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Abstract 
Recently researchers were interested in hybrid algorithms for optimization problems for several 
communication systems. In this paper, a novel algorithm based on hybrid PSOGSA technique 
(combination of Gravitational Search Algorithm and Particle Swarm Optimization) is presented to 
enhance the performance analysis of beam-forming for smart antennas systems using N elements 
for Uniform Circular Array (UCA) geometry. Complex excitations (phases) of the array radiation 
pattern are optimized using hybrid PSOGSA technique for a set of simultaneously incident signals. 
Our results have shown tremendous improvement over the previous work was done using Uni-
form Linear Array (ULA) geometry and standard GSA in terms of normalized array factor and 
computational speed for normalized fitness values. 
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1. Introduction 
Adaptive beam-forming capabilities for smart antenna arrays are nowadays used in different applications such as 
suppression and reduction of interference in wireless mobile communication, besides its effects on the overall 
quality of service [1] [2]. There are different optimization techniques dealing with adaptive beam-forming for 
smart antennas. Particle Swarm Optimization (PSO), Central Force Optimization (CFO), and Bacterial Swarm 
Optimization (BSO) are well known global optimization techniques that are based on a nature-inspired heuristic 
[3]-[5]. It is proven that CFO requires higher computational complexity but on the other hand it has better per-
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formance than PSO in [6]. 
Recently, Gravitational Search Algorithm (GSA) is considered as a new optimization technique based on the 

law of gravity and mass interaction [7]. Where a set of various standard benchmark functions, synthesis of 
thinned scanned concentric ring array antenna and a fully digital controlled reconfigurable concentric ring array 
antenna problems were examined in [8] [9]. In most cases the GSA provided superior or at least comparable re-
sults with PSO and CFO. The GSA was proposed in [10] [11] for calculating the dimensions of a rectangular 
patch antenna, and for Direction of Arrival (DOA) estimation using a Uniform Circular Array (UCA) of 12 ele-
ments based on maximum likelihood (ML) criteria and showed better performance results over PSO and mul-
tiple signal classification (MUSIC) in terms of computational time for fitness function and RMSE. In [12], pla-
nar ultra-wide band (UWB) antennas with irregular radiator shapes were designed using GSA and compared 
with those obtained using CFO algorithm, it was found that the GSA gave better performance than CFO. In [13], 
GSA was implemented using Open-MP and its results outperformed the PSO by 65.09% in terms of normalized 
array factor. In [14], an algorithm based on collective animal behaviour (CAB) was used for finding the best op-
timal non-uniform excitation weights and optimal uniform inter-element spacing for hyper beam-forming of li-
near antenna arrays. In [15], a new algorithm based on Hybrid Particle Swarm Optimization with Gravitational 
Search Algorithm (Hybrid PSOGSA) technique was proposed and showed better performance than standard 
PSO and GSA in terms of computational speed. 

In this paper, a novel algorithm that is based on the hybrid PSOGSA technique is developed for optimal 
beam-forming using ULA and UCA. The goal is to maximize the beam of the radiation pattern towards the in-
tended user or Signal of Interest (SOI) and minimize the beam of the radiation pattern towards Signal Not of In-
terest (SNOI) based on controlling the complex weights (phase) of ULA or UCA. The paper is organized as fol-
lows. In Section 2, the system model and problem formulation for adaptive beam-forming are explained. In Sec-
tion 3, two models for smart antenna array models are described. However, hybrid PSOGSA algorithm is pro-
posed in Section 4. Simulation results and discussions for beam-forming are discussed in Section 5. Finally, the 
conclusion is presented in Section 6. 

2. Problem Formulation 
Smart antenna based on UCA topology by using N elements is showed in Figure 1. In this section, 12 elements 
in array structure are distributed uniformly along the circle of radius r , where θ  is the azimuth angle, λ  is 
the wavelength, the angle between adjacent elements is 0θ , and 0.5d λ=  is the space between two adjacent 
elements.  

In the synthesis of beam-forming, the complex excitation for each element must be optimized to minimize 
radiation power intensity at certain directions and maximize the main-lobes to other directions. The following 
fitness function must be minimized to maximize the total output power toward the desired signal at iθ  and mi-
nimize the total output power in the direction of the interfering signals at jθ .  
 

 
Figure 1. Geometry of the UCA with N elements.            
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( ) ( )1 1fitness function AF AFk L
i i j ji ja bθ θ

= =
= − +∑ ∑                         (1) 

where the number of SOI users is represented in constant k , and L  represents the number of SNOI hackers. 
( )AF iθ  is the array factor that will be maximized or minimized in specific directions for ULA and UCA using 

evolutionary algorithms.  

( ) ( )cos pos
1 ,    for   UCAAF e n nN j r

i n
β θ αθ  ∗ ∗ − − 

=
= ∑                          (2) 

( ) ( ) ( )1 cos
1 ,    for AF e   ULAnN j n d

i n
β θ αθ ∗ − ∗ ∗ −  

=
= ∑                          (3) 

where nα  represents the complex excitation phase of the n-th element, posn  is the angular position of the n-th 
element, and β  is the phase shift constant. 

3. Smart Antennas Array Beam-Forming Models 
As two models are proposed as shown in Figure 2, the first model assumes user #2 as transmitter, desired user #1 
as receiver at desired angle SOI dθ=  from user #2, and hacker at angle SNOI hθ=  from user #2. In our work, 
smart antennas array using linear and circular topology are obtained. The second model assumes number of de-
sired users M as SOI angles at iθ . 

4. Hybrid PSOGSA Algorithm Optimization Technique 
Several different hybridization methods for heuristic algorithms was presented in [16], when two different algo-
rithms can be hybridized in high-level or low-level with relay or co-evolutionary method as homogeneous or 
heterogeneous. In 1995, Kennedy and Eberhart surprised the world by PSO as shown in [3]. PSO was improved 
by several researchers when many interest variants were developed as shown in [4]. PSO depended on two main 
equations for updating the velocity and position as follow: 

( ) ( )1 C1Rand 1 pbest C2Rand 2 gbestk k k k
iD iD iD iD D iDv wv x x+ = + − + −               (4) 

1 1k k k
iD iD iDx x v+ += +                                     (5) 

where iDx  ( )1 2, , ,i i iDx x x  and iDv  ( )1 2, , ,i i iDv v v

 are position and variation in position (velocity) of the 
i-th particle for an D-dimensional problem, respectively. pbest iD  ( )1 2pbest , pbest , , pbesti i iD  and gbestD  
( )1 2gbest ,gbest , ,gbestD  represent for personal best position of the i-th particle and global best position vec-
tor, respectively. C1  and C2  are the acceleration constants, which represent the weighting of stochastic accele-
ration terms that pull each particle towards pbest and gbest positions. Rand 1 and Rand 2 are two random numbers 
in the range [0, 1], w is the inertia weight introduced to balance between the global and local search abilities 
 

  
(a)                                          (b) 

Figure 2. Two models for smart antennas array.                        
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in terms of k iterations.  
Recently, Gravitational Search Algorithm (GSA) was provided as an optimization problem based on the law 

of gravity and mass interaction [7]. The algorithm considered agents as objects consisting of different masses. 
Each agent in GSA was specified by four parameters: position of the mass in d-th dimension, inertia mass, ac-
tive gravitational mass and passive gravitational mass. At each iteration, perform of the fitness evolution for all 
agents and also compute the best and worst fitness defined as below (for minimization problems): 

( ) { } ( )1, ,best min fit jj Kt t∈=


                                  (6) 

( ) { } ( )1, ,worst max fit jj Kt t∈=


                                 (7) 

where ( )fit j t  represents the fitness of the j-th agent at iteration t , ( )best t  and ( )worst t  represents the 
best and worst fitness at generation t . Then the mass of the agents (gravitational and inertia masses) can be 
calculated as: ai pi ii iM M M M= = = ; 1, 2, ,i K= 

 

( ) ( ) ( ) ( ) ( )fit worst best worsti i im t t t t t= − −                             (8) 

( ) ( ) ( )1
K

i i ijM t m t m t
=

= ∑                                 (9) 

where aiM  is the active gravitational mass of the i-th agent, and piM  is the passive gravitational mass of the 
i-th agent. 

In this paper, PSO with GSA was hybridized using low-level co-evolutionary heterogeneous hybrid. The hy-
brid is low-level because the functionality of both algorithms is combined. It is co-evolutionary because both 
algorithms aren’t used one after another but run in parallel. It is heterogeneous because there are two different 
algorithms that are involved to produce final results. The basic idea of hybrid PSOGSA is to combine the ability 
of social thinking (gbest) in PSO with the local search capability of GSA. In order to combine these algorithms, 
updating velocity is proposed as follow: 

( ) ( ) ( ) ( )( )1 C1 Rand C2 Rand gbesti i i iv t w v t a t x t+ = ∗ + ∗ ∗ + ∗ ∗ −              (10) 

where ( )iv t  is the velocity of agent i  at iteration t , w , Rand , gbest , C1  and C2  are taken from PSO 
algorithm. On the other hand, from GSA in [7], ( )ia t  is the acceleration of agent i  at iteration t  and can be 
calculated by 

( ) ( ) ( )d d
i i iia t F t M t=                                 (11) 

where ( )d
iF t  is the total force acting on i -th agent calculated as: 

( ) ( )1, 1 randd d
i j iji jF t F t

= ≠
= ∑                               (12) 

where ( )d
ijF t  is the force acting on agent i  from agent j  at d-th dimension and t-th iteration and is com-

puted as below: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )d d d
ij pi aj j i ijF t G t M t M t x t x t R t = − +                 (13) 

where ( )ijR t  is the Euclidian distance between two agents i  and j  at iteration t , ( )G t  is the computed 
gravitational constant at the same iteration, and   is a small constant. 

( ) ( )
0e t TG t G α=                                      (14) 

In this problem 0G  is set to 100, α  is set to 20 and T  is the total number of iterations. In each iteration, 
the positions of particles are updated as follow: 

( ) ( ) ( )1 1i i ix t x t v t+ = + +                               (15) 

In hybrid PSOGSA [15], firstly, all agents are randomly initialized. Each agent is considered as a candidate solu-
tion. As can be seen in Figure 3, after initialization, evaluate the fitness function based on Equation (1). Gravita-
tional force, gravitational constant, and resultant forces among agents are calculated using Equations (12), (14) and 
(13) respectively. After that, the accelerations of particles are defined as Equation (11). In each iteration,  
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Figure 3. Flow chart for steps in hybrid PSOGSA algorithm.                

 
the best solution so far (gbest) must be updated. After calculating the accelerations and with updating the best 
solution so far, the velocities and the positions of all agents can be updated using Equations (10) and (15) re-
spectively. Finally, after agents are updated, the process of updating velocities and positions will be stopped by 
meeting an end criterion. 

5. Simulation and Discussion Results 
To validate the above analysis, we have developed a custom event driven simulator using Matlab package. In 
this section, the capability of hybrid PSOGSA technique for adaptive beam-forming with a UCA is studied. 

In this section two models are discussed, the first model is shown in Section 3. Figures 4-6 show beam pat-
terns in comparison with smart antenna for different geometries (UCA and ULA) from user #2 to user #1 (SOI = 
30˚) and from user #2 to hacker #1 (SNOI = −30˚ (330˚) or −20˚ (340˚) or −40˚ (320˚)). Figure 4(a) and Figure 
4(b) is obtained for normalized array factor comparison using ULA and UCA by hybrid PSOGSA at SOI 30˚ 
and SNOI −30˚ (330˚) in polar and rectangular representation respectively. It is found that only UCA topology 
has capability to direct the main beam toward user #1 (SOI) and null at hacker #1 (SNOI). It is clear that the di-
rected power toward the intended direction (30˚) using UCA is better than that obtained by ULA by approx-
imately 55% as shown in Figure 4(a) (more than 6 dB as shown in Figure 4(b)). On the other hand, the directed 
null (zero power) toward the intended direction (−30˚) using UCA is better than that obtained by ULA by ap-
proximately 35 dB as shown in Figure 4(b). 

Figure 5(a) and Figure 5(b) shows SOI at 30˚ and a changed value −40˚ (320˚) for SNOI. Accordingly the 
results showed an improvement of 17% (more than 1.5 dB) and approximately 14 dB for SOI and SNOI respec-
tively.  

Figure 6(a) and Figure 6(b) shows SOI at 30˚ and a changed value −20˚ (340˚) for SNOI. Accordingly the re-
sults showed an improvement of 35% (more than 3.5 dB) and approximately 5 dB for SOI and SNOI respectively. 

Also, it can be noticed that an extra undesired main beam in the broadside direction is obtained in the ULA 
geometry. Therefore, the first case is the worst case in ULA because  SNOI = 30  (330 ) = 360  SOI  − −   
(broadside direction). In general, the results obtained by UCA are better than those obtained from ULA which 
used in [14] for all directions in all scenarios. 

The second model is shown in Section 3. Figure 7 shows two scenarios normalized array factor comparison 
and normalized fitness functions versus iteration number using hybrid PSOGSA and GSA. The hybrid PSOGSA 
is used to adjust the weights of phase shift of the excitation of each element of the UCA array for beam synthesis 
to maximize the output power toward the desired signals at iθ  (scenario #1 two users at: 30 ,0iθ  =  

  , sce-
nario #2 five users at: 30 ,0 , 30 ,90 ,120iθ  = − 

     ). To validate the algorithm, the results are compared to 
those obtained using GSA which used in [13]. Both algorithms are employed with a population size of 30 and 
150 iterations. First part in Figure 7(a) and Figure 7(b) shows the radiation pattern for the case of feeding each 
element of the UCA with the original precise values of phases optimized by hybrid PSOGSA and GSA for sce-
narios #1 and #2. Part two in Figure 7(a) and Figure 7(b) shows the normalized global best fitness of the hybrid 
PSOGSA and GSA algorithms for adaptive beam-forming of the array feeding. Comparing the global best  
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(a)                                          (b) 

Figure 4. Normalized array factor comparison using ULA and UCA by hybrid PSOGSA at SOI 30˚ and SNOI −30˚ (330˚). 
(a) Polar representation; (b) Rectangular representation.                                                                
 

   
(a)                                          (b) 

Figure 5. Normalized array factor comparison using ULA and UCA by hybrid PSOGSA at SOI 30˚ and SNOI −40˚ (320˚). 
(a) Polar representation; (b) Rectangular representation.                                                             
 

   
(a)                                          (b) 

Figure 6. Normalized array factor comparison using ULA and UCA by hybrid PSOGSA at SOI 30˚ and SNOI −20˚ (340˚). 
(a) Polar representation; (b) Rectangular representation.                                                               
 
fitness of the two algorithms, it is found that the hybrid PSOGSA converges faster than GSA with a better per-
formance in terms of computed final fitness values. 

The pervious Figure 7 indicates that the hybrid PSOGSA in general outperforms the GSA in precise feedings. 
Table 1 shows the corresponding normalized |AF| values at the SOI directions for different scenarios. As shown,  
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(a)                                          (b) 

Figure 7. Two scenarios normalized array factor comparison and normalized fitness functions versus iteration number using 
Hybrid PSOGSA and GSA. (a) Scenario #1; (b) Scenario #2.                                                                                      
 
Table 1. The corresponding normalized |AF| values at the SOI directions for different scenarios.                              

 Scenario #1 Scenario #2 

Desired Angles iθ  0˚ 30˚ Average 
Normalized |AF| 120˚ 90˚ 30˚ 0˚ −30˚ Average Normalized 

|AF| 

N
or

m
al

iz
ed

 |A
F|

 
in

 (d
B

) 

Hybrid PSOGSA 0 −1 −0.5 −1.2 −1.9 0 −1.53 −0.6 −1.046 

Standard GSA −3.2 −3.9 −3.55 −7.6 −3.96 −2 −6.98 −0.6  
−4.228 

 
the hybrid PSOGSA is better than GSA by −3.05 dB and −3.182 dB on the average for scenario #1 and scenario 
#2 respectively. 

6. Conclusion  
In this paper, a new novel (hybrid PSOGSA) technique is proposed with ULA and UCA antenna system for en-
hancing the performance of adaptive beam-forming in wireless communications applications. The technique is 
simple and appropriate for real time applications. It is clear that the directed power toward the intended direction 
(SOI) using UCA is better than that obtained by ULA by approximately 55% (more than 6 dB), 35% (more than 
3.5 dB) and 17% (more than1.5 dB); on the other hand, directed null to SNOI better than ULA by approximately 
35 dB, 5 dB and 14 dB in all cases in the first model in terms of normalized array factor. Simulations of beam- 
forming show accurate results even for a big set of simultaneously incident signals. Strategically pairing GSA 
with PSO has the desired advantages over GSA. It is found that hybrid PSOGSA is more attractive for beam- 
forming applications and better than GSA with approximately −3 dB in average. Via extensive simulation stu-
dies, it is demonstrated that hybrid PSOGSA achieves fast and robust global convergence over GSA. 
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