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Abstract 
We address the problem of the force exerted on a dielectric slab partially in-
troduced into a charged parallel plate capacitor. This elementary problem is 
usually solved calculating this force as the gradient of an energy and attribut-
ing its origin to the action of the fringing field outside the capacitor on the 
dipoles of the dielectric slab. By applying Maxwell’s theory of electromagnetic 
stresses, we show that this force acts at the interface dielectric-vacuum and 
originates from the action of these stresses. This approach permits to obtain 
the force as a volume integration of a force density, or as a surface integral of a 
stress tensor. This force density and the stress tensor are part of a momentum 
balance equation derived from Maxwell’s equations. 
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1. Introduction 

One of the simplest interactions of electromagnetic fields with matter is the in-
teraction of the electrostatic field of a parallel plate capacitor with a dielectric 
slab partially inserted in it (see Figure 1). This interaction manifests as a pulling 
of the slab into the capacitor. How does this force arise? Our aim is to trace the 
origin of this force, establishing that it arises from Maxwell’s stresses, rather than 
from the action of the fringing field on the dipoles. This is done with a force 
density that does not appear in the usual approaches. 
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Figure 1. Parallel-plate capacitor with a dielectric slab partially inserted. 

 
This phenomenon is discussed in elementary and intermediate texts on elec-

tromagnetism, for example [1] [2] [3], and articles [4] [5] [6] [7]. We review 
some of these calculations and analyze their consistency. The generally accepted 
interpretation is that this force results from the interaction of the fringing field 
with the dipoles of the dielectric [1] [2] [3] [4] [5] [7]. However, calculating the 
force with this approach is practically impossible since the fringing field cannot 
be calculated. Furthermore, in the usual calculations [1] [2] [3] [4] [5] [7], the 
fringing field is neglected, and the uniform field at the interface is used, contra-
dicting the view that it is the fringing field the origin of the force. 

In this work, we calculate the force, first in the usual way as a gradient of an 
energy density but taking into account the discontinuity of the permittivity at 
the interface dielectric-vacuum. This calculation shows that the force acts at the 
interface. We then calculate the force with a volume integration of a force densi-
ty and a surface integration of the Maxwell electrostatic stress tensor. Our results 
show that this force arises from Maxwell’s electrostatic stress, and not from the 
fringing field. 

2. Where Does the Force Acts? 

There are several ways of calculating the force, usually as a gradient of an energy 
according to how the energy is expressed. An elementary treatment is to com-
pare the energies before and after the introduction of the dielectric slab. At con-
stant field, that is, at constant potential difference, the energy is greater after the 
dielectric is introduced, and the difference in energies is interpreted as the work 
done on the dielectric. 

The force can also be obtained assuming constant charges on the capacitor. In 
this case the mechanical work is at expense of the field energy, but is the same as 
in the case of constant electric field, and therefore the force is the same. If the 
force is calculated with constant charges the force is 

 .
Q

Uf
z

∂ =− ∂ 
                          (1) 

For linear media Maxwell’s theory gives an energy density for the field 
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2
0 ,1

2 ru E=                             (2) 

then, for a dielectric slab partially introduced into the capacitor, neglecting 
fringing effects, the energy is [8] 

( ) ( )( )2 2
0 0

1 1   .
2 2rU E lh d E lh L d= + −                  (3) 

Therefore the force is 

( ) ( )2
0

1  1 .
2z rF E lh= −                        (4) 

We can see that the force has the structure of a difference of pressures multip-
lied by the area of the interface. This force is also experimentally supported [9]. 
But, where does this force acts? This way of calculating the force on the dielectric 
says nothing about where it acts and how it arises. 

It has been proposed [1] [2] [3] [5] [7] that this force arises from the action of 
the fringing field on dipoles in the dielectric. This seems natural since only a 
non-uniform electrostatic field can exert a net force on a dipole. Thus, we can 
use the force density 

( ) ,= ⋅∇f P E                          (5) 

where E  is a non-uniform field, as the fringing field. 
However, sometimes this force density is replaced by the force density 

( ) ,= −∇ ⋅f P E                         (6) 

taking them as equivalent. The energy − ⋅P E  results from transforming the 
change in energy in introducing a dielectric into an electrostatic field, which 
with the positive gradient of energy that is used with a constant field gives the 
correct force on the dielectric slab. This deserves some attention, since the first, 
“Equation (5)”, is zero in a uniform electrostatic field, while the second, “Equa-
tion (6)” may be different from zero in a uniform field. We discuss below the 
equivalence of these expressions and show that they are not equivalent. Also, by 
taking into account that the field energy density is discontinuous at the interface, 
we show that the force acts at the interface. This leads us to consider Maxwell’s 
stresses as the origin of this force. 

The familiar force density “Equation (6)” gives the known force if the discon-
tinuity in polarization P  is taken into account; this can be seen as follows. 

The polarization is 

0 ,eχ=P E                          (7) 

and we must take into account that the susceptibility is discontinuous, 

( ) ( ).e ez d zχ χ= Θ −                       (8) 

Θ  is Heviside’s distribution and d is the position of the interface inside the 
capacitor. Then 

( )( )21 ˆ.
2 z e d z Eχ= − ∂ Θ −f k                   (9) 

https://doi.org/10.4236/jemaa.2018.107010


I. Campos-Flores et al. 
 

 

DOI: 10.4236/jemaa.2018.107010 134 Journal of Electromagnetic Analysis and Applications 
 

Making the derivative results in 

( )21 ˆ,
2 eE d zχ δ= − −f k                       (10) 

and the usual force can be obtained integrating this force density over the vo-
lume of the capacitor. We can see then that the energy method permits to de-
termine where the force is exerted. 

It is not clear the relation between “Equation (5)”, deduced from the force a 
non-uniform electric field exerts on an electric dipole, and “Equation (6)”, which 
may be applied in the case of a uniform electrostatic field. Sometimes [3] [10] 
these force densities “Equation (5)” and “Equation (6)” are taken as equivalent. 
However, if we take into account the identity 

( ) ( ) ( ) ( ) ( ) ,⋅ = ⋅ + ⋅ + × ⋅ + × ×a b a b b a a b b a∇ ∇ ∇ ∇ ∇          (11) 

“Equation (6)” takes the form 

( ) ( ) ( ) ( ){ }1 .
2

= − ⋅∇ + ⋅∇ + × ∇× + × ∇×f P E E P P E E P         (12) 

We observe that in the case of a uniform electrostatic field the three first terms 
on the right of “Equation (12)” are zero, and therefore the relation between 
“Equation (5)” and “Equation (6)” is rather given by 

( )1 .
2

= − × ∇×f E P                        (13) 

The force density “Equation (13)” is therefore equivalent to the force density 
Equation (6), and must give the correct result when the discontinuity in the po-
larization is taken into account. We can show this as follows. 

We have the constitutive relation 

0 .eχ=P E                           (14) 

Since the polarization P  is in the same direction as E  and is different 
from zero only where there is dielectric, we have that the electric susceptibility is 

( ) ( ) ,e ez d zχ χ= Θ −                      (15) 

where Θ  is the usual Heaviside distribution. Then the polarization is 

( ) ( ) ˆ,xz P d z= Θ −P i                      (16) 

where î  is a unit vector in the x direction. 
Therefore, the force density “Equation (13)” results 

( )( )1 ˆ
2 z xE P z= − ∂f k                      (17) 

( î , ĵ  and k̂  are the usual Cartesian unit vectors). 
With the susceptibility relation (15) we have 

( ) ( )0 ,x eP x d z Eχ= Θ −                    (18) 

and “Equation (13)” becomes 

( )2
0

1 ˆ
2 eE d z .χ δ= − −f k                   (19) 
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We note that this force density is orthogonal to the interface. Integrating this 
force density over any volume around the interface results in the usual force. See 
Figure 2.  

Thus, 

volaroundinterface
d .dS z= ∫F f                    (20) 

Since the volume element is dlh z , (see Figure 2), 

volaroundinterface
d .lh z= ∫F f                    (21) 

Then, 

( )2
0volaroundinterface

1 ˆ d ,
2 eE lh d z zχ δ= − −∫F k                (22) 

and the force on the dielectric slab, of cross section lh , is 

2
0

1 ˆ.
2 elhEχ=F k                         (23) 

Since this is the known result we can conclude that the strange force density 

( )1
2

− × ×E P∇  makes sense and can be used even with uniform electrostatic 

fields. 
It is interesting to consider the following analogy. Usually the magnetic Lo-

rentz force density 

,= ×f J B                            (24) 

can be applied to a magnetic medium with the current 

,M= = ×J J M∇                         (25) 

obtaining 

( ).= × ×−f B Μ∇                        (26) 

 

 
Figure 2. Volume V for the volume integration of the force density. It includes the 
interface. 
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We can then establish the analogy 
→B E                             (27) 

and 

.× → ×Μ P∇ ∇                         (28) 

That is, if × P∇  is regarded as a kind of polarization current newPJ  ana-
logous to the magnetization current ×Μ∇ , the force density “Equation (13)” 
can be seen as a Lorentz type force newP= ×−f E J  or 

newP .= ×f J E                          (29) 

This unusual force density may be accepted if we remember that the force 
density involving the polarization current P t= ∂J P  is well known and ac-
cepted. This symmetry is exhibited in the force densities 

1 ,m P= ×f J B                          (30) 

2 ,m M= ×f J B                          (31) 

and 

newP newP ,= ×f J E                        (32) 

where newP
1
2

−= ×J P∇ . The two first densities are well known and accepted, 

not so the third. 
It is convenient to analyze the force density “Equation (13)” from a more 

general perspective. We begin by noting that “Equation (29)” can be rewritten as 

( )2
0

1
2 eE z .χ= −f  ∇                      (33) 

This force density is well known and is part of the force density obtained by 
Helmholtz at the end of the 19th century. Helmholtz found, for fluids, the force 
density [11] [12] [13] 

2 2
Hfluids 0 0

1 1 ,
2 2

r
r m

m

E Eρ ρ
ρ

 ∂
= − +  

∂ 
f E   ∇ ∇              (34) 

which was later generalized for solids [11] [13] [14] as 

solids
2

Hfluids 0
1 ,
2 rEρ= − + ⋅f E   Τ∇ ∇                  (35) 

where solidsΤ  is a tensor that contains the mechanical information of the solid. 
Its particular form is not necessary here, but it is convenient to note that “Equa-
tion (35)” reduces to “Equation (34)” (if the solid is rigid and there are not free 
charges), obtaining 

2
Hfluids 0

1 ,
2 rE=f  ∇                        (36) 

which we will call Helmholtz force density, though it is a part of the usual one. 

3. Force Density and Its Corresponding Momentum Balance 

The force density “Equation (13)” is unfamiliar, but it solves the problem of the 
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force on a dielectric inside a uniform electrostatic field. However, it was ob-
tained just applying a dyadic identity to the gradient of the energy density “Equ-
ation (6)”. In what follows we consider this force density in the context of a bal-
ance equation for electromagnetic momentum obtained from the Maxwell equa-
tions. 

We have that the Maxwell equations can be written in its most usual form as 
,

,
,
,

t

t

0
+ 0

ρ⋅ =
⋅ =
× ∂ =

× − ∂ =

D
B
E B
H D J

∇
∇
∇

∇

                       (37) 

From these the following balance equation can be obtained using vector and 
tensor identities [15] [16], 

( ) ( ) ( )

( ) ( ) ( ) ( )

1
2

1 .
2

t+

ρ

 ⋅ − ⋅ + ⋅ − ∂ × 
 

= + × + ⋅ − ⋅ + ⋅ − ⋅  

DE BH I D E B H D B

E J B E D D E H B B H∇ ∇

∇

∇ ∇

     (38) 

Here the fields are the total fields solution of the Maxwell equations and 
therefore the usual Lorentz force density is a limit case of the above balance equ-
ations. 

Having a balance equation permits to obtain the force either with a volume 
integration of the force density or, using Gauss’s theorem, with a surface inte-
gration of the stress tensor. Other force densities arise as particular cases of the 
balance equation. For example, for the electrostatic case and in the absence of 
free charges this balance equation reduces to 

( ) ( ) ( )1 1 .
2 2

 ⋅ − ⋅ = ⋅ − ⋅     
DE I D E E D D E∇ ∇ ∇             (39) 

Using now the constitutive relation 

0 ,r=D E                              (40) 

where 1r eε χ= + , transforms the right-hand term into 

( ) ( ) ( )2
0

1
2

1 .
2 eE zχ⋅ − ⋅ =   −E D D E ∇ ∇ ∇               (41) 

This term is the force density appearing in “Equation (33)”, which solves the 
problem of the force on a dielectric in a uniform electrostatic field and is part of 
the Helmholtz force density. It can be shown [16] that this balance contains the 
whole Helmholtz force density. 

4. Nature of the Force on the Dielectric 

As we have established the force on the dielectric slab acts at the interface, where 
a discontinuity in the polarization, and therefore in the energy, occurs. This is to 
be expected, since only at the interface the gradient of the energy is different 
from zero. 

https://doi.org/10.4236/jemaa.2018.107010


I. Campos-Flores et al. 
 

 

DOI: 10.4236/jemaa.2018.107010 138 Journal of Electromagnetic Analysis and Applications 
 

We have then the question posed by Margulies: [5] 
“How does the electric field, which is directed vertically, ∙∙∙ produce a trans-

verse force ∙∙∙ on the dielectric?” 
To answer this question, we apply a Maxwellian approach. Maxwell wrote 

[17]: 
“If we further admit that every part of a dielectric medium through which 

electric induction is taking place there is a tension, like that of a rope, in the di-
rection of the lines of force, and a pressure in all directions at right angles to the 
lines of force, we may account for all the mechanical actions which take place 
between electrified bodies.” 

This qualitative description is made quantitative with the Maxwell electrostat-
ic stress tensor, 

( )1 .
2

 = − ⋅  
T DE I D E
 

                     (42) 

We apply it to the interface, where we have seen that the force acts. We can 
therefore obtain a better understanding of the force acting on the dielectric per-
forming a surface integral of the stress tensor. It is shown in advanced texts on 
electromagnetism [11] [12] that the stress tensor can be decomposed in direc-
tions along and traverse to the field E . These components give a tension along 
field E  and a compression orthogonal to it of magnitude, see Figure 3. 

2
0

1 ,
2 rt E=                            (43) 

Thus, these components of stress are positive along E  and negative in a 
plane orthogonal to it. The tension is equilibrated by mechanical forces on the 
plates of the capacitor, while the compression is zero in vacuum and in the di-
electric, but not so at the interface. This accounts as a pressure difference at the 
interface. This can be seen as follows. Since we have a cylindrical geometry 
around a line of uniform electrostatic field and only the components orthogonal 
to the interface contribute to the force, we can project the compression on a sur-
face element dh y  of the interface, see Figure 4. 
 

 
Figure 3. Compression t0 and t at the interface in the case that the elec-
trostatic field line is parallel to a surface. 

https://doi.org/10.4236/jemaa.2018.107010


I. Campos-Flores et al. 
 

 

DOI: 10.4236/jemaa.2018.107010 139 Journal of Electromagnetic Analysis and Applications 
 

 
Figure 4. The interface surface is divided into elements dh y . At the centers of these ele-

ments there is a field line around which there is a cylinder of radius 1 d
2

y  and height h. 

The compression components of the stress tensor can the projected on this surface re-

sulting a pressure 2
0

1
2 ep Eχ=  . 

 
The result is a difference of compressions at the interface, equivalent to a 

pressure from the dielectric towards vacuum, equal to 0p t t= −  and the result 
is 

2
0

1 .
2 ep Eχ=                            (44) 

We have then that the surface integral of the Maxwell stresses at the interface 
gives the usual result, verifying the particularized balance equation “Equation 
(39)”.  

Given the simple geometry of the problem, we can also obtain the force as 
follows. The force can be obtained by means of a surface integration of the stress 
tensor, 

d ,
σ

= ⋅∫F S  T




                         (45) 

where σ  is a closed surface, in this case a surface around the interface as indi-
cated in Figure 2. The Maxwell electrostatic stress tensor is given in “Equation 
(42)” 

Since at the interface the electric field is in the x-direction, the constitutive re-
lation “(40)” can be written as 

0
ˆ

r E .=D i                            (46) 

Therefore, the stress tensor is 

2
0

1ˆ̂ ,
2r E  = −  

T ii I
 

                       (47) 

with 
ˆ̂ ˆ̂ ˆ ˆ+ + .=I ii jj kk



                       (48) 

The surface around the interface is formed by a parallelepiped with planes 
close to the interface, and a “ribbon” around it. Given the symmetry, only the 
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contributions of these planes are different from zero, with directions k̂  and 
ˆ−k . Then, substituting “Equation (48)” in “Equation (47)” results in 

( ) 2 2
0 0medium medium

1 1ˆ ˆ̂ ˆ ˆ̂d d ,
2 2r rS E S E

σ σ

   = − ⋅ − − ⋅ −      ∫ ∫F k ii I k ii I
 

       (49) 

so that 

( )2
0

1 ˆ1 d ,
2 rE S= −F k                      (50) 

and 
ˆ ˆd .S lh=∫ k k                            (51) 

Then expressing the relative permittivity in terms of the susceptibility leads to 

0
1 ˆ,
2 eLhχ=F k                          (52) 

which is the known result. 
We now show that the force density in this balance equation contains the un-

familiar force density “Equation (13)”, whose volume integration gives the usual 
force on the dielectric.  

We begin with the dyadic identity 

( ) ( ) ( ) ,⋅ = × × + ⋅v u u v u v∇ ∇ ∇                   (53) 

which permits to write the right member of the balance equation, “Equation 
(38)”, as 

( ) ( )

( ) ( ) ( ) ( )

1
2

1 .
2

⋅ − ⋅  

= × × − ⋅ − × × + ⋅  

E D D E

P E E P E P P E

∇ ∇

∇ ∇ ∇ ∇
        (54) 

Since we are dealing with an electrostatic field we have that 

0.× =E∇                           (55) 

Also, we have that the field E  is uniform and therefore the polarization is 
uniform in a linear medium as is usually assumed. Then 

( ) 0,⋅ =E P∇                         (56) 

since 

( ) 0,x xE z∂ =P                         (57) 

and 

( ) 0,⋅ =P E∇                         (58) 

since the electric field E  is uniform and continuous at the interface, and we 
get the particular force density 

( ) ( ) ( )1 1 ,
2 2

⋅ − ⋅ = − × ×  E D D E E P∇ ∇ ∇             (59) 

Therefore, in this case the balance equation results 
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( ) ( )1 1 ,
2 2

 ⋅ − ⋅ = − × × 
 

DE I D E E P∇ ∇              (59) 

with which the force on the dielectric can be obtained with a volume integration 
of the force density, or with a surface integral of the stress tensor, as we have 
shown. 

5. Conclusions 

We have shown that the usual method with which the force on a dielectric slab 
partially introduced into a parallel plate capacitor is calculated, that is, with the 
gradient of an energy density, establishes firmly, taking into account the discon-
tinuity in the energy, that the force acts at the interface. 

With the method based on a momentum balance equation, which involves a 
volume integration of a force density, or the surface integration of the Maxwell 
electrostatic stress tensor, the usual result for the force is obtained. 

Though the force density is unfamiliar, it is firmly sustained on a balance equ-
ation derived from Maxwell’s equations with linear media. Therefore, our results 
are well founded on Maxwell’s equations. 
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