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Abstract 
The paper describes an approach to teaching mutually-coupled circuits CAD 
techniques to undergraduate students pursuing a degree course in electrical 
engineering or physics, and explains how a series of simulated experiments 
may be incorporated into the existing subjects. The simulated experiments 
make use of a two-dimensional open-access software based on the finite-element 
method. At the laboratory meetings, the students learn how to set up field 
problems for solution, and how to examine the results. Simulation tasks based 
on three axisymmetric open-boundary problems are used to introduce 
different numeric techniques to compute inductance and magnetic forces. The 
paper takes the reader to a step-by-step simulation journey, and provides all 
the basic elements required for further exploration of axially-symmetric 
systems. 
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1. Introduction 

In the past, development, analysis and design of electric equipment have used 
extremely simple analytic methods, supplemented by experience and intuition. 
As a result, any change in the device’s specifications would be time consuming 
and difficult to be accommodated by the traditional methods of analysis. The 
decade of 1980 witnessed an increasing number of electric equipment manufac-
turers relying on electromagnetic computer-aided design (CAD) packages in 
their analysis tasks [1]. Also, academic groups have developed their own CAD 
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packages and worked together with manufacturing organizations to jointly per-
form a broad variety of experimental and simulated work. That new era in 
computer-aided design has witnessed numerous courses on simulation of elec-
tromagnetic fields given to industrial researchers as well as several successful di-
dactical experiences based on the creation of laboratories of simulations. 

The literature documents extensive research into the development of comput-
er-assisted educational material to teach physics and engineering. Fortunately, 
there are excellent surveys intended to aid faculty members in their choices re-
lated to curriculum changes and incorporation of innovative educational me-
thods [2] [3]. There are many papers describing new approaches to teach elec-
tromagnetics and, almost without exception, these papers advocate the integra-
tion of field computation into electromagnetics teaching. The underlying idea is 
to develop new practical alternatives to the traditional teaching approach to cir-
cumvent the difficulties in teaching electromagnetics, regarded as an abstract 
and difficult subject [4]. Of major note is the work of Lowther and Freeman [5]. 
The work describes how laboratory courses on field simulation have been de-
vised and implemented in three different universities, and discusses the advan-
tages and disadvantages of finite-element CAD tools in the teaching environment. 

Innovations in educational methods and changes in curriculum are usually 
guided by questions like: (i) to incorporate these developments into the curricu-
lum, should a separate subject be created, or a change in the number of labora-
tory hours would speed up the process; (ii) which are the relevant considerations 
for the choice of the instructional software; (iii) which numerical method will 
more likely be used by the students upon graduation, as research students or 
practicing professionals. 

With these uncertainties in mind, we decided to incorporate a series of simu-
lated experiments into the existing laboratories of subjects around electromag-
netics, like basic electromagnetism and electromechanical conversion of energy. 
The experiments focus on electromagnetic phenomena that are overwhelmingly 
better explained using field computation, such as: magnetic saturation, magnetic 
forces and inductance. All experiments are carried out using a two-dimensional 
open-access simulation software based on the finite-element method [6]. The 
choice of this numerical method has considered its worldwide popularity as 
teaching tool as well as its enhanced capability in the analysis of problems in-
volving non-linearity and time-dependent phenomena [7] [8] [9]. An additional 
argument in favor of this choice is that the finite-element method can now be 
presented in simple terms, avoiding the rigorous mathematical derivations of 
variational calculus, and making the method more attractive to students [10]. 

The paper describes a set of simulated experiments devised and developed to 
teach numerical techniques for the calculation of inductance. The experiments 
place emphasis on demonstrating how to set up field problems for solution, and 
how to examine the results using selected graphical presentations as well as 
computation of global quantities like inductance, stored energy and magnetic 
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forces. There are seven experiments all together, wherein three axisymmetric 
open-boundary physical problems are analyzed in detail. 

2. Coaxial Coils Immersed in Air 

The first problem consists of calculating values of self-inductance L, mutual in-
ductance M and leakage inductance l of the idealized two coaxial coils’ system 
shown in Figure 1. This physical system represents one of the simplest closed 
circuit current distributions, and has long been used to present the relationship 
between the magnetic flux and the inductance terms associated to coaxial coils in 
free space. The system consists of two thin circular coils, and both coils have ex-
actly one turn. The lower coil has a radius R = 10.0 cm, and the upper coil has a 
radius r = 5.0 cm. The axial distance between the center of the two coils is z = 1.0 
cm. The solid copper wire used in both coils has a radius rm = 0.0512 cm, the 
same radius of an 18 AWG conductor, and its electric conductivity is 58 MS/m. 
For this problem, there is a simple analytical expression for the mutual induc-
tance, expressed in terms of the axial distance, z, between the centers of the two 
coils, 

( )
( )
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2
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π ,RM r

R z
µ=

+
                     (1) 

where µ0 = 4π × 10−7 H/m is the magnetic permeability of free space [11]. This 
expression is used to check the accuracy of different calculation methods. The 
formula expressed in (1) is approximate, and its accuracy depends on the geo-
metric dimensions of the coils. The numeric estimates for the self-inductance, L, 
of individual coils are compared to the analytical formula originally presented by 
Kirchhoff [11], 
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Figure 1. Two coaxial coils with different radii and same wire cross section. 
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The variation of the mutual inductance with respect to the axial distance z 
may be used to derive the analytic expression for the axially-directed magnetic 
force, F, between the two coils carrying currents I1 and I2, 

( )
( )

2 2
1 2 0 5 22 2

3 π ,
2

zF I I R r
R z

µ= −
+

                 (3) 

with the minus sign indicating attraction. The complete derivation of formulae 
expressed in (1) and (3) appears in Appendix A. 

Open-Boundary Problems 

The calculation of inductance terms of coaxial coils immersed in air is an open 
boundary problem. To obtain a solution using the finite element technique, it is 
necessary to convert the open boundary problem into a closed one by main 
force. This can be done by creating an artificial boundary sufficiently distant of 
the device under analysis. The simplest open-boundary technique is truncation 
of outer boundaries, a technique based on the assumption that, at the artificial 
boundary, the vector potential A or its normal derivative ∂A/∂n will be close to 
zero. To minimize the numerical error due to “truncation” in the computation 
of the potentials, it is necessary to place the exterior boundary sufficiently far 
away from the device [12]. 

The problem of the coaxial coils may then be artificially closed by an exterior 
spherical boundary. In axisymmetric problems, a spherical boundary is generat-
ed by rotating a semicircular region about the axis of symmetry. According to 
the general rule of thumb for locating the outer boundary, the radius of this ex-
ternal semicircular boundary should be at least 50 cm, i.e., approximately five 
times the distance between the most remote coil and the center of the geometry 
[13]. In the numerical model described in the following, the analysis domain is 
bound by a semicircular region with 100 cm of radius. This large area of empty 
space surrounding the coils will allow extra flexibility for the definition of simi-
lar problems with increasing radii in the same analysis domain, and leaving the 
coils’ region practically unaffected by truncation error. 

3. Finite-Element Model 
3.1. Problem Definition 

The definition of a finite-element problem always involves a large amount of 
input data, and the user must select the key features of the analysis task. Initially, 
it is necessary to select the type of solver and, implicitly define the primary 
quantity of calculation, i.e., magnetic vector potential A for magnetics problems, 
and electric potential V for electrostatic and current-flow problems. This is fol-
lowed by the choice of the length unit, frequency of excitation and kind of sym-
metry to be exploited, either planar or rotational. For present considerations of 
inductance calculations, we shall restrict our attention to magnetostatic prob-
lems with rotational symmetry. The excitations are defined in terms of electric 
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currents, and the frequency of operation is zero. 

3.2. Problem Geometry 

The definition of the problem geometry may start by inserting the end-points 
that define the two corners of the solution geometry shown in Figure 2(a). For a 
solution domain centered at (r, z) = (0, 0), the corners are located at (r, z) = (0, 
−100) and (r, z) = (0, 100) with length units in centimeter. This pair of 
end-points must be connected using a line-segment, followed by an arc of 180° 
and 100 cm of radius to create the external boundary Γ. As part of the mesh ar-
tifact, an additional arc of 180˚ and 60 cm of radius centered at (r, z) = (0, 0) is 
included in the geometry. This arc works as an artificial “air-air” boundary, and 
has been included to avoid a very large number of triangles in the mesh. To 
complete the problem geometry, it is still necessary to draw two regions 
representing the cross-section of the wire used in each coil. 

3.3. Problem Assembly 

The definition of the problem geometry is followed by a series of tasks known as 
problem assembly. These tasks state the correlation between region labels and 
materials, and allow the specification of boundary values and sources of energy. 
The problem assembly involves four types of data specification: material prop-
erty, boundary property, point property and circuit property. 

3.4. Materials and Boundary Conditions 

This numeric model contains four regions representing two coils and two layers 
of air, and a label must be placed in each region. Next, it is necessary to associate 
material properties with region labels, “air” for the two layers of air, “copper” for 
 

 
Figure 2. (a) Geometrical dimensions in cm; (b) maximum triangles’ edge size in each 
region with values in cm. 
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the two circles representing the coils. A boundary property with prescribed po-
tential A = 0 must be created and assigned to the external semicircle that bounds 
the analysis domain. Along the axis of symmetry, the condition A = 0 is auto-
matically enforced in magnetics axisymmetric problems. 

3.5. Coil Currents 

For each coil, it is necessary to create a “circuit property” that specifies the coil 
current in units of ampere, its direction and number of turns. It is important to 
observe that, a circuit property must be assigned to all coils, even for the coils 
that carry no current. By using circuit properties, the value of flux linkage with 
each individual coil will become automatically available at the post processing 
operations. The value of the flux linkage with the unexcited coil is an essential 
information for the calculation of mutual inductance by the method of flux lin-
kage, as discussed later in the first experiment. 

3.6. Mesh Refinement 

The method employed to control the level of discretization in each region is 
based on the specification of a parameter, δ, known as “edge size”. This parame-
ter defines a constraint on the largest possible size of the elements’ edges allowed 
in that region. The mesh generator Triangle [14] attempts to fill each selected 
region with nearly equilateral triangles. According to the illustration of Figure 
2(b), the two regions representing the conductors are discretized with edge size 
δ = 0.01 cm, the first layer of air with edge size δ = 0.1 cm, and the second layer 
of air with edge size δ = 1.0 cm. This level of discretization leads to a mesh with 
595697 nodes and 1189909 triangular elements. 

4. Experiments 

Although a considerable effort is necessary in establishing a numeric model, 
variations of the problem configuration may be readily tested without having to 
restart the entire job. So, information present in the laboratory guides should 
state clearly which features of mesh construction, as well as specification of 
boundary conditions and sources of energy will lead to extra flexibility for alter-
ing material properties and defining sequences of similar problems [15]. A great 
deal of effort can be saved if we work with one numeric model and a series of 
problems defined on that model. With this in mind, we have decided to base our 
laboratory classes on simple physical devices, and leave the variations of the 
problem with increasing degree of complexity for the homework, carried out as a 
peer-mentoring activity. Assessment to the students’ performance is based on 
written reports. The set of graded exercises proposed in the following is indica-
tive of the type of problems students will meet in their work. 

4.1. Inductance Calculations via Flux Linkage Approach 

Compute the inductance terms of the two-coil system using the flux-linkage ap-
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proach. Use the analytic formulae (1) and (2) to check the accuracy of the nu-
meric calculations. For the numeric calculation of inductance, values for the coil 
currents must be specified and, in magnetically linear problems, the values for 
electric currents may be chosen arbitrarily [16]. In this study, electric currents 
with magnitude of 10 A are used in all inductance calculations. 

4.2. Solution 

Two magnetostatic solutions are required to compute the inductance terms. In 
the first problem, the lower coil, namely coil 1 carries a current I1 = 10 A, and 
the upper coil, namely coil 2 carries no current. The self-inductance L1 of coil 1 
is given by 

11
1

1

,L
I
λ

=                             (4) 

where λ11 is the flux linkage with coil 1, and I1 is the terminal current of coil 1. 
For a flux linkage of 7.00731 × 10−6 Wb with coil 1, and a terminal current I1 = 
10.0 A, the calculation yields 

6
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1
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= = ×                 (5) 

The mutual inductance M is calculated as 

21

1

,M
I
λ

=                             (6) 

where λ21 is the flux linkage with coil 2. For a flux linkage λ21 = 5.35681 × 10−7 
Wb and a terminal current I1 = 10.0 A, the calculation gives 

7
85.35681 10 5.35681 10  H.

10.0
M

−
−×

= = ×                (7) 

Once both coils have equal number of turns, the leakage inductance of coil 1, 
l1, is calculated directly by the difference 

7
1 1 6.47163 10  H.l L M −= − = ×                    (8) 

A similar procedure is used to obtain the inductance terms for coil 2. Numer-
ical values of self-inductance L, mutual inductance M and leakage inductance l 
of coils “1” and “2” are summarized in Table 1 and Table 2, respectively. 

4.3. Error Analysis 

Both simulated experiments based on the flux linkage approach yield the same 
value for the flux linkage with the unexcited coil, i.e. λ21 = λ12 = 5.35681 × 10−7 
Wb, and this ensures the numeric method of calculation is self-consistent. 
However, the computed value of mutual inductance using the analytic method is 
9.2% lower than that produced by the more accurate field-derived solution. Try 
to identify what causes such a large difference in the two ways of computing the 
system’s mutual inductance. 
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Table 1. Inductance terms of the lower coil. 

Coil 1 (lower) 
Method of calculation 

Error 
Flux linkage Analytic 

Self-inductance of coil 1 7.00731 × 10−7 H 7.04224 × 10−7 H 0.5% 

Flux linkage with coil 2 5.35681 × 10−7 Wb 4.86169 × 10−7 Wb 9.2% 

Mutual inductance 5.35681 × 10−8 H 4.86169 × 10−8 H 9.2% 

Leakage inductance of coil 1 6.47163 × 10−7 H 6.55607 × 10−7 H 1.3% 

 
Table 2. Inductance terms of the upper coil. 

Coil 2 (upper) 
Method of calculation 

Error 
Flux linkage Analytic 

Self-inductance of coil 2 3.06787 × 10−7 H 3.08560 × 10−7 H 0.6% 

Flux linkage with coil 1 5.35681 × 10−7 Wb 4.86169 × 10−7 Wb 9.2% 

Mutual inductance 5.35681 × 10−8 H 4.86169 × 10−8 H 9.2% 

Leakage inductance of coil 2 2.53219 × 10−7 H 2.59943 × 10−7 H 2.7% 

4.4. Solution 

The formula expressed in (1) is approximate, being more nearly correct as the 
ratio r/R is smaller. To show this, the problem geometry may be altered, and an 
additional error analysis carried out. The basic model for the two-coil system 
can easily be altered to generate a sequence of similar problems differing only in 
the radius of the lower coil. To generate a new configuration, it is necessary to 
select the lower circular region and specify the amount by which the region will 
be translated in the horizontal direction. This technique is usually referred to as 
mesh distortion. 

In the investigation, the radius r of the upper coil is kept constant and equal to 
5.0 cm, whereas the radius R of the lower coil is increased from 10.0 to 25.0 cm. 
Percent errors between numeric and analytic calculations of the mutual induc-
tance versus the radius R of the lower, excited coil are presented in the graph of 
Figure 3. 

Observation of the graph of Figure 3 shows that the percent error in the two 
ways of computing the system’s mutual inductance decreases reasonably fast 
along the left portion of the curve. The error level falls below 1% along the final 
portion of the plot as the radius R becomes greater than 22.0 cm. The results 
clearly show that the accuracy of the analytic method based on (1) is prob-
lem-dependent and strongly affected by the ratio r/R. 

4.5. Mutual Inductance Calculation via Energy Approach 

Compute the mutual inductance of the two-coil system using the magnetically 
stored energy approach. Try to identify the difficulties related to this approach. 
The calculation is based on two simulated experiments wherein both coils carry  
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Figure 3. Error between numeric and analytic calculations of mutual inductance. 
 
currents [17]. In the first experiment, the two coil currents are oriented to have 
their fluxes adding, so the two coil currents flow in the same direction, I1 = I2 = 
10 A. In the second experiment, the two coil currents are oriented to have their 
fluxes opposing each other, so the two coil currents flow in opposite directions, 
I1 = −I2 = 10 A. 

4.6. Solution 

When the two fluxes are adding, the computed magnetic stored energy is Wa = 
5.57318 × 10−5 J. When the fluxes are opposing each other, the magnetic stored 
energy is Wb = 4.50185 × 10−5 J. The computed mutual inductance is 

8

1 2

5.35665 10  H.
2
a bW WM
I I

−−
= = ×                     (9) 

The mutual inductance computed by (9) ought to be compared to the value 
given in (7). The comparison shows that the estimates for the system’s mutual 
inductance produced by the numeric methods of flux linkage and stored energy 
only differ at the fourth decimal digit and are, therefore, computationally equiv-
alent. For simple mutually coupled systems with turns-ratio 1:1, the use of (9) is 
straightforward. For problems involving coupled circuits with turns-ratio dif-
ferent from 1:1, like in the case of power transformers, the problem becomes 
more difficult. In the “hand” calculation expressed by (9), values of currents I1 
and I2 must be referred to the same side of the transformer to yield the correct 
value of mutual inductance in units of henry [18]. 

4.7. Force Calculations 

Investigate the variation of the force generated in the two-coil system with re-
spect to an increasing radius of the lower coil. In the sequence of calculations, 
the two coils carry currents of 10 A in the same direction, the radius r of the up-
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per coil is kept constant and equal to 5.0 cm, whereas the radius R of the lower 
coil is increased from 10.0 to 25.0 cm. The magnetically produced forces must be 
evaluated using the analytic expression (3) as well as the numeric method of 
weighted Maxwell stress tensor. 

4.8. Solution 

Once the sequence of similar problems has been generated, it is necessary to 
launch the solver and then inspect the results. At the postprocessing stage, the 
force acting on each circular region must be computed separately using the 
weighted Maxwell stress tensor method. The two forces values are close but not 
the same, and results must be averaged. Computed forces versus the radius R of 
the lower coil are presented in the graph of Figure 4. The characteristic 
represented by the solid line exhibits the force values obtained analytically, whe-
reas the dotted characteristic marked with circles shows the force values com-
puted numerically. 

Observation of the graph of Figure 4 shows that the difference between force 
values computed by the two methods decreases very fast along the left portion of 
the graph. An increase in the radius R from 10.0 to 18.0 cm, leads to a continu-
ing decay in the difference between analytic and numeric force estimates from 
40.4% to 4.3%. Along the final part of the plot, the two characteristics trace sim-
ilar courses and almost coincide. 

4.9. Limitations of Point Properties 

There are basically two ways of representing a single-turn thin coil in axisym-
metric problems. In the first case, the coil is modeled by a small circle, and a  
 

 
Figure 4. Computed forces for an increasing radius of the lower coil. 
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“circuit property” allows specifying the coil current in units of ampere. In the 
second mode of representation, the coil is modeled by a simple node or point, 
and a “point current property” allows specifying the coil current in units of am-
pere. In this exercise, we will try to identify the advantages and disadvantages of 
the point property approach. 

4.10. Solution 

Initially, it is necessary to solve the magnetostatic problem that represents the 
lower coil carrying a current of 10 A. Once the two circular regions representing 
the conductors are removed from the model, nodes should be inserted at posi-
tions (r, z) = (5, 0.5) and (r, z) = (10, −0.5). A “nodal property” must be created 
to assign a 10 A current to the node situated at (10, −0.5). 

When information regarding the cross-sectional area of the conductors is not 
available, the point property approach appears as a very convenient way to mod-
el thin conductors. The method can be applied quickly and easily. At the post-
processing stage, the flux linkages are not automatically available, and must be 
computed through numeric integration of the normal component Bn of the 
magnetic induction. Integration of Bn along a line segment from (0, −0.5) to (10, 
−0.5) yields the flux linkage with the lower coil, λ11 = 8.01607 × 10−6 weber, and a 
self-inductance L1 = 8.01607 × 10−7 H. Integration of Bn along a line segment 
from (0, 0.5) to (5, 0.5) yields the flux linkage with the upper coil, λ21 = 5.35697 
× 10−7 weber, and a mutual-inductance M = 5.35697 × 10−8 H. When these values 
of L1 and M are compared to the inductance values given in (5) and (7), the error 
is 14.4% in the two ways of computing self-inductance and practically null in the 
computation of mutual inductance. 

The major disadvantage of the point property approach is related to the cal-
culation of magnetic forces. The methods of Lorentz force and weighted Max-
well stress tensor can only be used to compute the force produced by the mag-
netic field acting on a region with finite dimensions. If the coils are modeled by 
nodal points, the force must be computed using numeric methods that are ei-
ther, computationally expensive like the virtual work or too sensitive to mesh ar-
tifact and contour location like the classical method of Maxwell stress tensor. Let 
us consider the force results based on the virtual work method with two solu-
tions, and the problem wherein both nodal points carry a current of 10 A. For 
the force calculation, each nodal point is subject to a “perturbation” α = 0.025 
cm, representing 2.5% of the actual axial distance between the coils’ centers. In 
the first solution, the axial distance between the coils decreases to z1 = 0.95 cm, 
and the system’s stored energy is larger, W1 = 6.37345 × 10−5 J. In the second so-
lution, the axial distance between the coils increases to z2 = 1.05 cm, and the sys-
tem’s stored energy is smaller, W2 = 6.23887 × 10−5 J. The total system’s dis-
placement is 2α, and the force estimate, F, at the intermediate distance z = 1.0 
cm is F = 26.92 × 10−6 N. This estimate is not too far from the force Fw = 24.23 × 
10−6 N computed by the more precise method of weighted Maxwell stress tensor 
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using circular regions. The results presented in this experiment illustrate the use 
of an alternative technique to model current-carrying conductors. The technique 
can be used to establish the order of magnitude to be expected for the subse-
quent more accurate calculations of inductance and related quantities. 

4.11. Inductance and Magnetic Saturation 

The saturation of the magnetic core is a limiting factor in the design of electric 
devices used in switching power supplies like filter inductors, boost inductors 
and flyback inductors. Figure 5(a) shows the main elements of an axisymmetric 
magnetic-cored inductor intended to store and return energy to a given circuit 
efficiently and with minimal physical size. The copper winding is uniformly dis-
tributed along the air space that separates the two concentric cylinders. All 
magnetic portions, including the cylinders and the two disk cups are formed by 
soft magnetic ferrite (Fe-Ni-Zn-V), a magnetic medium with very high electric 
resistivity. In Figure 5(a), the geometric dimensions are indicated in units of 
centimeter. In the magnetostatic analysis, all magnetic portions are modeled by 
the the nonlinear magnetization characteristic of the Fe-Ni-Zn-V present in the 
simulator built-in library. The desired inductance is 10 H, and the terminal cur-
rent varies from 0.1 to 200 mA. Let us investigate the variation of the inductance 
values with respect to the excitation. Improvements in the device performance 
should be proposed. 

4.12. Solution 

When measurements or numerical simulations using increasing values of excita-
tion show that the value of inductance remains nearly constant up to high exci-
tation levels, the device is called a linear inductor. If, on the other hand, the in-
ductance value drops with the increasing of excitation, the device is a nonlinear 
inductor. This nonlinear effect is reflected not only on the low inductance value 
but also as a source of noise and mechanical vibration. 
 

 
Figure 5. (a) Cross-sectional view of the magnetic-cored inductor; (b) variation of in-
ductance versus excitation. 
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In its initial configuration, the magnetic-cored inductor contains no discrete 
gaps in its core, and the copper winding contains 1000 turns. The dotted charac-
teristic present in the graph of Figure 5(b) exhibits the variation of inductance 
values along the range of excitations. For low excitations, up to 10 A-turn, in-
ductance values are close to the rated inductance, and the performance of the 
gapless inductor may be considered satisfactory. For excitations exceeding 30 
A-turn, the core saturates, and inductance values drop significantly. The most 
obvious way of avoiding this drop in inductance caused by magnetic saturation 
is to insert a small non-magnetic gap in the core. This increases the reluctance of 
the flux path and decreases the effective magnetic permeability. With this in 
mind, we decided to insert a discrete gap 1.0 mm long in the inner cylinder, and 
this is illustrated in Figure 5(a). With the inserted gap, the inductance value 
represents approximately 73% of the initial configuration, and this must be 
compensated by increasing the winding number of turns. The step-by-step pro-
cedure employed to choose the number of turns of gapped inductors is discussed 
in [16]. In the proposed new configuration, the copper winding contains 1800 
turns. The solid characteristic present in the graph of Figure 5(b) exhibits the 
variation of the inductance values for the new configuration. A close observation 
of the characteristic clearly reveals a significant improvement in the device’s 
performance. Along most of the excursion, inductance values of the new gapped 
inductor are kept practically constant and very close to the desired inductance. 

4.13. Field Uniformity of a Maxwell’s Coil 

The device known as Maxwell’s coil produces a region of nearly uniform mag-
netic field, and is formed by three circular coils, placed on the surface of a virtual 
sphere. The geometry of the side coils is a function of the parameter R that 
represents both, the radius of the central coil and the radius of the virtual sphere. 
In this arrangement, the magnetomotive force in the central coil is F, and a frac-
tion representing (49/64) * F in each of the side coils. Use point properties to 
model the configuration proposed in [19] wherein the three coils have exactly 
one turn, and the central coil has a radius of 1.0 m carrying a current of 1.0 A. 
For a geometry symmetrically placed around the origin, specify A = 0 at the ex-
ternal boundary formed by an arc of 180˚ and 10 m of radius. The central coil is 
represented by a nodal point at (r, z) = (1, 0), the lower coil by a point at (r, z) = 
(0.75593, −0.65465), and the upper coil by a point at (r, z) = (0.75593, 0.65465) 
with all length units in meter. Use nodal properties to assign a 1.0 A current to 
the central nodal point, and a current of 0.765625 A to the side points. Initially, 
solve the problem without controlling the mesh discretization. Upon this, use 
triangles’ edge size δ = 0.01 m in the whole problem domain. In this exercise, we 
will try to find out the region of field uniformity. 

4.14. Solution 

Most CAD systems do not use the magnetic vector potential A directly to solve 
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axisymmetric problems, but a modified potential. The modified potential makes 
solution feasible, despite the singularity of the axisymmetric Laplace and Poisson 
equations at r = 0. The modified potential also makes the flux density compo-
nents regular functions at the axis of rotation, so that the axial component, Bz, is 
not forced to vanish at the axis of rotation [20]. 

An enlarged view of the solution domain encompassing the three conductors 
is shown in Figure 6. This solution has been obtained using a coarse mesh. In 
the illustration, it is displayed the mesh together with the flux lines of the axi-
symmetric solution. It is worth noting that, in axisymmetric problems, flux lines 
are lines of constant rA. 

Numerical results obtained using the refined mesh are presented in the fol-
lowing. Two enlarged views showing the distribution of flux lines are presented 
in Figure 7. In the view of Figure 7(a), arrows are plotted to indicate the direc-
tion and magnitude of the B-field. With the aid of this plot, it becomes clear 
that, along the axis of rotation and close to it, the B-field is directed upwards. 
The region of uniform B-field may then be described as the cylindrical volume 
of air generated by rotating the rectangular shaded region that appears in Figure 
7(b) about the axis of symmetry. The geometry of the rectangular region can be 
defined in terms of the parameter R, so that its height is 2 * R, and its width is 
0.4 * R. These values have been chosen by observing the regions where the flux 
lines start bending. 

Variations of the magnitude of the magnetic induction B along four different 
contours are presented in the graph of Figure 8. The contours of inspection 
consist of vertical line segments with different radial distances to the axis of  

 

 
Figure 6. Enlarged view of the coarse mesh and flux lines of the axisymmetric solution. 
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Figure 7. (a) Direction of the B-field; (b) region of uniform B-field. 
 

 
Figure 8. Variation of the magnetic induction B along four contours of inspection. 
 
symmetry, and are directed upwards. For each characteristic, the radial distance 
of the respective contour and the mean value of the B-field in units of microtes-
la, averaged at 150 points along the contour, are indicated in the graph. 

In regions of field uniformity, the magnetic induction is expected to be a 
nearly constant function of the position along the contour of inspection. Obser-
vation of Figure 8 shows that this requirement is promptly satisfied by the cha-
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racteristics representing the magnitude of the B-field along the contours placed 
at radial distances 0.001 m, 0.2 m and 0.3 m. These curves trace similar trajecto-
ries and, practically coincide along the central portion of their respective con-
tours of inspection. The characteristic represented by the dotted line, on the 
other hand, presents fluctuations along the whole excursion indicating lack of 
field uniformity as well as the approximate limit of the region of interest in the 
radial direction. 

5. Conclusion 

A series of simulated experiments has been designed to teach complex electro-
magnetic phenomena like magnetic saturation, magnetic forces and inductance. 
The discussion focuses on the numeric modeling of open-boundary axisymme-
tric problems, and explains how to use different numeric techniques to compute 
inductance and magnetic forces. The experiments are based on an open-access 
finite-element program, and place emphasis on demonstrating how to set-up 
field problems for solution, and how to examine the numeric results. One of the 
most valuable features of the training is the problem assembly. During the inter-
active tasks students have to consider in depth precisely what is going on in the 
creation of the numeric model. The number of homework exercises is another 
important issue. A small number of assigned problems may take the students to 
draw conclusions related to a particular class of problems. Preliminary observa-
tions show that, once students become familiar with field calculation concepts, 
they can use field simulators with minimum supervision. The integration of the 
finite-element CAD experiments into the existing laboratories is part of a conti-
nuously assessed undergraduate coursework. 
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Appendix A: Analytical Calculation of Mutual Inductance 
and Magnetic Force 

Initially, consider the problem of calculating the magnetic field intensity H 
created by the coil’s current I at the observation point P shown in Figure A-1. 
The geometric center of the circular coil and the observation point P are colli-
near, and the axial distance between these two points is represented by the varia-
ble z. The formula for the magnetic field intensity can be derived from Bi-
ot-Savart law. Due to the symmetry of the current elements Idl with respect to 
the vertical axis, the resulting H-field created by the moving charges has only the 
axial component, i.e. H = Haz. For a circular coil of radius R and carrying a cur-
rent I, the magnetic field intensity H at point P is expressed in terms the axial 
distance z, 

( )
2

3 22 2
A m.

2
z

IR

R z
=

+
H a                  (A.1) 

In the second problem, depicted in Figure A-1(b), the observation point P 
becomes the center of a second circular region bound by a coil with radius r. The 
two coils are collinear, and it is assumed that r R . In this case, the upper coil 
occupies only a relatively small region, and the expression given by (A.1) is valid 
for the calculation of the magnetic field intensity H at all points in the region 
bound by the upper coil. Once both coils are placed in air, the problem is mag-
netically linear. In this case, the magnetic induction B in the region occupied by 
the upper coil has only axial component and is given by 

( )
2

0 3 22 2
T.

2
z

IR

R z
µ=

+
B a                   (A.2) 

where µ0 = 4π × 10−7 H/m is the magnetic permeability of free space. 
The magnetic flux, φ, linking the upper coil is calculated by the surface 

integral, 
 

 
Figure A-1. (a) Geometry for Biot-Savart law; (b) Two-coil system. 
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d .
S

φ = ⋅∫B S                          (A.3) 

Depending on the direction of current I in the lower coil, the magnetic induc-
tion B in the region occupied by the upper coil can be directed, either upwards 
or downwards, and this is illustrated in Figure A-2. Thus, the surface integral in 
(A.3) yields either, a positive or a negative value, respectively. Substitution of 
(A.2) into (A.3) gives the expression for the magnetic flux, φ, that links the upper 
coil, 

( )
( )

2
2

0 3 22 2
π Wb.

2

IR r
R z

φ µ=
+

                 (A.4) 

The mutual inductance, M, is calculated by 

2 ,NM
I
φ

=                          (A.5) 

where N2 denotes the number of turns of the upper coil. In this problem, N1 = N2 
= 1, and the final expression for the mutual inductance is, 

( )
( )

2
2

0 3 22 2
π H.

2

RM r
R z

µ=
+

                 (A.6) 

If M represents the mutual inductance of two coaxial coils, the expression for 
the magnetic force between the two coils carrying currents I1 and I2, respectively, 
may be derived in terms of the variation of the mutual inductance with respect 
to the axial distance z between the two coils, 

1 2 .MF I I
z

∂
=

∂
                       (A.7) 

The mutual inductance, M, is expressed by (A.6), and its partial derivative 
M
z

∂
∂

 is 

 

 
Figure A-2. Vectors B and dS: (a) In the same direction; (b) In opposite directions. 
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( ) ( )
2 2

3 20 2 2
π

2

R rM R z
z z

µ −∂ ∂  = +  ∂ ∂
               (A.8) 

After some algebraic manipulation, one obtains the following expression for 
the axially-directed magnetic force between the coaxial coils, 

( )
( )

2 2
0 1 25 22 2

3 π N.
2

zF R r I I
R z

µ= −
+

               (A.9) 
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