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Abstract 
In general, micropulsation is generated by the free energy within the magnetos-
phere, which is mainly caused by the magnetosphere-solar wind interactions 
and/or magnetic field reconnections in the magnetospheric tail. In this article, 
we studied the types of low-frequency magnetospheric micropulsations Pc5 and 
Pc6 (1 - 6 mHz), during three magnetic storms, using ground magnetic observa-
tions. One of the main motivations of this study was to produce scientific know-
ledge on the subject in order to fill knowledge gaps in this region, collaborating 
with existing bibliographies. The data were recorded in a series of six Brazilian 
stations close to the Dip Equator (dip = 0), with using data from the Ascension 
Island observatory. Pulse trains were found to occur simultaneously with almost 
identical waveforms, with significant amplitude increase near magnetic local 
noon. Amplitude spectra showed a clear similarity in all equatorial seasons. The 
results obtained were compared with studies performed in regions with similar 
low latitudes. The possible mechanisms that induced these micropulsations and 
the peculiarities presented by these data were also discussed in this article. 
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1. Introduction 
Geomagnetic storm conditions are characterized by an intensification of equa-
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torial “ring” current (at 2 - 7 Earth radii above the ground) and an expansion of 
the auroral oval region to lower latitudes [1]. Disturbances caused by geomag-
netic storms enhance the appearance of geomagnetic pulsations or ultra-low 
frequency waves (ULF). Most of the geomagnetic pulsations appear as magne-
tospheric hydromagnetic waves (Alfvén) thought to be generated by the Kel-
vin-Helmholtz instability process as a result when one magnetospheric plasma is 
transmitted over another [2]. These pulsations are transported to the auroral la-
titudes along the lines of the magnetospheric field and, thus, exhibit equivalent 
behaviors in conjugate regions. 

ULFs having the period range of 2.5 to 20 minutes (1 - 7 mHz) are classified as 
continuous pulsations of type 5 and 6 (Pc 5-6). The beautiful sinusoidal shape of 
the amplitude is often considered as a result of the resonance effect between a 
conjugate field line, assuming that reflection occurs in the northern and south-
ern ionosphere. The mechanism of their generation apparently corresponds to 
field line resonances driven by magnetosphere cavity or waveguide modes [3] 
[4]. Pc5-6 are generally observed at ground stations located in polar latitudes [5], 
however, are also observed at low latitudes [6]. 

In this article, we presented a comparative investigation of the ULF (Pc5-6) 
geomagnetic pulses detected in six Brazilian terrestrial stations and in the As-
cension Island observatory (United Kingdom). We illustrated our studies with 
the sudden onset of the storm (SSC) occurred on September 9 and September 26, 
2011, at 11:00 UT and on the 17th at 3:00 UT. To examine the characteristics of 
the magnetic pulses, we used digital filtering methods (bandpass) and Wavelet. 
For this, we used the time series formed by the horizontal component H of the 
geomagnetic field. 

This study aims to fill a knowledge gap by collaborating with previous re-
search and scientific studies in this particular region. 

2. Data Sets 

The investigation is based on digitized one-second sampling geomagnetic data 
on the latitudinal array of six Brazilian ground magnetic stations mounted per-
pendicular to the Dip Equator and the Ascension Island observatory, during 
three complete days of moderate storms on 09, 17 and 26, of September 2011 
Figure 1. The coordinates and schematic presentation of the station’s locations 
are given in Figure 2 and Table 1. Only one station Juaba (JUA) is situated un-
der the dip equator (dip = 0). Two stations Tatuoca (TTB) and Goianésia (GOI) 
are located at few degrees away from the dip = 0. 

The data were recorded using the Lemi-417 system, produced on the basis of 
fluxgate sensor. To illustrate our study, we took the data corresponding to 9, 17 and 
26 September 2011, in order to examine the pulsations associated with a sudden 
onset of storm (SSC) occurred at 11:00 UT (days 9 and 26 ) and 03:00 (day 17). 

3. Results 

Figures 3-5 show the geomagnetic diurnal variations in September in all the  
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Figure 1. Dst geomagnetic index for the month of September 2011. Figure edited from  
http://wdc.kugi.kyoto-u.ac.jp/dst_final/201109/. 

 

 
Figure 2. Schematic map of stations’ location. 

 
Table 1. The geographic and geomagnetic locations of all stations. 

Station Name Code Lat. (G.G) Long. (W) (G.G) Lat. (G.M) Long. (E) (G.M) 

São Joaquim do Pacuí SJP 0.81 50.75 10.04 21.89 

Tatuoca TTB −1.20 48.50 7.88 24.03 

Juába JUA 2.38 49.55 6.78 22.89 

Goianésia GOI −3.83 49.08 5.83 23.26 

Carmolândia CAR −7.06 48.38 2.06 23.73 

Centenário CEN −8.98 47.20 0.08 24.77 

Ascension Island ASC −7.94 14.35 −2.55 57.19 

 
regions used. On day 17, the stations where we can observe a different pattern in 
relation to days 9 and 26, were possibly influenced by particular conditions in the 
electronic density in the EEJ, thus its pattern was changed in relation to other days. 

The analyzed Pc5-6 geomagnetic pulsations at low and equatorial latitudes 
look like isolated simultaneous wave packets at every station. Figures 6-8 show 
the 1.6 - 6.7 mHz filtered pulsations at five near dip equator stations (SJP, TTB, 
GOI, CAR and CENT) and JUA (color red) under the Electrojet (EEJ) in the in-
terval 0 - 24 UT. The pulsations occur as individual simultaneous wave packets 
with similar appearance over the whole range of longitudes. 
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Figure 3. Diurnal variation in component H between at the six longitudinal sectors on 
September 9, 2011, at 00-24 UT. 

 

 
Figure 4. Diurnal variation in component H between at the six longitudinal sectors on 
September 17, 2011, at 00-24 UT. 

 

 
Figure 5. Diurnal variation in component H between at the six longitudinal sectors on 
September 26, 2011, at 00-24 UT. 
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Figure 6. Filtered pulsations (Pc5) at six stations, on 9 September 2011. 
 

 
Figure 7. Filtered pulsations (Pc5) at six stations, on 26 September 2011. 
 

 
Figure 8. Filtered pulsations (Pc5) at six stations, on 17 September 2011. 
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Figures 3-5 show the morphological similarities, with H reaching maximum 
amplitude around local noon. Probably the latitudinal proximity between the 
stations is producing such similarity. However, near the dip = 0, TTB and GOI, 
present a marked depression at 10 UT, JUA located exactly under the dip = 0, 
has a greater depression in relation to the others. This characteristic was also 
observed in studies known by the Equatorial Electrojet (EEJ). 

On the 9th (Figure 6), the wave trains were recorded between 13 and 18 UT, 
decreasing their intensity at dusk. The same behavior could be seen on day 26 
(Figure 8), except 17th (Figure 7), where the micropulsations were recorded 
uniformly throughout the day and with well-defined wave packets and with a 
similarity between stations. 

Figures 9-11 show the Pc6 pulses recorded at the six stations on days 9, 17 
and 26. As in the Pc5 pulses, the Pc6 wave trains also showed the same beha-
viors. 

The amplitude of the wave packet observed between 0 - 24 UT in all stages did 
not show large amplitudes only in the local half day, but also in the afternoon 
and in the evening. This fact demonstrates that the enhancement of the H com-
ponent of the equatorial pulse intensity Pc5-6 is not confined to hours near the 
local noon. 

Figures 12-17 show the energy spectral analysis with wavelets of the H com-
ponent, of geomagnetic pulsations in the period Pc5-6 (2 - 20 min). On day 9 
pulsations of type Pc5-6 were recorded in the period between 12 UT and 18 UT 
in all Brazilian stations. The pulsations were observed almost simultaneously in 
time, presenting marked energy levels in the stations near the EEJ. In the ASC 
station, the Pc5-6 began in the same period as in the Brazilian stations but were 
observed until 14UT, presenting low energy levels. 

On day 17, pulsations were recorded throughout the 24 hours, the Brazilian 
stations continued to present temporal similarity with the JUA and GOI stations 
presenting higher energy levels in comparison with the stations farthest from the  

 

 
Figure 9. Filtered pulsations (Pc6) at six stations, on 9 September 2011. 
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Figure 10. Filtered pulsations (Pc6) at six stations, on 17 September 2011. 
 

 
Figure 11. Filtered pulsations (Pc6) at six stations, on 26 September 2011. 
 

 
Figure 12. Pc5 energy spectra (2 - 10 min) and Pc6 (10 - 20 min) in the H component, on 
09-09-11, at the CAR, CEN, GOI and JUA stations. 
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Figure 13. Pc5 energy spectra (2 - 10 min) and Pc6 (10 - 20 min) in the H component, on 
09-09-11, at the SJP, TTB and ASC stations. 
 

 
Figure 14. Pc5 energy spectra (2 - 10 min) and Pc6 (10 - 20 min) in the H component, on 
09-17-11, at the CAR, CEN, GOI and JUA stations. 
 

 
Figure 15. Pc5 energy spectra (2 - 10 min) and Pc6 (10 - 20 min) in the H component, on 
09-17-11, at the SJP, TTB and ASC stations. 
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Figure 16. Pc5 energy spectra (2 - 10 min) and Pc6 (10 - 20 min) in the H component, on 
09-26-11, at the CAR, CEN, GOI and JUA stations. 

 

 
Figure 17. Pc5 energy spectra (2 - 10 min) and Pc6 (10 - 20 min) in the H component, on 
09-26-11, at the SJP, TTB and ASC stations. 
 
EEJ. The 8 UT at the ASC station recorded marked energy in the Pc6 pulse 
range. 

For day 26, the pulsations were only observed from 13 UT in the Brazilian sta-
tions, extending until 20 UT. However, in the ASC station, almost no sign of the 
pulsations was recorded, presenting very low energies in the analyzed period. 
Due to the strong magnetic storm that occurred on the 26th, a high amount of 
energy was observed in the pulsations recorded in the Brazilian stations and in 
the ASC station. 

One of the most important characteristics of heartbeats observed on the sur-
face, is its polarization. The data of the SJP, TTB and CEN stations were 
processed because they are the stations to the South, dip = 0 and more to the 
North of the EEJ respectively. For this analysis, was chosen the 09-09-2011, be-
ing the geomagnetically most disturbing day in the month of September. The 
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results can be seen in Figures 18-20. 
The results obtained through the hodograms show that the direction of prop-

agation (polarization) of the MHD wave in the stations is on the left 
(left-handed). With this result, we can affirm that the pulses Pc5-6 recorded in 
the Brazilian stations are of an alpha nature. 

The results presented for the polarization of the wave observed in Brazilian 
stations are in line with other studies carried out [7] [8]. The alpha waves prop-
agate in the anti-solar direction on the flanks, producing waves in the magneto-
pause. The suggested theories to explain these MHD waves are: surface wave 
generation by Kelvin-Helmholtz instabilities (KH) in the magnetopause, surface 
wave generation in the magnetopause due to the solar wind pressure pulses in 
the magnetic sheath and localized magnetic anomalies, such that the processes of 
flow transfer events or intermittent reconnections may be associated with waves 
in the magnetopause [9] [10] [11]. Due to the location of the Brazilian stations 
(range of influence of the EEJ) and the nature of the pulsations observed, it is 
concluded that the most adequate theory to explain the waves is KH allied to lo-
calized magnetic anomalies. 

4. Conclusion 

Based on the results and discussions presented, it was observed that the diurnal 
variation in the Brazilian stations presented changes caused by changes in io-
nospheric conductivity, which occurred in the equatorial region, during the 24 
 

 
Figure 18. Polarization hodogram, indicating the direction of disturbance of 
the MHD wave in the SJP station 09-09-11. 
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Figure 19. Polarization hodogram, indicating the direction of disturbance of 
the MHD wave in the TTB station 09-09-11. 

 

 
Figure 20. Polarization hodogram, indicating the direction of disturbance of 
the MHD wave in the CEN station 09-09-11. 
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hour period, in magnetically calm and disturbed days, which was not observed at 
the ASC station. The JUA station (dip = 0), presented higher values in the varia-
tion of the H component in relation to the other stations, and results that were 
in agreement with previous studies [12] [13]. 

The results of the filtering and the wavelet analysis presented temporal and 
morphological similarity between the Brazilian stations, being distinguished only 
by the amplitudes. The filtrations showed well-defined wave packets, mainly in 
the Pc6 range. The ASC station also showed some temporal similarity in the re-
pository of the pushes, but weaker in energy. The morphological similarity in the 
Brazilian stations, both in the diurnal variation and in the filtrations, is probably 
due to the latitudinal approximation and to the phenomenon known as conju-
gated points (phenomena observed simultaneously at both ends of a magnetic 
field line). This similarity can also be explained because they have the same ge-
nerating source [14] [15] [16]. 

Figures 12-17 show an increase in the spectral energy of the pulsations under 
different levels of geomagnetic storm, especially in the vicinity of the EEJ. The 
increase in geomagnetic phenomena in the EEJ region (both in number and in-
tensity) is probably directly related to the influence of Cowling conductivity ef-
fects (EEJ) [17]. In these regions several atmospheric phenomena occur due to 
concentrations of particles in the geomagnetic field, however, the mechanisms of 
these effects are not yet fully understood. 

Our results also showed that Pc5-6 were almost not recorded in the ASC ob-
servatory, presenting low energy levels, even in days of magnetic storms. A 
possible hypothesis of this effect is that the region is little reactive to this type of 
heartbeat, possibly because it is outside the influence of the EEJ, as reported in 
similar works [18] [19] [20]. 

The TTB, JUA, and GOI stations presented considerable spectral energy val-
ues, possibly due to the extra ionization in the E layer of the ionosphere, which 
would increase the conductivity in and around the EEJ. 

Thus, it is concluded that both the instabilities generated in the pulsations and 
their surface observations may be directly related to the influence of the EEJ and 
AMAS in the studied regions. The results described so far and the polarization 
analyzes have proved that the nature of micropulsations recorded in the surface 
stations of this thesis is torsional (polarized on the left). They have transverse 
propagation mode along the magnetic field line. Due to the nature of the MHD 
waves being torsional and by the locality of the studied stations, it is also con-
cluded that the mechanism of MHD wave generation is influenced by Kel-
vin-Helmholtz instabilities in the magnetopause and localized magnetic anoma-
lies, transmitted by waveguides, and in fact, also observed in previous studies 
[21] [22] [23]. The methodology used in the data analysis process was of funda-
mental importance in the identification of the events, as well as in the determi-
nation of the spectral frequencies, power spectrum estimation, energy analysis 
and signal polarization parameters. 
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