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ABSTRACT 
The field emission current from a carbon fiber is considered. As a model of emission of an elementary carbon 
tube, tunnel ionization of an electron from a short-range potential is taken. The exact solution for the wave func- 
tion in such a model allows obtaining an asymptotic expression for electron current. A computer model of trans- 
verse distribution of emission current of a carbon fiber is built on the basis of the Monte Carlo method that al- 
lows taking into account the random character of distribution of local emitter sources and the distribution of 
gains of an electric field in carbon nanotubes. 
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1. Introduction 
Carbon nanotubes (CNT) can be grown in the form of 
small sharp spikes capable of withstanding considerable 
electric current densities. This assumes high potentialities 
of application of CNT as field emission cathodes in high- 
power vacuum devices. Such devices with field emission 
cathodes seem to be ideal for space applications [1] in- 
cluding disinfection means. New electrical, mechanical, 
and thermal properties of CNT have attractive characte- 
ristics for producing stable currents of high density with 
relatively low electric fields. The comparative analysis of 
different properties of field emission cathodes is given in 
[2], and the review of technological features of manu- 
facturing emitters based on nanotubes is in [3], where it 
is noted also that, besides application in high-power visi- 
ble and near-UV light sources, field emitters based on 
CNT are promising for X-ray minilamps, electron mi- 
croscopy, and microdiodes. 

The emission properties of an individual nanotube are 
described on the basis of the Fowler-Nordheim model 
[4,5] based on the phenomenon of quantum-mechanical 
tunneling of an electron under a barrier under the action  

of a constant electric field. The current density in such a 
model is determined by the dependence 2j AF=

( )3 2exp b Fφ φ− , where F  is the electric field strength, 
φ  is the electron work function, 6.83 eV V nm,b = ⋅

21.541 mA eV VA −= ⋅ ⋅  [6]. It should be noted that this 
formula was initially obtained for metal emitters, and its 
application to nanotubes requires introduction of certain 
corrections. More exact formulas for field emission cur- 
rent take into account an additional polarization potential 
[7].  

In practice, field emitters in the form of a CNT array 
contain a very great number of individual nanotubes that 
differ from one another by their geometry, degree of 
alignment, electronic features, and other parameters [8,9]. 
Due to different dependence of emission currents of in- 
dividual CNT on the electric field strength near a tip, the 
main contribution to emission is made by a relatively 
small number of nanotubes with the highest electric field 
gain 0F Fβ = . In the emitter of CNT, the value β  
depends not only on the aspect ratio (the ratio of the 
length to the diameter) for an individual nanotube, but 
also on the geometry and density of CNT in the array 
with a maximum at an average distance between nano- 
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tubes of the order of height of individual CNT.  
Investigations carried out earlier showed that emitter 

nonuniformities influenced the current density, but they 
did not give an answer to the question about the trans- 
verse nonuniformity of the current itself in its propaga- 
tion from the cathode to the anode. At the same time, this 
nonuniformity directly affects also the nonuniformity of 
secondary radiation caused by the emission current in a 
target. To solve this problem, we will consider a model 
based on taking into account the contribution of elec- 
tronic amplitudes to the expression for the total current in 
case of three-dimensional tunnel ionization of different 
ways arranging point sources. 

2. Mathematical Model of Short-Range  
Potential 

To describe the propagation of an electron wave in a 
constant uniform electric field, we will choose a model, 
in which each individual nanotube is a point source of 
electron waves. Let us consider a point source, in which 
an electron is bound by a short-range potential [10]: 

( ) ( )2πV r r
r

δ
κ

∂
= −

∂
r               (1) 

at the energy 2 2 2E mκ= − . The Schrödinger steady- 
state equation describing the decay of a quasi-stationary 
state in the constant uniform electric field with the 
strength F  looks like 

( ) ( ) ( )
2

2 2π
2iE F e x r

m r
ϕ δ ϕ

κ
  ∂ + ∇ + =   ∂  

r r r   (2) 

The solution of the Equation (2) is expressed in terms 
of the Green function ( )1,EG r r  of the Schrödinger 
steady-state equation for an electron in a uniform elec- 
tric field [11,12]: 

( ) ( ) ( ) ( ) ( ){ }1 2
1

, Ci Ai Ci Ai
2E

mG a a a a+ − + −′ ′= −
−

r r
r r

(3) 

( )( )
2
3

1 1 2
2

ma F e x x E
F e±

 
= − + ± − +  

 
r r



 

The function ( )Ci s  is expressed in terms of the ordi- 
nary Airy functions ( )Ai s  and ( )Bi s  [13]: ( )Ci s =

( ) ( )Bi Ais i s+ . The OX axis is directed oppositely to the 
direction of the electric field F . The equation for 

( )1,EG r r  looks like the Equation (2) with substitution 
of the point nonuniformity ( )1δ −r r  for the right side. 
At 0F =  the solution of the Equation (2) is 

( ) ( )
0

exp
2π

r
r

r
κκϕ
−

=             (4) 

The Equation (2) can be written as the equivalent 
integral equation 

( ) ( ) ( ) ( )3
1 1 1 1 1

1

2π d ,Er G r
r

ϕ δ ϕ
κ

 ∂
=  ∂ 

∫r r r r r      (5) 

In the three-dimensional δ -potential [14] in the limit 
of a weak field the polarizability of a level is 41 4α κ= , 
and its width is 

2 32exp
2 3
e F

m e F
κ

κ
 

Γ = −  
 





            (6) 

Substituting the undisturbed wave function (4) in the 
right side of the Equation (5), we will obtain 

( ) ( )2π ,0 ,EGϕ κ= −r r             (7) 

and the current density at a great distance from the 
source is proportional to the squared absolute value of 
the wave function: 

( ) ( )2 2
~ ~ ,0Ej Gϕ r r            (8) 

For convenience of calculations it is advisable to write 
the solution in the asymptotic form: 

( ) ( )( )

( )( )

3 2

3 2

~ exp 2
3

exp 2
3

m F e r x E
F e

i m F e r x E
F e

ϕ
  − − − 
  
  × + + 
  

r




     (9) 

At great distances from the source in the paraxial re-  

gion 
2

2
r x

x
ρ

− ≈ , 
2

2
2

r x x
x

ρ
+ ≈ + , where 2 2y zρ = +  

is the distance from the OX axis. Using the condition 
2

4
F e E Fx e

x
ρ
  , we will obtain in the paraxial 

region: 

( )
2

3 2

3 2

2exp 2
3 4

exp exp
3 4

i mF e x
x

m m
F e x

ρϕ

κ κρ

   ≈ +  
   

      × − × −   
     



 

r

      (10) 

As a result, for the current from one point source we 
have the transverse distribution 

3 2

~ exp exp
3 4

m mj
F e x
κ κρ      − × −   

      

      (11) 

Shown in Figure 1 is the transverse distribution of 
electron current calculated by the formula (8) with the 
true Green function and by the asymptotic formula (11). 

The comparison of the curves shows the high accuracy 
of the asymptotic representation at a specified distance.  
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Figure 1. The transverse current distribution for the    
distance x 50 nm=  and the electric field strength F = 

135 10 V m× : exact solution is solid curve, asymptotic re-
presentation is dotted curve. The electron binding energy is 
E 5 eV= . 

 
At longer distances the accuracy becomes still higher. So 
for practical calculations it is advisable to use just 
asymptotic expressions. 

For several coherent centers the current density is 

( )
2 3

2
2

2

2~ ~ exp
3

2
exp exp

4 4

k
k

k
k

k k k

mj
F e

mF e mi
x x

κϕ

κρ
ρ

  − 
  

      × × −   
     

∑

∑



 

r

    (12) 

where summation is made over all coherent sources. 
Figure 2 shows the result of calculation of superposi- 

tion of coherent electron waves from two point sources. 
The distance to the screen and the binding energy cor- 
respond to Figure 1. The distance between the sources is 

10 nmR = . 
In Figure 2 it is well seen that in the region of over- 

lapping of coherent waves interference shows itself. 

3. Results of Computer Simulation 
The statistical treatment of the values of the work func- 
tion for nanotubes gives an average value of the work 
function of 5.3 eV. It does not differ greatly from a cor- 
responding value for graphite. In this case a usual elec- 
tron energy spread is 0.3 eV. Moreover, if the source of 
field emission electrons is a carbon fiber, the emitter 
surface is very nonuniform and consists of randomly 
oriented carbon nanotubes, or has a flaky fibrillar struc- 
ture [15]. A characteristic number of fibrils in an emitter 
with an end area of 7 24 10 cm−×  is up to 4000 elements. 
Accordingly, for each nanotube there is its own field gain 
β  that obeys the normal distribution law 

 
Figure 2. The structure of interference fringes in interfe- 
rence of two coherent electron waves. 
 

( ) ( )2
0

2

1 exp
π

P
β β

β
ββ

 −
 = −
 ∆∆  

       (13) 

The value typical of experiment treatment is β β∆ =
1.1 0.3÷ , and gains themselves vary in the range ~β  

2 410 10÷  [8]. Such a spatial nonuniformity as well as 
strong temporal current fluctuations [16] exclude inter- 
ference effects, and the current density becomes the sum 
of currents of individual sources of the ensemble: 

232~ exp exp
3 2

k
k

k k k k

mmj j
F e x

κρκ
β

     = − −   
      

∑ ∑
 

  (14) 

The nonuniformity of distribution of field gain over 
the emitter surface is confirmed by the results of direct 
measurement with the use of a scanning anode tunnel 
emission microscope [5]. At the same time, observed in 
this work was the distribution of field emission current 
density for a carbon emitter by luminescence on a lumi- 
nescent screen. As the field changed from 2.5 V mF = µ  
to 3.1 V mF = µ , on the 1.1 cm × 0.7 cm screen a sharp 
increase of the total exposure field and increasing lumi- 
nescence uniformity were observed. The planar emitter 
sample under study had 164 point emitters located on an 
area of 5 22.4 10 cm−× , that is, with a surface density of 
point sources of 6 26.8 10 cm−× .  

To calculate the transverse distribution of electron 
emission current over a target, the Monte Carlo method 
was used [17]. To simulate a planar emitter with random 
arrangement of local sources, they should be arranged on 
a plane with a uniform probability density as shown in 
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Figure 3. The minimum distance between individual 
sources is limited by the parameter 0.5 md = µ  that 
makes it possible to avoid superposition of sources, that 
is, to take into account the excluded volume effect. 

In this case it is necessary, besides coordinates, to spe- 
cify the field gain kβ  for each source that is chosen 
according to the random distribution (13).  

An ordinary random number generator gives a uniform 
distribution in the interval (0,1). For an arbitrary density 
of distribution ( )P x  the distribution function [18] is 
determined by the relation 

( ) ( )1 1d
x

F x P x x
−∞

= ∫               (15) 

Since the density of distribution is ( ) 0P x ≥ , the dis- 
tribution function is a monotonically increasing function 
of x  from ( ) 0F −∞ =  to ( ) 1F ∞ = . This gives the 
single-valued inverse function 

( )1x F y−=                 (16) 

if ( )y F x= . If now we in a random manner generate 
numbers u  in the interval (0,1) with a uniform density, 
they will be mapped into a required distribution by the 
function ( )1r F u−=  [19].  

For the normal distribution (13) 

( ) ( )2
1 0

12

1 exp d
π

F
β β β

β β
ββ−∞

 −
 = −
 ∆∆  

∫      (17) 

which in view of the determination of the error function 
[17] 

( ) 2

0

2erf e d
π

x
tx t−= ∫              (18) 

can be written as 
 

 
Figure 3. The random arrangement of sources with ex- 
cluded volume. 

( ) 01 erf 1
2

F
β β

β
β

 − 
= +  ∆  

         (19) 

Shown in Figure 4 are the results of calculation of the 
distribution of current density 72.5 10 V cmF = ⋅ , 

150β =  for different distances H  between the emitter 
and the screen. 

The results of calculations show high nonuniformity of 
transverse distribution of current density that decreases 
with growing number of point sources, field strength, and 
distance from the emitter to the screen. The ratio of the 
minimum current density to the average value minj j  
increases with distance from 0 to 0.5. The ratio of the 
maximum current density to the average value maxj j  
decreases with growing distance to the screen from 4.6 to 
3. In this case the spread of values estimated by the ratio 
of dispersion to the average value j jσ  remains high 
at a level of 0.77 0.8÷ . This result should be assigned 
first of all to great fluctuations of density of arrangement 
of individual sources on the emitter surface.  

For comparison, shown in Figure 5 are the results of 
computer simulation in case of location of sources at 
points of a perfect square lattice at 176N =  and with a 
step for lattice points of 4 µm. In this case the dimen- 
sions of regions with uniform current density are in- 
creased considerably, and low current densities are re- 
tained only on the edges of the screen. The ratio of the 
maximum density to the average value is maxj j =  
1.8 2÷ , and the relative dispersion is ~ 0.6j jσ . 
Thereby it was demonstrated that the regular arrange- 
ment of emission microsources increases significantly 
the current uniformity. 

To find out the influence of partial disordering on the 
current structure, simulation was carried out with random 
shifts at a level of 20% distortion of a lattice constant. 
The results of simulation are presented in Figure 6. The 
comparison of calculations with the pattern obtained with 
regular arrangement of individual sources has shown that 

maxj j  increases no more than by 1%, and j jσ  
becomes only 0.3% more. Hence it follows that partial 
disordering of a regular structure retains general charac- 
teristics of degree of current nonuniformity. 

4. Conclusions 
The investigation carried out has shown that it is conve- 
nient to describe propagation of electrons from a field 
carbon emitter on the basis of exact Green functions of 
the Schrödinger equation in a uniform electric field. Each 
protruding element of the carbon fiber end surface can be 
simulated by a point source of electron waves. The high 
nonuniformity of sources results in loss of coherence for 
different sources and in nonuniform density of electron   
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Figure 4. The shadowgraph of distribution of current from random sources. 

 

   

  
Figure 5. The shadowgraph of distribution of current from regularly arranged sources. 
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Figure 6. The shadow graph of distribution of current from regularly arranged sources in case of random shifts in their ar- 
rangement. 
 
current distribution, and in calculations of field emission 
it is possible to sum densities of currents from individual 
sources.  

Simulation by the Monte Carlo method allows obtain- 
ing characteristic patterns of current distribution for dif- 
ferent densities of sources, field gains, and distances to 
the screen. Going from the random distribution of sources 
to their regular arrangement, even in case of partial loss 
of the order, considerably increases the current unifor- 
mity. The developed model allows choosing preferable 
parameters to increase the efficiency and life of radiation 
sources based on field carbon emitters. 
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