of photoautotrophic cultures 
with the determination of fluorescence signatures presents a promising experi-
mental approach for establishing a highly sensitive, rapid high-throughput 
screening system of plant sensitivity to toxic compounds. 

Although toxicity screening by plant cell cultures had been principally consi-
dered before, the various serious practical limitation discussed for their practical 
use [55] are only overcome by the specific combination of PA cultures with flu-
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orescence imaging techniques outlined above. The potential for screening of 
herbicides with plant cell cultures and imaging technology was already proposed 
before [16], however, so far image analysis was only used for counting callus co-
lonies as a measure of growth inhibition. We rather propose to use autotrophic 
cultures, measure different biomarkers and use image analysis for high-through- 
put modification of standard stress physiology tests. The proposed experimental 
test system involves both general physiological reactions, such as the inhibition 
of photosynthesis, as well as specific cellular responses, such as the formation of 
specific secondary metabolites, so additional information on toxicology and 
physiology compared to the standardly measured growth inhibition in ecotox-
icology can be obtained. Finally, the test system can be integrated in functional, 
physiological phenotyping analyses and it is possible, in combination with MCF 
and ROS detection, to even derive information on the particular subcellular dis-
tribution of the responses. 

Despite the various advantages of establishing toxicity tests based on the fast 
and sensitive determination of responses of PA suspension in microtiter plates 
by fluorescence imaging, this novel system has also certain limitations. In cases 
where a specific uptake mechanism of a toxicant in a particular plant organ is 
relevant, e.g. the uptake from the soil via the root system, the results obtained 
from PA cultures are possibility misleading in terms of overestimating a possible 
impact [16]. Likewise, if a toxicity is dependent on the occurrence of specific 
metabolic conversions of a compound which are not possible in the cell cultures 
a toxicity may be underestimated [56]. This also applies if a particular cellular 
target is not expressed in the dedifferentiated cells. Finally, a particular toxic 
compound may react, become degraded or inactivated in combination with the 
particular culture medium [18]. Therefore, the PA culture assay will not make 
the classic plant growth assays completely obsolete but complement them in 
particular for large scale prescreening and for elucidation of the mode of action. 

5. Conclusion and Observations 

Despite the increasing need to assess the impact of known as well as new tox-
icants on higher plants in general and environmentally relevant toxicants on 
crop plants in particular, so far there is a lack of sensitive, physiologically rele-
vant, high-throughput and fast higher plant test systems. As outlined above, al-
though being used in basic research for more than 40 years, higher plant pho-
toautotrophic suspension culture cells are so far an unexplored experimental 
platform in toxicology that combines the advantage of the ease of handling mi-
croalgae for high-throughput screening and characterization in microtiter plates 
with the possibility to assess physiological responses of primary and secondary 
metabolism of higher plants fast, highly sensitive and with high precision by flu-
orescence imaging. The successful application of PA suspension cultures in dif-
ferent topics of basic science research has demonstrated that physiological res-
ponses and even complex coordinated regulatory mechanisms of PA suspension 
cultures correspond to those of intact higher plants and in some cases even pro-
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vided the basis to identify such mechanisms in higher plant-microbe interac-
tions. The physiological responses of PA cultures are thus verified proxy for 
responses in plant organs, most importantly in the biggest and for crop plant 
production most relevant above ground organ, the photosynthetically active 
leaves. The in vitro grown PA cultures ensure a supply of cells of constant quali-
ty and make the need for special greenhouse infrastructures and personal re-
sources obsolete as well as the medium and long term planning to have plants at 
a certain developmental stage available that is not influenced by changing envi-
ronmental conditions throughout the year. Therefore, we suggest considering 
supported by the results of a case study shown above, the use of the various 
available PA suspension cultures of well-established model and agronomically 
relevant crop plants as valuable experimental platform for toxicology research. 
Thus, the great potential of the PA cultures as experimental ecotoxicology test 
system should be systematically explored and verified. Although it is not ex-
pected that PA culture will be able to substitute intact plants completely, the PA 
cultures could function as a first and fast screening system that allows a much 
higher throughput with an increased sensitivity and robustness. An additional 
advantage of PA cultures is the easier possibility to elucidate the mode of action 
of a particular toxicant especially when combined with proposed imaging tech-
niques of chlorophyll fluorescence, multicolor fluorescence and ROS fluorescent 
probes. The ultimate goal needs to be the validation and comparison of newly 
established PA test systems with e.g. standard OECD test systems to ultimately 
complement and extend the range of available, standardized test systems. The 
most efficient way for exploring and validating the apparent potential of PA 
cultures as toxicant screening and test system would be a holistic, interdiscipli-
nary approach and could be most efficiently accomplished by the interdiscipli-
nary collaboration between plant physiologists and toxicology research institu-
tions for the sake of environmental safety and healthy food production. 
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Abbreviations 

CCD, charge coupled device 
ChlF, chlorophyll fluorescence 
DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea 
Fv/Fm, maximum quantum efficiency of PSII photochemistry  
MCF, multicolor fluorescence 
PA, photoautotrophic 
PAM fluorescence, pulse amplitude modulated fluorescence 
PSII, photosystem II 
QB, secondary quinone electron acceptor of PSII 
ROS, reactive oxygen species 
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