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ABSTRACT 

Formal health impact assessment (HIA), currently underused in the United States, is a relatively new process for assist-
ing decision-makers in non-health sectors by estimating the expected public health impacts of policy and planning deci-
sions. In this paper we quantify the expected air quality impacts of increased traffic due to a proposed new university 
campus extension in Chapel Hill, North Carolina. In so doing, we build the evidence base for quantitative HIA in the 
United States and develop an improved approach for forecasting traffic effects on exposure to ambient fine particulate 
matter (PM2.5) in air. Very few previous US HIAs have quantified health impacts and instead have relied on stake-
holder intuition to decide whether effects will be positive, negative, or neutral. Our method uses an air dispersion model 
known as CAL3QHCR to predict changes in exposure to airborne, traffic-related PM2.5 that could occur due to the 
proposed new campus development. We employ CAL3QHCR in a new way to better represent variability in road grade, 
vehicle driving patterns (speed, acceleration, deceleration, and idling), and meteorology. In a comparison of model pre-
dictions to measured PM2.5 concentrations, we found that the model estimated PM2.5 dispersion to within a factor of 
two for 75% of data points, which is within the typical benchmark used for model performance evaluation. Applying 
the model to present-day conditions in the study area, we found that current traffic contributes a relatively small amount 
to ambient PM2.5 concentrations: about 0.14 µg/m3 in the most exposed neighborhood—relatively low in comparison 
to the current US National Ambient Air Quality Standard of 12 µg/m3. Notably, even though the new campus is ex-
pected to bring an additional 40,000 daily trips to the study community by the year 2025, vehicle-related PM2.5 emis-
sions are expected to decrease compared to current conditions due to anticipated improvements in vehicle technologies 
and cleaner fuels. 
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1. Introduction 

The World Health Organization and other public health 
advocates have long stressed the need for formal health 
impact assessment (HIA) to inform decision-making in 
sectors outside the health-care industry [1-3]. The ration-
ale is that chronic diseases that pose major health bur-
dens in the post-industrial world are driven largely by 
policy, program, and planning decisions in transportation, 
agriculture, urban planning, and other sectors that ordi-
narily do not include population health as an objective in 
their decision processes. Commonly cited examples in-
clude the effects of government agricultural subsidies on 
the availability of healthy foods and the effects of trans-  

portation plans on population exposure to noise and air 
pollution. HIA is intended to encourage decision-makers 
in these and other sectors to make choices that minimize 
negative and maximize positive impacts on public health, 
within budgetary and other constraints. The intent of HIA 
is to prevent the chronic, noninfectious diseases—in- 
cluding heart disease, stroke, and diabetes—that have 
replaced infectious diseases as the leading health con-
cerns in post-industrialized nations [4]. Health practitio-
ners have long recognized that exposures to risk factors 
for these chronic diseases are driven by a wide range of 
policy, planning, and program decisions in multiple sec-
tors and that prevention through better-informed deci-  



Traffic Impacts on Fine Particulate Matter Air Pollution at the Urban Project Scale: A Quantitative Assessment 50 

sion-making in all sectors is likely to be less costly than 
treating the symptoms [2]. 

While the practice of HIA is well established in the 
European Union and some other nations, in the United 
States HIA practice is relatively new [2,5,6]. The first 
U.S. HIA, which evaluated the health impacts of a pro-
posed policy to increase the minimum wage in San Fran-
cisco, was completed in 1999 [2,7]. By the end of 2012, 
at least 114 additional HIAs had been completed in the 
United States [8]. However, only 14 of these HIAs pro-
vided quantitative estimates of the impacts of alternative 
choices on health [9]. The rest are qualitative, relying on 
the judgment of the HIA practitioner to determine 
whether one choice will be more or less detrimental or 
beneficial to population health, in comparison with other 
options. In the US urban planning and transportation 
sectors, such qualitative HIAs are of little use. In order to 
prioritize urban planning and transportation projects, 
state and local planning and transportation agencies em-
ploy cost-benefit analysis. To be able to include health 
impacts in these cost-benefit analyses, quantitative esti-
mates of health impacts—in terms of numbers of ill-
nesses and premature deaths—are essential. Yet, a recent 
review found that only four HIAs in the transportation 
and urban planning sectors in the United States had em-
ployed quantitative methods, and all of these were con-
ducted in major metropolitan areas in California [9]. 

In order to expand the evidence base for the use of 
quantitative HIA to support planning and transportation 
decisions in the United States, this paper presents an im-
proved approach for quantifying the future air quality 
effects of increased traffic brought by new urban or sub-
urban development projects. We focus specifically on 
predicting exposure to airborne fine particulate matter 
(i.e., particles with diameter less than or equal to 2.5 µm, 
denoted as PM2.5), which often is used as a marker of 
near-roadway air pollution to support health effects esti-
mates. We then demonstrate the modeling approach for a 
case study site: a proposed extension to the campus of 
the University of North Carolina (UNC) at Chapel Hill, 
in the United States. 

Our modeling approach improves on those in the pre-
vious four US transportation-related HIAs in several 
ways. First, it accounts for the effects of acceleration, 
deceleration, and idling on all roadway links in the study 
corridor using an approach recommended by Ritner et al. 
but not previously employed in an HIA [10]. Second, it 
compares model predictions to measured pollutant con-
centrations along the roadway corridor. According to 
Ritner et al., such a performance evaluation has not been 
previously completed. Third, it improves on the Ritner et 
al. approach by developing a new algorithm to incorpo-
rate daily temperature variability. 

The planned future project used as the case study for 

demonstrating the new modeling method is known as 
“Carolina North,” which is planned as an extension to the 
current UNC campus. UNC-Chapel Hill is the oldest 
public university in the United States and has a current 
student population of more than 29,000 [11]. The campus 
is located in the town of Chapel Hill, which has a popu-
lation just over 57,000 [12]. The planned new campus 
will be located about 3 km (2 miles) north of the existing 
campus (Figure 1). If constructed, it is expected to in-
crease the number of trips to the area by 10,000 per day 
by 2015—half of those by private vehicle—and, accord-
ingly, to substantially increase traffic in the surrounding 
neighborhoods [13]. By 2025, the number of additional 
daily trips to the campus is expected to increase by as 
many as 40,000 [13]. The main traffic effects are ex-
pected along Martin Luther King Jr. Boulevard, the main 
thoroughfare connecting the new campus to both the ex-
isting campus (to the south) and the nearest highway in-
terchange (to the north). 

UNC commissioned a transportation impact analysis 
in 2009 in order to estimate the anticipated increases in 
traffic volumes, but the air quality impacts of the in-
creased traffic were not evaluated. Hence, the transporta-
tion impact analysis cannot be used directly to support 
decision-making about whether alternative transportation 
network designs (including, for example, new or ex-
panded public transit routes) may be needed to prevent 
traffic-related air quality degradation and associated 
health impacts. By quantifying the air quality effects of 
additional traffic generated by the future campus, this 
paper can support a future quantitative HIA to inform 
local transportation and planning decisions. 

2. Materials and Methods 

Our process for modeling population exposure to excess 
PM2.5 attributable specifically to increased traffic from 
the Carolina North campus builds on a new approach 
recommended by Ritner et al. [10], who proposed an 
algorithm to account for vehicle acceleration, decelera-
tion, and idling at intersections in modeling of near- 
roadway pollutant concentrations. We improved on the 
Ritner et al. approach by developing a new algorithm for 
incorporating hourly temperature variability in the esti-
mation. We then tested our predictions against roadside 
air quality measurements. We analyzed near-roadway air 
quality for three different scenarios: 2009 conditions, 
2025 conditions assuming the new campus is not built, 
and 2025 conditions assuming the campus is built. In-
formation on traffic counts for all these scenarios came 
from the previously completed transportation impact 
analysis [14]. We modeled air quality effects only for 
daytime traffic (6 a.m. to 7 p.m.), since we assume that 
the major impacts will occur during these hours.      
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Figure 1. The study corridor runs from the intersection of Martin Luther King Jr. Boulevard and Whitfield Road to the in-
tersection of South Columbia Street and Mt. Carmel Church Road, Chapel Hill, NC. This map also shows the locations of the 
three selected study sites. Site 1 is on the east side of Martin Luther King Jr. Blvd., opposite the Rigsbee Mobile Home Park. 
Site 2 is on the east side of Martin Luther King Jr. Blvd. near Ashley Forest Rd. Site 3 is on the west side of Martin Luther 
King Jr. Blvd., opposite the entrance to Bolin Creek. 
 

We modeled PM2.5 concentrations at each of the 160 
census blocks located within 500 m of the study corridor 
(following guidance from the Health Effects Institute 
suggesting that key traffic-related pollution impacts oc-
cur within 300 - 500 m of major roadways) [15]. Ap-
proximately 16,000 people live within these census 
blocks [16]. In this study, the population exposures in 
each census block are represented by the estimated 24- 
hour PM2.5 concentrations at each receptor. 

2.1. Modeling Approach 

Our modeling framework includes nine Steps (Figure 2): 
Step 1: Divide roadway into links for analysis. Air 

emissions from any single vehicle depend substantially 
on the vehicle speed, vehicle acceleration, time spent 
idling, and road grade. To account for these effects, we 
followed the approach of Ritner et al. by dividing the 
study corridor roadway into very short links [10]. In total, 
we modeled 1200 links along the 8.2 km (5.1 mile) study 
corridor. Each link has a roughly constant road grade; 
fraction of vehicle time spent decelerating, idling or ac-
celerating; and moving speed. We used ArcGIS 9.3.1 
(ESRI, Redlands, CA) and 2010 aerial photos from the 
Orange County Geographic Information Systems (GIS) 
Division to draw the series of links [17]. Link-specific 
traffic activities were determined based on the simula- 
ted traffic data for 2009, 202  no-build, and 2025 build 5 
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Figure 2. Flowchart showing the nine steps of our modeling framework. 
 
scenarios from the transportation impact analysis [14]. 
Link-specific average speeds were assumed to be equal 
to speed limits based on GIS street maps from the Town 
of Chapel Hill [18]. The speed limit was 25 mph for 17% 
of the links, 35 mph for 68% of the links, and 45 mph for 
the remaining 15%. Link-specific grades were derived 
from GIS contour maps from the Town of Chapel Hill 
[19] and ranged from 0% - 10%. 

Step 2: Estimate vehicle emissions factors for six dif-
ferent temperatures for each link using MOVES. As sug-
gested by both Ritner et al. [10] and the US Environ-

mental Protection Agency’s (EPA) “Guidance on Quan-
titative PM Hot-Spot Analyses for Transportation Con-
formity” [20], we used MOVES 2010b (Motor Vehicle 
Emission Simulator, EPA, Washington, DC) to develop 
2009 and 2025 link-specific emission rates of PM2.5 
(grams/vehicle-mile), according to link-specific traffic 
activities, average speeds, and grades. The MOVES 
model was developed by the EPA based on laboratory 
tests that measured emissions from different kinds of 
vehicles under conditions designed to represent typical 
driving behaviors. Unlike its predecessor, known as 
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MOBILE6, MOVES can provide separate emissions 
factors for different vehicle operation modes: accelera-
tion, deceleration, idling, and cruising [10]. 

MOVES models emissions for 13 vehicle types: mo-
torcycle, passenger car, passenger truck, light commer-
cial truck, intercity bus, transit bus, school bus, refuse 
truck, single unit short-haul truck, single unit long-haul 
truck, motor home, combination short-haul truck, and 
combination long-haul truck. It also considers three fuel 
types: gasoline, diesel, and compressed natural gas. 
Hence, in order for the model to provide accurate esti-
mates for any specific roadway segment, the fraction of 
vehicles in each class and fuel type category must be 
estimated. For this analysis, we used vehicle fleet distri-
bution data from Guilford County, NC [21] (county seat: 
Greensboro), since data specific to Chapel Hill were un-
available. The fuel type distributions as well as fuel sup-
ply and formulation in the project areas were based on 
national defaults. These data (fleet distributions and fuel 
types) were fixed in all MOVES runs. 

The EPA’s PM hot-spot guidance recommends that the 
link-specific emission rates should be prepared based on 
average temperatures for four different time periods in a 
day for each season, meaning that each development 
scenario would require 16 MOVES runs. However, this 
approach does not fully account for daily temperature 
variability within a given season. Previous studies have 
shown that PM emission rates are highlight sensitive to 
temperature, and hence omitting temperature variability 
could decrease the accuracy of modeled emissions factors 
[22,23]. Our new algorithm for representing intra-sea- 
sonal variability in temperature and meteorological con-
ditions runs MOVES for six different temperatures: 10, 
30˚F, 50˚F, 70˚F, 90˚F, and 110˚F [24]. Later steps of the 
algorithm (described below) interpolate between these six 
estimates to determine temperature-specific emissions 
factors for each roadway link. For example, if a winter-
time simulation of any given hour yielded a temperature 
of 40 degrees for that hour, we then estimated the vehicle 
emissions factors to be the average of the emissions fac-
tors for 30 and 50 degrees. 

Step 3: Select an hourly temperature and meteorologi-
cal profile from empirical weather data. The meteoro-
logical data to estimate probability distributions of the 
effects of weather on PM2.5 concentrations for each 
season were obtained from the EPA’s Meteorological 
Processor for Regulatory Models, using 2006-2012 sur-
face and upper air data at the national weather stations in 
Chapel Hill and Greensboro respectively [24,25]. A total 
of 2,100 days with complete required data were used in 
the modeling, including 525 days for winter, 560 days for 
spring, 532 days for summer, and 483 days for fall. Sea-
sonal temperature profiles are shown in Figure 3. Figure 
4 shows the distributions of seasonal wind speed and 
direction. 

In this third step, we selected one day from these 2,100 
days to support the modeling in steps 4 - 5 below, and 
then we repeated this selection (step 6) without replace-
ment 2099 times until we had estimated PM2.5 concen-
trations in each census block for each day having a com-
plete weather record. 

Step 4: Estimate the total emissions from vehicles 
traveling on each roadway link. The MOVES model es-
timates average per-vehicle emissions in grams per vehi-
cle-mile, accounting for the specific distribution of vehi-
cle types, ages, and fuel sources at the study site. The 
next step was to compute the total mass of PM2.5 emit-
ted from each vehicle on each roadway link. For this step, 
vehicle counts were needed. The link-specific traffic 
volumes were based on the simulated traffic data for 
2009, 2025 no-build, and 2025 build scenarios from the 
Carolina North Traffic Impact Analysis [14]. For the 
temperature profile selected in step 3, we estimated emis-
sions factors by interpolating between the outputs of step 
2 for the nearest two temperatures. 

Step 5: Model dispersion of PM2.5 from roadway 
emissions into the surrounding neighborhoods using 
CAL3QHCR.The PM hot-spot guidance suggests two air 
pollution dispersion models—CAL3QHCR (EPA, Re-
search Triangle Park, NC) or AERMOD (EPA, Research 
Triangle Park, NC)—for simulating PM2.5 pollution 
dispersion from roadways. Both models are based on  

 

 

Figure 3. Seasonal temperature profiles from 6 a.m. to 7 p.m., according to the meteorological data used in the CAL3QHCR 
modeling. 
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Figure 4. Seasonal wind roses from 6 a.m. to 7 p.m., according to the meteorological data used in the CAL3QHCR modeling. 
 
Gaussian plume dispersion. However, a recent model 
comparison study suggested that CAL3QHCR requires 
less meteorological data and user effort and appears to 
perform better than AERMOD for analyses at the urban 
project scale [26]. In this study, we tested and used 
CAL3QHCR for estimating population exposure to 
PM2.5 (g/m3) from the study corridor. As described 
below under “model validation approach,” we tested two 
different versions of CAL3QHCR: one dated 13196 and 
the other dated 04244. We then used the best-performing 
of the two in subsequent simulations. We ran CAL3QHCR 
for each roadway link using the meteorological profile 
from step 3 and the per-link total PM2.5 emissions from 
step 4. We modeled concentrations at an elevation of 1.5 
m, corresponding to the elevation of the adult breathing 
zone. 

Steps 6 - 9: Generate probability distribution of sea-
sonal average 24-hour PM2.5 concentration. As Figure 2 
outlines, we first repeated steps 3-5 for each of the days 
(2,100 in total) for which historical empirical weather 
data were available. The result was 2,100 separate daily 
estimates of the PM2.5 concentration at each of the 160 
census block centroids: 525 winter day estimates and 560, 
532, and 483 spring, summer, and fall estimates, respec-
tively. We then used a bootstrap technique to estimate a  

probability distribution for the average daily PM2.5 con-
centration in each season. Specifically, for each season, 
we resampled with replacement 91 days from the simu-
lated daily PM2.5 concentration estimates. We then 
computed the mean value of these 91 daily estimates for 
each receptor. Then, we repeated this process of com-
puting a seasonal mean 1999 times, in order to generate a 
sample of 2000 seasonal mean 24-hour PM2.5 concen-
trations. This sample then served as the basis for devel-
oping a probability distribution of the seasonal mean 
concentration for each season. 

2.2. Model Validation Approach 

This study tested the performance of the combined 
MOVES-CAL3QHCR modeling approach by comparing 
model predictions against roadside measurements at 
three selected sites along the study corridor (Figure 1). 
Furthermore, we compared the predictive validity of two 
versions of CAL3QHCR (dated 04244 and dated 13196) 
According to the model change bulletin, the mixed mode 
rounding in the internal calculations of CAL3QHCR 
dated 04244 was removed from CAL3QHCR dated 
13196. Consequently, the simulated concentrations from 
these two model versions are different in some cases. 
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We used a DustTrak DRX Aerosol Monitor Model 
8534 (TSI, Shoreview, MN) to measure total PM2.5 con-
centrations at each of the three sites The DustTrak DRX 
instrument or similar models have been used in roadside 
measurements in several previous studies [27-29]. The 
DustTrak can detect concentrations from 1 to 150,000 
g/m3 with an error of 0.1% of the monitored concen-
tration [30]. All of these instruments are calibrated at the 
factory with a known mass concentration of Arizona Test 
Dust (ISO 12103-1, A1 test dust) [31]. In addition, in 
each sampling period, we calibrated the instrument be-
fore taking measurements. During all sampling events, 
the DustTrak was held about 1.5 m above the ground (the 
adult breathing zone height) and programmed to record 
the total concentration every five seconds. 

We collected samples on two separate days at Site 1 
and on one day at Sites 2 and 3 for a total of four sam-
pling days in the study corridor. During three of the four 
sampling days, we monitored PM2.5 concentrations dur-
ing the morning and evening peak traffic periods and also 
in the middle of the day four an hour at a time (roughly 
8:00 - 9:00 a.m., noon-1:00 p.m., and 5:00 - 6:00 p.m.). 
At Site 2, the property owner requested that we not col-
lect samples in the evening, so we only sampled during 
the morning and noon hours. Table 1 shows sample col-
lection dates and measured PM2.5 concentrations. 

During each sampling event, we drew continuous air 
samples for three minutes at 10 m from the roadway and 
then repeated the three-minute sampling at locations of 
30 m and 50 m from the roadway (except at Site 2, where 

obstructions prevented sampling at 50 m). Then, we re-
peated this process over the course of about one hour. As 
a result, at each site and during each sampling event, we 
collected PM2.5 concentrations for six three-minute in-
tervals at 10 m, 30 m, and 50 m perpendicular distances 
from the roadway, as Figure 5 illustrates. For each event, 
we then computed the average PM2.5 concentration mea- 
sured during these three-minute intervals; Table 1 shows 
the resulting estimated one-hour average concentrations. 

During each sampling event, we simultaneously col-
lected traffic counts and meteorological data. Traffic was 
monitored with a hand-held counter, and the counts were 
confirmed by viewing digital video recordings from a 
portable video recorder positioned on a tripod to film the 
roadway during sampling. We measured wind speed us-
ing a Skymate model SM-18 wind meter with accuracy 
within 3% (Campbell Scientific, Inc, Logan Utah); wind 
 

 

Figure 5. Diagram of sampling points along the study cor-
idor. r 

 
Table 1. Measured and modeled PM2.5 concentrations (μg/m3). 

Site Date 
Time  

period 
Measured 

concentrations* 

Measured  
concentration 
difference** 

Predicted concentration 
differences: CAL3QHCR  

(04244) 

Predicted concentration  
differences: CAL3QHCR  

(13196) 

   
10 
m 

30 
m 

50 
m

10 vs. 30 
m 

10 vs. 50 
m 

30 vs. 50 
m 

10 vs. 30 
m 

10 vs. 50 
m 

30 vs. 50 
m 

10 vs. 30 
m 

10 vs. 50 
m 

30 vs. 50 
m 

1 16-May Morning 14.9 13.8 13.9 1.1 1.0 NEG 0.7 0.9 0.2 0.7 1.0 0.3 

  Noon 9.0 8.7 8.3 0.3 0.7 0.4 0.5 0.8 0.3 0.4 0.6 0.1 

  Evening 9.7 10.0 9.7 NEG NEG 0.3 1.0 1.3 0.3 0.9 1.3 0.3 

 31-May Morning 5.1 5.1 4.9 0.0 0.2 0.2 0.7 0.8 0.1 0.7 0.9 0.2 

  Noon 2.6 2.2 1.6 0.4 1.0 0.6 0.5 0.8 0.3 0.5 0.6 0.2 

  Evening 3.0 2.6 2.4 0.4 0.6 0.2 1.1 1.4 0.3 1.0 1.3 0.4 

2 24-Apr Morning 21.4 20.8 NA WD NA NA 0.5 NA NA 0.5 NA NA 

  Noon 10.5 10.4 NA WD NA NA 0.7 NA NA 0.6 NA NA 

3 16-Apr Morning 10.8 10.8 10.5 NEG 0.3 0.3 0.7 0.9 0.2 0.6 0.8 0.2 

  Noon 9.7 9.2 9.0 0.5 0.7 0.2 0.6 1.0 0.4 0.5 0.7 0.2 

  Evening 9.2 8.9 8.5 WD WD WD 0.0 0.0 0.0 0.1 0.1 0.0 

*NA indicates PM2.5 could not be measured at this location due to a physical obstruction; **Negative values excluded during data cleaning are labeled as 
NEG”; those excluded due to unfavorable wind direction are labeled as WD. “ 
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direction using a windsock and compass; and tempera-
ture, dewpoint, and relative humidity using an Extech 
model 445814 thermometer-psychrometer with tempera-
ture accuracy of ±1.8˚F and relative humidity accuracy of 
±4%. Data on atmospheric stability class and mixing 
height were estimated using EPA’s Meteorological Pro- 
cessor for Regulatory Models [36]. Table 2 shows the 
traffic counts and meteorological conditions for each 
sampling event. 

The measured concentrations at each sampling point 
represent the sum of background concentrations, PM2.5 
contributions from other nearby sources, and traffic-re- 
lated PM2.5. Therefore, in order to evaluate the per-
formance of the CAL3QHCR model, concentrations of 
PM2.5 attributable to background and other sources must 
be subtracted from the monitored concentrations, in order 
to determine how much of the measured PM2.5 comes 
from the roadway. In testing model performance, other 
studies have used background concentrations measured 
at an upwind location or central air quality monitor 
[26,32,33]. However, Chapel Hill does not have an active 
PM2.5 monitor; the nearest PM2.5 monitor is about 45 
km away, in Raleigh. Furthermore, due to resource limi-
tations, we were able to use only one DustTrak monitor 
and hence were unable to capture background concentra-
tions while simultaneously measuring near-road concen-
trations. Hence, we accounted for the effect of back-
ground PM2.5 by characterizing the differentials between 
the measured concentrations at pairs of sampling points 
at distances 10 m and 30 m, 10 m and 50 m, and 30 m 
and 50 m from the roadway. Table 1 shows these differ-  

entials, as computed from the measured concentrations. 
A factor-of-two plot has been commonly used to 

evaluate the performances of the CALINE series of dis-
persion models (e.g., CALINE3, CAL3QHC/CAL3QCHR, 
and CALINE4) [26,32-35]. That is, modeled PM con-
centrations are plotted against measured concentrations 
to see whether the model estimates are within a factor of 
two of measured concentrations. Typically, the model is 
considered valid in predicting the traffic-related concen-
trations if at least 75% of the comparing pairs are within 
a factor-of-two envelope. This criterion was also applied 
in this study. We adopted this approach, comparing mea- 
sured PM2.5 concentration differences between pairs of 
points with differences predicted by the two different 
CAL3QHCR model versions. 

2.3. Data Cleaning 

In total, the sampling events shown in Table 1 yielded 29 
data points. Of these, five points had to be eliminated 
because the wind direction was outside of a 120˚ degree 
arc from a line drawn perpendicular to the roadway (see 
Figure 5). In such conditions, the monitoring locations 
were not downwind of the roadway and therefore could 
not capture roadway contributions to PM2.5 [37]. Four 
additional data points were eliminated because they in-
dicated negative dispersion (that is, PM2.5 concentra-
tions increased rather than decreased with distance from 
the roadway). This data cleaning process left 20 data 
points for comparing measured PM2.5 concentrations to 
modeled concentrations. 

 
Table 2. Traffic and meteorological data used in CAL3QHCR modeling. 

Site Date Period 

Average 
Traffic 
Count 

(veh/min) 

Average 
Wind 

Direction 
(deg) 

Average Wind  
Direction within 
120˚ Arc from 

Study Corridor? 

Average 
Wind Speed

(m/s) 

Average 
Temperature 

(˚F) 

Stability 
Class* 

Mixing
Height

(m)* 

1 16-May Morning 34 80 Yes 0.8 73.7 Slightly unstable 678 

  Noon 26 83* Yes 1.4 85.9 Unstable 1315 

  Evening 42 91 Yes 0.7 80.5 Slightly unstable 1395 

 31-May Morning 34 91 Yes 0.9 77.5 Slightly unstable 878 

  Noon 29 55 Yes 1.5 88.6 Unstable 1676 

  Evening 38 41 Yes 0.8 99.4 Slightly unstable 1776 

2 24-Apr Morning 32 349 No 0.6 56.9 Slightly unstable 670 

  Noon 27 37 No 1.1 74.8 Unstable 1360 

3 16-Apr Morning 24 252 Yes 0.2 68.5 Neutral 1869 

  Noon 22 264 Yes 0.7 80.0 Very unstable 1939 

  Evening 31 20* No 0.7 77.8 Neutral 1944 

N OTE: Wind speeds below 1 m/s were reset to 1 m/s in CAL3QHCR, as suggested by the US EPA [36]. *Data obtained from MPRM. 
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3. Results 

3.1. Vehicle Emission Rates 

The output from MOVES can provide useful insights 
about the vehicle classes contributing most to roadside 
pollution, the effects of meteorological and road charac-
teristics on per-vehicle emissions, and the effects of fu-
ture vehicle technologies. 

To identify the vehicle classes contributing most to 
roadway emissions, we ran MOVES for a study corridor 
link with 0% grade, a 35 mph speed limit, and an ambi-
ent temperature of 90˚F. Figure 6 shows the results. This 
analysis reveals that trucks are the major contributors to 
roadside emissions for this corridor. In total, trucks of all 
categories contribute 79% of emissions: 19% from pas-
senger trucks (e.g., sport utility vehicles) and the re-
maining 60% from various kinds of commercial trucks. 
Consistent with this result, diesel-fueled vehicles account 
for nearly two-thirds (64%) of emissions whereas gaso-
line-fueled vehicles account for 36%. As well, vehicles 
more than 10 years old account for half of the roadside 
 

 

Figure 6. Example of 2009 link-specific emission rate frac-
tions (%) at 35 mph average speed, 0% grade, and 90˚F by 
fuel types, age groups, and vehicle types. 

emissions. Hence, improving emissions controls or en-
gine efficiency in diesel-fueled trucks, plus retiring older 
vehicles, could greatly reduce roadside emissions in the 
study corridor. 

MOVES output also shows the important effects of 
temperature, road grade, and vehicle speed on roadway 
emissions. As Figure 7 shows, emissions decrease as 
temperature increases, increase as road grade increases, 
and decrease as vehicle speed increases. These results 
illustrate the importance for modeling of accurately cap-
turing temperature, vehicle speed, and especially road 
grade—hence the importance of dividing a study corridor 
into short links as in our study. 

Interestingly, the results show that 2009 link-specific 
emission rates (ranging from 0.02 - 0.50 g/veh-mile) are 
higher than 2025 link-specific emission rates (ranging 
from 0.01 - 0.26 g/veh-mile). The differences result from 
the assumption, built into MOVES, that future vehicles 
will have more efficient engines that reduce emissions 
and will use cleaner fuels. 

3.2. Model Performance Evaluation 

Figure 8 compares the predictions of the two CAL3QHCR 
model versions to measurements of pollutant dispersion 
along the roadway corridor. The figure also shows the 
“factor-of-two envelope:” that is, the range of predictions 
that are within a factor of two of the measured dispersion. 
As shown, the models contain both under-predictions of 
 

 

Figure 7. Examples of 2009 link-specific emission rate (g/veh- 
mile) changes by average speeds, grades, and temperatures. 
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the amount of dispersion (i.e., data points below the fac-
tor-of-two envelope) and over-predictions (data points 
more than twice the measured amount). However, both 
models are more likely to over-predict than to under- 
predict dispersion: that is, to predict greater concentra-
tion differences as one moves away from the roadway 
than were actually measured. Possible reasons for this 
prediction error include physical obstacles to dispersion 
(for example, at site 3, a large rock outcropping may in-
terfere with dispersion) and intermittent winds. Previous 
model evaluations also have observed that the predeces-
sor to CAL3QHCR did not perform well in the presence 
of street canyons or other physical obstacles or when 
winds are intermittent [32]. 

Of the two models, model 1 (the version dated 04244) 
performs better than model 2 (the version dated 1196). 
For model 1, 15 modeled estimates (75%) were within a 
factor of two of the measured value. Previous studies have 
suggested that a 75%, factor-of-two prediction capability 
indicates reasonable model performance, and model 1 
achieves this metric [32]. For model 2, 13 observations 
(65%) were within a factor of two of observed values. 
Because model 1 better predicted the observed data than 
model 2, we used model 1 for our exposure predictions. 

3.3. Estimated PM2.5 Exposure under Current 
and Future Scenarios 

Our modeling approach can be used to predict the effects 
of the Carolina North campus on ambient PM2.5 con-
centrations in census blocks in the study corridor if the 
campus is built. 

Even if the new campus is built, the roadway contribu-
tion to ambient PM2.5 levels in the study corridor is pre-
dicted to be very low by 2025. The maximum contribu-
tion the new campus contributes to any one census block 
occurs in winter and is predicted to be 0.11 µg/m3, which 
is quite low in comparison with the ambient air quality 
standard (12 µg/m3 annual average PM2.5 concentration). 
In comparison, if the new campus is not built, the maxi-
mum PM2.5 concentration in any one census block is 
0.085 µg/m3, which is 24% lower than if the campus is 
built. In both cases, though, the maximum concentration 
is higher under current conditions than under future con-
ditions, despite the anticipated traffic growth. Under cur-
rent conditions, the model predicts that the maximum 
roadway contribution to seasonal PM2.5 in any one cen-
sus block is 0.14 µg/m3, which is 24% higher than ex-
pected in 2025, even if the new campus is built. These 
future emissions reductions reflect the built-in assump-
tions of MOVES that the future vehicle fleet will become 
more efficient (less polluting) and that fuels will be 
cleaner. The results thus illustrate the value of ensuring 
continued improvements in vehicle fuel economy and 

emissions standards. 
Our modeling approach included a new method for 

representing meteorological variability. Our results illus-
trate that variability can be important in some locations. 
Overall, the daily meteorological variability caused little 
change in seasonal daily mean PM2.5 concentrations. For 
example, in the 2025 scenario in which the Carolina 
North campus is built, the average coefficient of varia-
tion (standard deviation of the predicted seasonal mean 
divided by average of the seasonal mean) is 0.06, mean-
ing that seasonal variability on average has a relatively 
small effect on model predictions. The maximum coeffi-
cient of variation in this scenario was less than 0.5, 
which means that 95% of the time, meteorological vari-
ability will change the predicted seasonal mean by less 
than a factor of 2. (According to the Central Limit Theo-
rem, the seasonal mean converges to a normal distribu-
tion, and hence 95% of the time, the seasonal mean 
should be within two standard deviations of the actual 
mean, and in this case the standard deviation is about half 
the mean.) Thus, this meteorological variability is less 
important than the model uncertainty shown in Figure 8. 

The modeling approach can be used to characterize 
spatial variability in roadway emissions effects on sur-
rounding neighborhoods. Figure 9 shows the resulting 
spatial variability for current conditions, and Figure 10 
shows the spatial variability for future conditions. In both 
instances (because both models rely on the same set of 
meteorological data), the census block with the maxi-
mum concentration is in the same location and also (de-
spite changes in wind directions) does not vary season-
ally. The most affected census block (shown with arrows 
in Figures 9 and 10) is located on the east side of Martin 

 

 

Figure 8. Factor-of-two plots of concentration differences 
(mg/m3) observed during roadside measurements and pre- 

icted by CAL3QHCR (dated 13196 and dated 04244). d   
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Figure 9. PM2.5 concentrations attributable to roadway emissions from the study corridor, as predicted by the combined 
MOVES-CAL3QHCR approach (g/m3) by season for the year 2009. 

 

 

Figure 10. PM2.5 concentrations attributable to roadway emissions, as predicted by the combined MOVES-CAL3QHCR 
approach (g/m3) by season for the year 2025, assuming the Carolina North Campus is built. 
 
Luther King Jr. Boulevard at Blossom Lane. Such infor-
mation could be useful for zoning decisions (e.g., deci-

sions about locations for schools, retirement homes, or 
other land uses attracting sensitive populations). 
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4. Discussion 

Our results are consistent with the few empirical evalua-
tions of the accuracy in predicting roadway PM2.5 con-
centrations of CAL3QHCR and its predecessor, known 
as CALINE. Yura et al. compared CALINE predictions 
of PM2.5 to measured PM2.5 concentrations at a busy 
intersection in a suburban community in Sacramento, 
California, and an urban site along a six-lane road in 
London, England [32]. They found that 80% of model 
predictions were within a factor-of-two envelope of meas-
ured concentrations at the suburban site but that only 
56% of predictions were within the factor-of-two enve-
lope for the urban site. They attributed the poor per-
formance at the urban site to limitations of the emissions 
factors they used (they relied on scaling United Kingdom 
PM10 emissions factors) and to street canyon effects. 
Chen et al. extended Yura’s work by comparing the per-
formance of the CAL3QHC model to that of the 
CALINE model for the same two sites (although during a 
different time period) as Yura used [26]. Chen et al. 
found that predicted PM2.5 concentrations were within 
the factor-of-two envelope for 69% of the Sacramento 
data points and for 59% of the London data points. In 
both cities, CAL3QHC outperformed CALINE. Gokhale 
and Raokhande compared the CALINE and CAL3QHC 
models’ ability to predict roadside PM2.5 concentrations 
at a busy intersection in Guwahati, India [38]. They 
found that the CAL3QHC model predictions were within 
a factor-of-two envelope for 65% of (66 of 102) hourly 
PM2.5 observations during winter and that the CAL3QHC 
model outperformed the CALINE model (the latter of 
which produced predictions within the factor-of-two en-
velope for 46 of 102 data points). 

Our findings about the amount of PM2.5 contributed 
to a given location by a single busy roadway also are 
consistent with findings of the few modeling studies and 
quantitative HIAs of local effects of traffic in the United 
States. In a modeling study, Zhang and Batterman used 
CALINE along with the predecessor to MOVES, known 
as MOBILE6.2, to estimate the amount of PM2.5 pollu-
tion contributed by a busy roadway in Detroit, Michigan 
[33]. They found that the local roadway contributed only 
a small amount of the measured PM2.5: total measured 
PM2.5 concentrations averaged 16.8 µg/m3, but Zhang 
and Batterman attributed “no more than 0.5 µg/m3” to the 
roadway. They attributed the majority of observed PM2.5 
“to long range transport of sulfate and other aerosols 
from the Ohio River Valley.” Chen et al. also found that 
roadways in Sacramento and London contributed rela-
tively small fractions to observed PM2.5 concentrations 
at the study sites [26]. 

Of the four transportation-related quantitative HIAs 
identified in the comprehensive review by Bhatia and 

Seto et al., three predicted PM2.5 concentrations attrib-
utable to vehicles on roadways (the fourth predicted 
PM10 concentrations) [9]. All of these HIAs (including 
the HIA that estimated PM10 concentrations) focused on 
proposed new development projects in or near Oakland, 
California, and all used CAL3QHCR to support their 
predictions. The first, an HIA of a proposed residential 
development to be constructed near a highway (with an 
average daily traffic volume of about 119,000 vehicles) 
in Pittsburg, California, used CAL3QHCR to estimate 
that traffic-attributable exposures adjacent to the high-
way are about 2 µg/m3 but that these exposures decline 
rapidly with distance to about 0.2 µg/m3 [39]; this esti-
mate assumed a constant emissions factor of 0.15 g/ve- 
hicle-mile travelled, whereas our estimate employed 
MOVES to estimate link-specific emissions factors, re-
sulting in a range of emissions factors of 0.02 - 0.5 
g/vehicle-mile travelled. The second of these three quan-
titative HIAs considered the potential traffic-related health 
effects of potential affordable housing sites in Oakland, 
California; this HIA used CAL3QHCR to estimate that 
two major roadways with combined annual average daily 
traffic counts of about 225,000 vehicles would contribute 
about 0.4 - 0.5 µg/m3 to PM2.5 exposures at the locations 
under consideration, all of which were within meters of 
the roadways [40]. The third HIA concerned a potential 
new residential development near a transit station in 
Oakland; it estimated that alongside a major highway 
(with daily traffic counts averaging 144,000 vehicles) 
neighboring the proposed development site, about 0.3 
µg/m3 of PM2.5 could be attributed to traffic but that this 
traffic-related contribution decreased to 0.1 µg/m3 at a 
distance of 150 m from the highway [41]. In summary, 
these HIAs estimate that directly adjacent to highways 
running through the Oakland area, traffic contributes 
anywhere from about 0.3 - 2 µg/m3. All of these high-
ways have daily traffic counts at least five times as high 
as the current traffic along the roadway corridor analyzed 
in the present study. The estimated roadway contributions 
that our modeling approach yielded (with the maximum 
roadway-contributed concentration of 0.14 µg/m3 under 
current conditions) hence are quite consistent with these 
previous estimates when traffic volumes and distances of 
census block centroids to the roadway are considered. 
That is, if one multiplies the maximum estimate from our 
modeling approach by 5, then the estimated maximum 
predicted concentration in any census block in the study 
corridor is 0.7 µg/m3. This is within the range of concen-
trations predicted in the California studies. 

5. Conclusions 

In this study, a new modeling framework to quantify the 
project traffic growth impacts on population exposure to 
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PM2.5 air pollution was proposed and then demonstrated 
by quantifying exposure to roadway PM2.5 emissions 
that may occur in the future due to the Carolina North 
development in Chapel Hill, North Carolina. This mod-
eling framework should benefit others conducting quan-
titative HIAs of the built environment and transportation 
projects. Whereas previous HIAs employing air disper-
sion models have used average meteorological data and 
have assumed that vehicles move at a constant cruising 
speed along roadway links, our approach considers link- 
by-link variation in vehicle behavior and hourly mete-
orological variability. 

Our results reveal that improvements in vehicle tech-
nologies and fuels will be a key factor in protecting pub-
lic health from the air pollution generated by increases in 
traffic expected to occur due to local and regional devel-
opments in the future. In fact, the models we employed 
predict that traffic-related PM2.5 in the study corridor 
may actually decrease in the future, even if traffic in-
creases, due to improved vehicle technologies and fuels. 

Our results also reveal the need for improve models 
to predict near-road PM2.5 concentrations. While the 
CAL3QHCR dispersion model was able to predict dis-
persion reasonably well, about 25% of model predictions 
over-estimated dispersion. This overestimation bias re-
sults in under-estimates of pollutant exposure. Hence, 
reducing model bias is critical to ensuring that deci-
sion-makers are adequately informed about air quality 
and health risks associated with roadway traffic. 
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