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Abstract 
A consistent physical and mathematical model of the propagation of electro-
magnetic waves in an inhomogeneous medium with strong discontinuities of 
the electromagnetic field at the interface of two media, which is a rough sur-
face, was developed. Mathematical modeling of rough surfaces and their pro-
files was carried out using fractal geometry, which allows us to display the 
topology of the object as close as possible to reality. For real heterogeneous 
rough structures, we have developed a through-counting method that takes 
into account the continuity of the total current at the interfaces of adjacent 
media, the effect of induced surface charge and surface current. This ap-
proach lets one avoid the necessity to set surface impedances depending on 
the structure of the field being determined and on the material properties.  
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1. Introduction 

Imperfectness of the shielding surface is the main factor determining the loss of 
the guide electrodynamic structure. It is manifested in the extremity of the spe-
cific conductivity of the material and the roughness of the shielding surface, de-
termined by the quality of its processing. The problems of the interaction of the 
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electromagnetic field with the interface were considered in a number of works 
[1]-[34]. A better model for rough surface geometry is fractal geometry. From 
general physical considerations, it follows that the surface roughness can be neg-
lected if the size of irregularities is much smaller than the depth of the electro-
magnetic field penetration into the walls of the screen. This condition is usually 
satisfied at frequencies below hundreds of megahertz. However, if the frequency 
increases, in the microwave and optic wavebands, the roughness of shielding 
surfaces becomes the main factor determining the loss of the guide structure, for 
example, antenna devices [20] [29]. In paper [5], the problem of modeling of the 
slope of a random surface profile, presented as a sum of a finite number of si-
nusoids with random phases, is considered. The problem of fluctuations of the 
surface illumination using the proposed method of modeling slopes is investi-
gated, and as a result, the effectiveness of its application is proved. However, 
for surfaces with a fractal structure, the method proposed in [5] is not applicable. 
The problems of accounting for fractal geometry arise during laser microstruc-
turing and polishing of surfaces [15] in technological processes. Methods of laser 
microstructuring of surfaces are widespread in our time. These include the me-
thod of laser smoothing consisting in fast high-temperature exposure and cool-
ing; laser microstructuring of the surface, based on local evaporation of the 
substance; laser roughness control by focusing laser radiation on the treated 
surface; laser surface microstructuring using surface electromagnetic waves. 
The latter method realized in several stages: a surface electromagnetic wave is 
excited at the interface between two media; after the interference of this wave 
with the incident wave on the surface, a new intensity distribution of light is 
formed; then spatial non-uniform surface heating takes place, as a result of 
which spatial periodic structures arise. Experiments show that this method is 
one of the most promising. 

In our work, an attempt to investigate the interaction of an electromagnetic 
wave with a real surface having a fractal geometry has been made. The existing 
classical approaches including the introduction of surface charge and surface 
current do not allow to investigate the interaction of an electromagnetic wave 
with a rough fractal surface. Mathematical modeling of fractal rough surfaces 
using Weierstrass-Mandelbrot formulas, which are continuous but not differen-
tiable, is carried out in this paper. A consistent physico-mathematical model of 
the propagation of electromagnetic waves in a heterogeneous inhomogeneous 
system with strong discontinuities of the electromagnetic field at the interface of 
two media, which is a rough surface, has been developed. 

During the numerical simulation of the interaction of an electromagnetic 
wave with a rough fractal surface, the continuity conditions of the total current 
and the Dirichlet average theorem in the presence of a strong electromagnetic 
field discontinuity at the interfaces of inhomogeneous, angular structures are 
used for the first time. From our point of view, the concept of "surface charge" is 
an idealization. Since in this case, the electric field strength is infinite at the in-
terfaces. In fact, the electric charge is volumetric, has a finite size, occurs when 
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there is a normal component of the electric current and can be summed up with 
an electrostatic charge. Note that in the presence of angular structures it is fun-
damentally difficult to correctly formulate the boundary conditions on the tip, 
where the normal vector has no definite orientation. As is known, the issues of 
nanofocusing of light on the tip are the central problem of modern near-field 
optical microscopy. The solution to this problem allows us to achieve a resolu-
tion above the Rayleigh diffraction limit of conventional optical instruments. 
Nano-focusing of light makes it possible to effectively control the flow of infor-
mation in nano-optics devices [29]. 

The results of the work can be used to study the influence of the roughness of 
the shielding surfaces of waveguides for antenna devices and in laser polishing of 
surfaces. 

2. Fractal Approach to Rough Surfaces 

As previously noted, the surface structure of the waveguide at the micro and 
nano level plays an important role in determining the properties of the device. 
Solution of various practical problems related to hydrodynamics, electrodynamics, 
gas dynamics, etc. requires a very accurate and, most importantly, a realistic descrip-
tion of the structure of interface surfaces. Boundary conditions formulation be-
comes difficult otherwise. 

Simplified descriptions of the surfaces of bodies and of the boundary condi-
tions that form a mathematical model greatly simplify the problem being solved, 
but, on the other hand, it strongly distorts the reality and in many cases is un-
fairly approximate. 

Excluding the roughness of the surface of a device and taking an object as ab-
solutely smooth leads to a huge number of results and conclusions that are 
groundless and, generally speaking, invented. It was experimentally shown that 
the microstructure and nanostructure of the surface greatly affect the results of 
numerical experiments. 

Discrete roughness models [22] [31] were used previously, the parameters of 
which were chosen experimentally as a result of profile processing, based on mi-
crogeometry. 

Further, as already mentioned, for modeling rough surfaces, fractal geometry 
has been used. Its specific feature consists in the constancy of fractal parameters 
on all scales, their independence of the sample length. The structure of the natu-
ral surface is equally fractal at all levels. 

We present several formulas by which natural surfaces are modeled. 
Weierstrass-Mandelbrot formulas are used for modeling the profile of rough 

surfaces using the fractal approach. 

( ) ( )
1

2
1

cos 2 , 1 2, 1,f

f

n
D

fD n
n

xz x G Dγ γ
γ

∞
−

−
=

= < < >
π∑                (1) 

where G is the length scale, fD  is the fractal dimension, γ  is the frequency 
and nγ  is the frequency spectrum [27]. 
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There is another formula for describing the surface profile  

( ) ( ) ( )( )2 cos cos 2 ,fD n n
n n

n
z x xγ ϕ γ ϕ

∞ −

=−∞

π= − +∑             (2) 

where nϕ  is the random phase. 
The Weierstrass-Mandelbrot formulas are characterized by continuity, autoaf-

finity, and nondifferentiability. 
To describe the roughest surface, we use the function: 
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 (3) 

where L is the sample length, mL  is the limiting length, 1s fD D= + , and M is 
the number of imposed waves during simulation. 

Dealing with rough surfaces that will subsequently represent the interface be-
tween two heterogeneous media, we will model their profiles by using Formulas 
(1) and (2), since the problem will be solved in 2D formulation (see Figures 
1-3). 
 

 
Figure 1. Profiles of fractal rough surfaces according to: (a) Formula (1); (b) Formula (2) 
at 3, 1.9, 1.7, 3fM D Lγ= = = =  and 3G = . The summation was made within [ ]1;M . 

 

 
Figure 2. Profiles of fractal rough surfaces according to: (a) Formula (1); (b) Formula (2) 
at 5, 1.6, 1.5, 4fM D Lγ= = = =  and 4G = . The summation was made within [ ]1;M . 
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We also model the rough surfaces themselves in 3D using, for clarity, the 
fractal approach. We use Formula (3). Quite realistic surfaces are simulated at 
different parameters. Each surface is provided with a density graph (see Figures 
4-6). 
 

 
Figure 3. Profiles of fractal rough surfaces according to (a) Formula (1); (b) Formula (2) 
at 9, 1.8, 1.4, 4fM D Lγ= = = =  and 5G = . The summation was made within [ ]1;M . 

 

 
Figure 4. Fractal rough surface and its density graph at  

max7, 6, 1.7, 1.5, 3fM n D Lγ= = = = =  and 3G = . 

 

 
Figure 5. Fractal rough surface and its density graph at  

max12, 12, 1.7, 1.5, 5fM n D Lγ= = = = =  and 6G = . 

 

 
Figure 6. Fractal rough surface and its density graph at  

max3, 3, 1.7, 1.5, 2fM n D Lγ= = = = =  and 2G = . 
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3. Development of the Mathematical Model of  
Electromagnetic Waves Nanofocusing 

Further, we develop a system of differential equations representing a model of 
the propagation of electromagnetic signals in layered media. 

Earlier [7], we developed a consistent physicomathematical model of the prop-
agation of a soliton-like electromagnetic pulse in a heterogeneous inhomogeneous 
medium with strong discontinuities of the electromagnetic field. The model is 
based on the reduction of Maxwell’s equations to a well-studied wave equation. 
When specifying an electromagnetic pulse, its amplitude modulation and non-
stationary broadening of the spectral line were taken into account. The condi-
tions for pulse matching for the first initial-boundary value problem are ob-
tained. The temporal dispersion of electrical induction is allowed by the function 
of establishing a signal, taking into account the broadening of its spectral line 
and integration over the continuous spectrum. With this approach, there is no 
need to neglect spatial derivatives, as well as to use spatial nonlocal relations to 
take into account the influence of surface charge, surface current, and spatial 
dispersion of electrical induction at the interfaces of adjacent media [6] [7] [18] 
[19]. 

Electromagnetic radiation propagating in space can encounter various ob-
stacles in its path. Interracting with these obstacles, there is a strong discontinu-
ity of the electromagnetic field at the interfaces, which occurs due to the differ-
ence in dielectric constants of the media. On both sides of this surface, the mag-
netic and electric field strength vectors are continuous and finite [19]. 

The Maxwell equations, written below in differential form, describe the inte-
raction of a field with a material medium, but cannot be called a complete sys-
tem, because they do not reflect media properties in the presence of strong elec-
tromagnetic field discontinuities at the interface between adjacent media [6] [7] 
[19]. 

tot , ,ρ= ∇× ∇ =j H D                      (4) 

, 0.
t

∂
− = ∇× ∇ =
∂
B E B                      (5) 

where tot 0,
t

λ µµ∂
= + =

∂
Dj E B H  and 0εε=D E . 

The boundary conditions at the interfaces of two different media in a hetero-
geneous system are  

1 2
,n nD D σ− =                         (6) 

1 2
0,E Eτ τ− =                          (7) 

1 2
0,n nB B− =                          (8) 

[ ]
1 2

.τ τ τ− =H H i n                        (9) 

where indexes n and τ  correspond to the normal and tangential components 
of the vectors to the surface S, the subscripts 1 and 2 correspond to adjacent me-
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dia with different electrophysical properties, and τ  is any direction tangential 
to the surface of discontinuity [19]. For induced surface charge and current, the 
closing relations are absent [6] [7] [19]. The well-known Shchukin-Leontovich 
condition suggests that the properties of the medium vary slightly at distances of 
the order of the wavelength, but for rough surfaces this assumption leads to large 
errors in the calculations [6] [7] [18] [19]. 

4. Generalized Wave Equation for the Intensity Vector and  
the Conditions at the Interfaces in the Presence of Strong  
Electromagnetic Field Breaks 

After some transformations of Formulas (4) and (5) we obtain 

( )2tot

0 0

1 1 grad div .
t µµ µµ

∂
= ∇ −

∂
j

E E                   (10) 

In the Cartesian coordinates Formula (10) may be written as follows 
2 2 2

tot
2 2 2

0 0

1 1 ,yx x x x x zEj E E E E E
t x x y zx y zµµ µµ

∂   ∂ ∂ ∂ ∂ ∂ ∂∂
= + + − + +   ∂ ∂ ∂ ∂ ∂∂ ∂ ∂   

    (11) 

2 2 2
tot

2 2 2
0 0

1 1 ,y y y y yx zj E E E EE E
t y x y zx y zµµ µµ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂∂
= + + − + +    ∂ ∂ ∂ ∂ ∂∂ ∂ ∂   

    (12) 

2 2 2
tot

2 2 2
0 0

1 1 .yz xz z z zEj EE E E E
t z x y zx y zµµ µµ

∂   ∂ ∂∂ ∂ ∂ ∂∂
= + + − + +   ∂ ∂ ∂ ∂ ∂∂ ∂ ∂   

    (13) 

At the interface, the following relationship also holds [6]: 

1 2
div ,x xE E

tτ
σλ λ ∂

+ − = −
∂

i                     (14) 

We write conditions (6)-(9) in the Cartesian coordinate system 

1 2
,x xD D σ− =                           (15) 

1 2
0,y yE E− =                           (16) 

1 2
0,z zE E− =                            (17) 

1 2
0,x xB B− =                            (18) 

1 2
,y y zH H i− =                           (19) 

1 2
,z z yH H i− =                           (20) 

where y zi iτ = +i j k  is the surface current density. 
The order of the system of differential Equations (11)-(13) is 18. By differen-

tiating expression (15) whith respect to time and taking into account relation 
(14), we obtain the condition for the normal components of the total current at 
the interface: 

1 2tot totdiv .x xj jτ + =i                        (21) 

This allows us to exclude from consideration the surface charge density and 
surface current. The question is described in more detail in [6] [7] [19]. 
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According to [6] [7] [19], the following conditions are met at the interface of 
adjacent media: 
− the equality of the normal components of the total current; 
− the equality of tangential projections of the electric field vortex; 
− the conservation of electric charge; 
− the equality of the tangential components of the electric field and their deriv-

atives in the tangential direction; 
− the equality of the derivatives of the normal components of the total current 

in the direction tangential to the interface of adjacent media, with account 
for the influence of surface currents without the introduction of a surface 
charge σ . 

Thus, in each section of the layered medium, a numerical solution requires a 
use of through-counting schemes and, at the same time, sampling of the me-
dium in such a way that the boundaries of layers could have common nodes. The 
medium was divided into finite elements so that the nodes of the finite-element 
grid lying on the interface simultaneously belonged to media with different elec-
trophysical properties. In this case, the condition of equality of total currents, 
equality of charge fluxes [6] [7] [19] should be satisfied at the interface. 

Reformulation of the Maxwell equations and their reduction to the wave equ-
ation allows one to exclude from consideration the surface charge and current [6] 
[7] [18] [19], but in this case, the number of boundary conditions increases and 
becomes equal to 15. Such a task is technically difficult to solve, but if the condi-
tions of the continuity of the total current and the through-counting scheme [18] 
[19] are used, the result can be obtained. 

For example, in Comsol Multiphysics (or similar software), a splane simulated 
domain with different inclusions can be considered as one medium, where its 
properties depend on the coordinates ( ) ( ),r rε λ . The boundary conditions are 
usually specified as ( ) ( )sin , cosx x y tE E t t E E t tω ω= = . This approach works 
well for both macroobjects and nanoobjects 10-50 nm in size, at a wavelength of 
about 400 - 500 nm (light) [6] [7]. 

When using Comsol Multiphysics, it is possible to obtain unreliable results, 
since the solution does not require compliance with the conditions at the corner 
points for the initial-boundary value problem. Therefore, for more accurate re-
sults, it is better to use Wolfram Mathematica. 

It is known that the general solution of the wave equation is the d'Alembert 
solution—the sum of the forward and reverse waves, with the reverse wave hav-
ing a broadening 2± ∆ . As a result, for the electromagnetic wave we obtain  

( ) [ ] ( ) ( )
[ ] 2

1 cos 2sin sin 2 sin 2

4 1 cos sin sin ,
xE t A m t t t t

A m t t t

θ ω ω ω

θ ω

= + − − ∆ + + ∆  
= ± ∆

    (22) 

( ) [ ] ( ) ( )
[ ] 2

1 cos 2cos cos 2 cos 2

4 1 cos sin cos ,
yE t A m t t t t

A m t t t

θ ω ω ω

θ ω

= + − − ∆ + + ∆  
= ± ∆

    (23) 

The functions represented by Formulas (22) and (23) continuously fill the 
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frequency range 2 2ω ω ω− ∆ ≤ ≤ + ∆ . The broadening is caused by the interac-
tion of the atom with the surrounding particles. In addition, the establishment of 
a signal at the boundary is a transitional process, so finally  

( ) ( )

( )
( )

2 2
0 0

2 2
2 sin sin

2 2
22

0

1 cos sin21 sin d
4e e

1 cos sin21 sin d ,
4sin

x t t

m t t
E t A t

m t t
t

ch t

ω

ω λ ω λ ω

ω

ω

θ ω
ω ω

θ ω
ω ω

λ ω

+ ∆

− ∆ −

+ ∆

− ∆

  − 
= −   ∆+  
   −  = −
   ∆  

∫

∫
 (24) 

( ) ( )

( )
( )

2 2
0 0

2 2
2 sin sin

2 2
22

0

1 cos sin21 sin d
4e e

1 cos cos21 sin d .
4sin

y t t

m t t
E t A t

m t t
t

ch t

ω

ω λ ω λ ω

ω

ω

θ ω
ω ω

θ ω
ω ω

λ ω

+ ∆

− ∆ −

+ ∆

− ∆

  − 
= −   ∆+  
   −  = −
   ∆  

∫

∫
 (25) 

The quantities ( )xE t  and ( )yE t  satisfy the matching conditions 
( )0 0xE = , ( )0 0yE = , ( )0 0xE′ = , and ( )0 0yE′ = , when radiation propagates 

with zero initial conditions. 

5. Mathematical Modeling 
5.1. Building a Model 

We need to solve a mixed problem for a hyperbolic equation: 

( )( )
2

2
0 2

0

1 grad div ,E E E E
t t

λ εε
µµ

∂ ∂
+ = ∇ −

∂ ∂
             (26) 

0 0,tE
=
=                            (27) 

0

0,
t

E
t =

∂
=

∂
                           (28) 

( ).E tϕ=                            (29) 

Formula (26) is an equation for the electric field strength. We consider the 
case in 2D formulation, i.e. when the function E  is two-dimensional. Formulas 
(27) and (28) represent zero initial conditions. Formula (29) is a boundary con-
dition; Γ  is the boundary of the area where the solution is built. For simplicity 
of calculations and perception, we take a region of a square shape that has the 
limits [ ] [ ]0;1 0;1× . 

The function ( )tϕ  carries information about the signal distributed in the 
area. Let us assume that the signal does not depend on the point of space in 
which it is located. 

We rewrite the original problem for each of the components of the vector E, 
given that the boundary Γ  is square 

22 2

0 2 2
0

1 ,yx x x EE E E
t x yt y

λ εε
µµ

 ∂∂ ∂ ∂
+ = −  ∂ ∂ ∂∂ ∂ 

              (30) 

2 2 2

0 2 2
0

1 ,y y y xE E E E
t x yt y

λ εε
µµ

 ∂ ∂ ∂ ∂
+ = −  ∂ ∂ ∂∂ ∂ 

              (31) 
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0 0
0, 0,x yt t

E E
= =
= =                      (32) 

0 0

0, 0,yx

t t

EE
t t= =

∂∂
= =

∂ ∂
                    (33) 

( ) ( )0 0
, ,x x y yx x

E t E tϕ ϕ
= =
= =                  (34) 

( ) ( )1 1
,x x y yx x

E t E tϕ ϕ
= =
= =                   (35) 

( ) ( )0 0
, ,x x y yy y

E t E tϕ ϕ
= =
= =                  (36) 

( ) ( )1 1
, ,x x y yy y

E t E tϕ ϕ
= =
= =                  (37) 

[ ] [ ] [ ] 8; 0;1 0;1 , 0;5 10 .x y t − ∈ × ∈ ×                 (38) 

The function ( ) ( ) ( )( ),x yt t tϕ ϕ=j  is described by the following equations 
[7]: 

( ) ( )2 2
0 0

2 2
2 sin sin

1 21 sin d 1 cos sin ,
4 e e

x t t
t t m t t

ω

ω λ ϕ λ ϕ
ϕ ϕ ϕ θ ω

+ ∆

− ∆ −

  
= − −  ∆ +  

∫  (39) 

( ) ( )2 2
0 0

2 2
2 sin sin

1 21 sin d 1 cos cos .
4 e e

y t t
t t m t t

ω

ω λ ϕ λ ϕ
ϕ ϕ ϕ θ ω

+ ∆

− ∆ −

  
= − −  ∆ +  

∫  (40) 

The problem is modeled for 80;5 10t − ∈ ×   due to the limited power of the 
computer. But this time is enough for the wave to cross the region several times. 
If computer resources were not limited, the problem can be solved for any 0t ≥ . 

The system of Equations (30)-(37) makes it possible to take into account the 
effect of induced surface electric charges at the interfaces of layered and angular 
structures [6] [7] [18] [19]. 

We recall that the problem is solved when the source region contains two me-
dia with different electromagnetic properties. For example, the propagated wave 
runs against a body that, of course, has a bounding surface. On a rather small 
scale, this surface represents roughness of different kind. Our task is to study 
and find out how roughness affects the electric field strength, and how strength 
is distributed in strong discontinuities at the boundary. 

Based on integration with respect to the results obtained, we construct a con-
tinuous function by interpolation. It will be used as boundary conditions. The 
solution to this problem itself is obtained by applying the theory of fi-
nite-differences schemes and numerical methods. All this has been programmed 
in Wolfram Mathematica, and the necessary constants were taken from refer-
ence books. 

5.2. Graphic Visualization of the Results Obtained 

In this section we simulate electromagnetic field by using Formulas (30)-(37). 
For clarity, we construct several rough surfaces that represent fractal. 
The physical region is represented by a square of size [ ] [ ]0;1 0;1× . At the 

bottom of this region, we place the rough surfaces. As a result, the region ap-

https://doi.org/10.4236/jemaa.2019.118008


N. N. Grinchik et al. 
 

 

DOI: 10.4236/jemaa.2019.118008 127 Journal of Electromagnetic Analysis and Applications 
 

pears to by interface of two heterogeneous media, where strong discontinuities 
of the electromagnetic field are observed. The results of numerical simulation 
are presented in Figures 7-18. We also give examples of the propagation of 
electromagnetic waves modeled with the aid of the Comsol Multiphysics 
package. As already mentioned, the solution does not require the fulfillment of 
the agreement conditions at the corner points for the initial-boundary value 
problem, and the result can be considered only approximately. Moreover, the 
modeling of fractal surfaces is difficult to implement by means of this package. 
Therefore, we simulate a random roughness. Simulation results are presented 
below (see Figures 19-21). 
 

 
Figure 7. Fractal rough surface at 3, 1.3, 1.7, 2fM D Lγ= = = =  and 1G = . 

 

 
Figure 8. Discretization of the fractal rough surface for numerical calculations. 

 

 
Figure 9. Vector of the electric field strength at 810t −= . 
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Figure 10. Fractal rough surface at 4, 1.3, 1.7, 3fM D Lγ= = = =  and 1G = . 

 

 
Figure 11. Discretization of the fractal rough surface for numerical calculations (the 
second surface). 
 

 
Figure 12. Vector of the electric field strength 810t −=  for the second roughness. 
 

 
Figure 13. Fractal rough surface at 2, 1.3, 1.7, 3fM D Lγ= = = =  and 1G = . 
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Figure 14. Discretization of the fractal rough surface for numerical calculations (the third 
surface). 
 

 
Figure 15. The vector of the electric field strength 810t −=  for the third roughness. 
 

 
Figure 16. Fractal rough surface at 3, 1.3, 1.7, 3fM D Lγ= = = =  and 1G = . 

 

 
Figure 17. Discretization of the fractal rough surface for numerical calculations (the 
fourth surface). 
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Figure 18. Vectors of the electric field strength 810t −=  for the fourth roughness. 
 

 
Figure 19. Distribution of the electromagnetic field energy. The size of the region is given 

in nanometers. The angle of incidence is 40θ =  , wavelength 475 nmλ = . The region 
includes a perfectly smooth silver plate and air. 
 

 
Figure 20. Distribution of the electromagnetic field energy. The size of the region is given 

in nanometers. The angle of incidence is 40θ =  , wavelength 475 nmλ = . The region 
includes a rough silver plate and air. 
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Figure 21. Distribution of the electromagnetic field energy. The size of the region is given 

in nanometers. The angle of incidence is 40θ =  , wavelength 475 nmλ = . The region 
represents the interface of the silver rough object and air. 

6. Conclusion 

A consistent physical-mathematical model of the propagation of electromagnetic 
waves in a heterogeneous system in the presence of strong electromagnetic field 
discontinuities at the interface between two media that represents a rough sur-
face modeled using fractal geometry conception has been developed. Mathemat-
ical modeling of fractal rough surfaces using Weierstrass-Mandelbrot formulas 
was performed. The results obtained in the work in the form of constructed 
conditions for the continuity of the total current in the heterogeneous system 
make it possible to mathematically soundly approach to the use of end-to-end 
counting schemes in numerical simulations of the interaction of an electro-
magnetic field with piecewise homogeneous complex media. The presented 
results of numerical simulation show that the maximum intensity of the elec-
tromagnetic field is observed, due to nanofocusing, not on the edge of the 
roughness, but in its nearest vicinity. This approach can be applied to the 
problems of near-field optical microscopy and to the study of nanofocusing of 
light on the tip in nano-optics. 
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