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ABSTRACT 

If we consider the finite actions of electromagnetic fields in Hamiltonian regime and use vector bundles of geodesic in 
movement of the charges with a shape operator (connection) that measures the curvature of a geometrical space on 
these geodesic (using the light caused from these points (charges) acting with the infinite null of gravitational field 
(background)) we can establish a model of the curvature through gauges inside the electromagnetic context. In par- 
ticular this point of view is useful when it is about to go on in a quantized version from the curvature where the space is 
distorted by the interactions between particles. This demonstrates that curvature and torsion effect in the space-time are 
caused in the quantum dimension as back-reaction effects in photon propagation. Also this permits the observational 
verification and encodes of the gravity through of light fields deformations. The much theoretical information obtained 
using the observable effects like distortions is used to establish inside this Lagrangian context a classification of useful 
spaces of electro-dynamic configuration for the description of different interactions of field in the Universe related with 
gravity. We propose and design one detector of curvature using a cosmic censor of the space-time developed through 
distortional 3-dimensional sphere. Some technological applications of the used methods are exhibited. 
 
Keywords: Back-Reaction Effects; Electromagnetic Bundles; Form Operator; Electro-Gravitational Detectors; 

Maxwell’s Lagrangian; Quantum Curvature 

1. Introduction 

The curvature perception in the space is associated in-
creasingly with their interpretation as a distortion of the 
micro-local structure of the space—time due to the in-
teraction of particles of the matter and energy with di-
verse field manifestations [1,2]. The matter is shaped by 
hypothetical particles that take as basic the background 
radiation of the space, which in the last studies due to 
QFT, SUSY-theory and brane theory, the strings are or- 
ganized and tacked to form spaces of major dimensions 
[3,4] represented by diverse particles of the matter as 
they are gravitons, barions, fermions of three generations, 
etc., shaping the gravity at quantum level, obtaining rep-
resentations of the same one for classes of cohomology 
of the QFT, like for example the FRW-cohomology, 
which considers diverse symmetries of cylindrical and 
spherical type for the gravity modeling like a wave of 
gravitational energy “quasi-locally” [5-8]. Their integrals 
of action define a energy density (Hamiltonian) given for 
the gravitational case like [9-13]: 

TOTAL
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,

8π 2M

H L T X
G

 
         (1) 

where Lα is the Lagrangian, Tαβ, is the corresponding 
tensor of matter and energy, Γ, is a Hamiltonian density 
and Xβ, is the corresponding field of displacement of the 
particles in the space moving for action of Lα influenced 
by the tensor one of matter and energy Tαβ. it is necessary 
to indicate that Lα has component that is invariant yet 
under movements influenced by the tensor Tαβ, which is 
their electromagnetic component LMAX, (Maxwell La-
grangian (see Table 1 in Section 4, and Table 2 in Sec- 
tion 6). 

In case of the energy and through the neo-relativistic 
models of strings it was possible to have established that 
this is only a manifestation of the matter in their deep 
level, being a product of the interaction with particles as 
the electro-strong interactions that produce dispersion 
and cosmic rays in the whole universe, causing back- 
reaction in propagation of photons that can be shaped 
through hypothetical particles or dilatons [14,15], using a 
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strings of heterotic model [17] on the base of a 10-di- 
mensional space-time defined for 

  6

2
2

k
M SU R K   , 

[17]. Then 4-dimensional strings (curved part of the back- 
ground) can be interwoven to form strings that give birth 
to the quantum gravity that can be measured by the en-
ergy due to the backreaction of the photons with the 
background through a deviation (distortion) in their La-
grangian, reflected the above mentioned deviation in the 
action dilaton-gravity that would take in the space—time 
as an electro-gravitational wave with gravitational norm 
obtained by quantized electromagnetic fields interacting 
with the gravity. In this interaction dilatón-gravity, the 
field action is given theoretically 
 

Table 1. Connections by Maxwell tensors [5]. 

Table Column Head 
# 

Maxwell Equations Curvature 

1 D * F = 0 FD = D2 

2 SUF = £F (dF = 0, dF* = 0) FD = d     

3 DFD = 0 F = d   

4 E  H  = 0 (F1  F2  F2  F1) F = [],    

 
Table 2. Lagrangians to electromagnetic interactions. 
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Electromagnetic 
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(2) 

where R, is the curvature, d Dg x , is the quantized 
metric of the metric tensor and , is the dilaton poten- 
tial. 



2. Gauges of Maxwell and Variation 
Principle 

Geometrically, a gauge as a physical concept is a vector 
bundle with a connection or shape operator between 
points of the space where the shape operator is an in- 
variant under movements and rotations realized in the 
space [3].  

This determines a quality invariant [2,3] of any of the 
actions in a field that acts on points among the space, 
which is useful for the effects measurement or observ- 
ables of the field such as curvature and torsion [2,3], 
through an operator so that it could decide by means in 
other fields using a variation principle [1,5]. In particular 
we are interested in using finite actions (measurable) of 
electromagnetic fields with an shape operator determined 
through Lagrangians of Maxwell to measure observables 
or effects in other fields, for example, the observable ones 
of curvature and torsion due to the gravitational fields, or 
the distortion effects in spaces of energy (quantum cur- 
vature [5]) given by strong interactions or quantum fields. 
Interactions between two photons classes, one created by 
the matter (fermions), and the photon of the integer spin. 
Before entering in the quantum context, we consider to 
behavior particles in the macroscopic case.  

Maxwell equations can be obtained like equations of a 
variation principle: Hamilton principle of a stationary 
action [2].  

In effect, be M, a space of points or particles under 
movement of the action in a conservative electromag- 
netic field whose group of actions is SU(2), (group that 
defines the finite actions through unitary anti-Hermitians 
matrix of range). Be LMAX, the Maxwell operator on this 
group of points that establishes the law of conservation 
of movement in M, and that is produced by the fields of 
Maxwell F (dF = 0, dF* = 0).  

If we consider that Maxwell equations can be obtained 
also like solution for a variational problem, then due to 
the actions of the fields F, that they produce the 
movement of all the particles in the space M, and using 
the corresponding vector bundle of these electromagnetic 
fields to define it geometrically we can define the above 
mentioned action as [4,5]: 

:TM R  ,                 (3) 
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with rule of correspondence 

       : ,MAXx s FluxL x s x s          (4) 

and the energy due to LMAX, is 

,MAXE L                (5) 

If we consider the global evaluation of the operator 
who acts on the points space x(s), this is given by 

       : dMAXM
,x s L x s x s        (6) 

The integral Equation (6) represents the action (), in 
which Hamilton’s principle establishes that the particle 
will cover that trajectory that minimizes the action. 
Likewise, the movement equation is predetermined by 
the minimum of this action (), and pre-established for 
the variation condition [2]: 

      
 
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 

     
 
  ,s (7) 

Particularly, if we want the evaluation of this Max- 
well’s action along a trajectory chosen inside the field of 
minimal trajectories, as the principle of the minimal ac- 
tion we have the execution of the action of Maxwell’s 
fields [1,5], 
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
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 (8) 

where s , is the corresponding measure of the trajectory 
 , in M. 

3. Shape Operators and Curvature in the 
Lagrangian Context 

In particular, the action , of a field that curls the space 
M, is given by 




,
M

R  


                (9) 

with R, a scalar curvature and   a metric form of vol-
ume in a system of invariant generalized coordinates 
under translations and rotations of coordinates in the 
space M. Let’s define to j

iR , the 2-form of curvature of 
the shape operator or corresponding connection D. 

Then for a region of the space affected by the action 
, the product 


R , can be expressed through surface 

sections , where establishes the minimal condition of 
the trajectories followed by particles (mentioned in the 
Section 2) under the action of the field of displacement 
[2] (remember that the displacement field does not have 
character of a tensor but it implies the existence of a ten- 
sor which is that curvature [2]) in M, that we will estab- 

lish by means of the Lagrangian, to know 



,ij
ijR R                   (10) 

But this new expression of the form of curvature is 
useful to determine the distortion of the space through 
the value of the integrals along the minimal trajectories 
considered in surfaces that shape the form of the space, 
and whose deviations in conserving regime will deter- 
mine the curvature of a universe. 

The variation respect to the shape operator is estab- 
lished by the “free torsion” to us and therefore the equa- 
tion of the shape operator 

0,ijd  [3]                   (11) 

that in the context of the finite actions produced by the 
fields of distortion in Hamiltonian regime, otherwise the 
Equation (11) is equivalent to the equation 

    2 0,R R Ad G F M    1[5]        (12) 

which has solutions in all the geometric models of con- 
stant curvature in a space M, and their geodesic curva- 
tures are determined by the shape operator evaluated 
along the geodesic   in the corresponding section of 
the bundle defined by Equation (3).  

The Lagrangian writing through a scalar density of 
energy h, that produces energy as the determined one by 
Equation (5) in a pure context of the mechanics, we have 
that the action 


, takes the form 

,i j k
k ijlR h   


l             (13) 

where hij, is determined by ,i j ijh     to some form 
of volume  , such that hij, have determinant unity with 
respect to .ijk  The action given by j

kR  is the action of 
the curvature tensor that preserve the energy densities hij, 
such that 

i i
j ik k ijR h R h                (14) 

1A particular case of the equation of the shape operator Equation (12) is 
given by the equation of the metrics established for 2 2 2

4 ,ds dx d 
with  2 , 1, 2,3ij i k id dx dx i k   ,  given for [2] 

  0,iklm il km im klR B       

which measures the curvature tensor through displacing the potentials 
Ai, according to the metrics established along a surface of an infini-
tesimal 2-dimensional element ik , and calculating their variation in a 

contour (cycle). In fact, the contours are cycles of a 2-dimensional 
sphere that is obtained through the spherical map M  S2, to obtain a 
Gaussian curvature of M, using the curves or minimal trajectories of the 
particles in M, submitted under the vector constant electromagnetic 
potential field Ai. Then the contour variation is established for the dis-
placement produced by the charges in M, for .i i s t

stA A dx   Then for 

the principle of minimal action all the trajectories or cycles used to 
determine the curvature, using the vector potential Ai, satisfy in the 
cycles that 

  0.i iA A      
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The identity from Equation (14), suggests the possibility 
of using an anti-symmetrical structure similar to the 
given by the fields of displacement [6], like for example, 
a structure given by the fields of Maxwell F, in a space 
of finite actions like the given by the super-canonical 
algebra [3-5]: 

 ik kiF F F  E H          (15) 

In fact in general the elements in the Equation (15) are 
of the form F1  F2 – F1  F2 – [F1,F2], which proceed of 
considering to as a bilateral ideal  as a bilateral 
ideal [5,7]. Here Fik = iAk, with Ak = k, where , is a 
density of electromagnetic field. 

E H

The importance of this one formal structure in elec-
tromagnetism is its representation and realization for 
operators of the quantum mechanics [5,8]. It can be 
demonstrated under certain restrictions in a co-algebra to 
the curvature connection in case of a Hamiltonian density 
of curvature [9]. Other algebra of this co-algebra is the 
relative one to the curvature of space—time [5], that is 
what we are interested in. 

To reinforce the idea of using an shape operator so that 
used energy of another field origin (like the of electro- 
magnetic field) and to prepare the use of Lagrangian of 
Maxwell, for the curvature determination under Hamil- 
tonian regime, let’s consider 

1
,

2
ij ij kl

ij ijklR      


         (16) 

where the form of volume in M, remains given for ijkl , 
which is a Lagrange multiplier for the Equation (11) [5]. 
Then studying the variations happened in the integral of 
Equation (16) with respect to ijkl , we obtain a variation 
condition for the curvature tensor through its shape op-
erator with the new introduced elements, to be known 

,kl
ij ijklR                       (17) 

This implies that all the terms of the symmetrical ten-
sor of curvature [5] in Rij, are annulled, the Equation (12) 
being satisfied on the whole   [10]. 

4. Electromagnetic Model of Quantum 
Curvature 

We use the generalization of the Maxwell theory given in 
the Section 2, and let’s express the Maxwell-Lagrange 
operators according to the shape operator or connection 
and its curvature. Let SG(M)0, be a bundle of vector fields 
on M, with structural topological group G. Let D, be the 
shape operator in SG(M)0, defined by the correspondence 
to a field X 

  ,X D X                 (18) 

and let D, be the action defined by the form of curvature 

corresponding to the shape operator D, defined in (18). 
The shape operator this way definite induces a transfor-
mation in the bundle vector fields SG(M)0, [5]. This bears 
to that we could realise gauge transformations on the 
space M, through generalizing vector fields [5], since it 
there are the electromagnetic fields of  [5], in 
the structural context given by the topological group of 
finite actions, 

,E H

( ),G SU n  of M, with the Hamiltonian 
formulation given in the Section 2. 

The Hamiltonian formulation mentioned can be ob-
tained like solution to a variation problem directly of the 
Maxwell equations [5], namely: Let ijkl , be a form on 
volume in M, and let * be the Hodge operator defined by 
the metric of M. Then ij ijkl



,klF F    and the Maxwell 
Lagrangian LMAX, it is possible to express like 

1
,

4
ij

MAX ijL F  F            (19) 

This way, Maxwell equations are precisely the Euler- 
Lagrange equations of the corresponding variation prob-
lem. Their action is given by Equation (6). But we want 
curvature under the action of these Maxwell fields using 
the minimal trajectories  , possible movement of the 
particles in a microscopic space-time M [5]. Then the 
finite action originated from the curvature must be the 
that comes from a finite action of Maxwell fields in 
Hamiltonian regime as it is defined from Equation (3) to 
Equation (6), more the action defined by the form of 
curvature corresponding to the shape operator D, defined 
in Equation (18) and that is related to Maxwell fields for 
the form of curvature described in terms of the Maxwell 
tensor F: 

2 ,D DR D F             (20) 

    02 2( .D GF End S M M     

The tensor defined in the Equation (20) is the quan- 
tized version of the curvature tensor [5], way that is nec- 
essary to be applied to define the curvature according to 
bundles of light [3,5] (to see Table 1). In fact it is possi- 
ble to surmise that the reinterpretation of the curvature by 
electromagnetic fields is established from a quantum or 
microscopic level using their spinor fields of light [5]. 

From the Lagrangians described and their gauges 
(electromagnetic fields), given the following classifica- 
tion of curvature: 

5. An Inferior Bound to Localizing 
Curvature Measured through 
Energy of Matter 

Be considered to be a connection for this phenomenon of 
quantum curvature the shape operator, 

,D D DF                (21) 
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where FD, is the linear connection used in the Equation 
(20), (that is the linear connection of the gauge transfor- 
mation (quantized electromagnetic fields) and D , the 
connection of movement (translation) of the affine con- 
nection describing a small distortion of the space respect 
to a reference inertial frame, due to this electromagnetic- 
gravitational interaction.  

Then ,D dx A 
      where ,A A

     is a non- 
holonomic frame. Then the connection D , must be 
considered to be like the connection of the censoring that 
contains quantum curvature. 

All R4, must be obtained through a micro-local struc- 
ture of the space-time, whose connection is a generalize- 
tion in a certain sense of the given connection. 

Escolium 5.1. The curvature action , on R4, meas- 
ured by the electromagnetic field through the Lagrangian 
LMAX, comes given for 




,D  


               (22) 

where  is the action of Maxwell tensor ones as it is 
defined in the Equation (6) and D, is the action defined 
by the form of curvature corresponding to the shape op- 
erator defined in the Equation (18). 

,

Proof: We consider inequality: 

,MAX YML L E L                 (23) 

and we consider the energy due to the action ,


[2], to 
know: 

0

,i j kl
k ijk

M M

E R h                 (24) 

from which the curvature Langragian is given by 

,L E 


                  (25) 

Coupling the energy of Maxwell tensor  [5] of 
the structure of the U(1)-bundle  [3], to the 
equality in the Equation (23) and considering that their 
compositions 

,ijT
,E H

,i j   ( j jA  ), are conformably 
invariants, we have that under the principle of curved 
translation [11], the endomorphism ,ii j j        is 
the curvature of which according to the unified 
conformably invariant field theory [12], is a good ap- 
proach to the Bach tensor Bij and their correspondent 
spinor, the Eastwood-Dighton tensor Eijk [4]. This way 
we have that the action of curvature through the Lagran- 
gian on  is precisely the contribution of the Bach 
and Eastwood-Dighton tensors, [12] to know:  

,ijT

,HE

 2 ,ij ij
ij ij M

R F F Vol   


 ,g      (26) 

where ,M M  is the compact Riemannian manifold, 
oriented and of dimension n, of the Riemannian manifold 
M and g, is the Riemannian metric of M. 

Corollary. 5.1. Consider the action D, with Lagran- 
gian of Yang-Mills to the Maxwell equations of the 
variation principle ( Euler-Lagrange equations) 

0,D F                   (27) 

Then the curvature on the geodesic one   calibrated 
through the electromagnetism of the Equation (26) using 
the concept of gravitational norm used in the Equation 
(21) is given by 

   2 , dij
D ij M

M

,F F F Vol g s



 

  
 
  


   (28) 

with  2 .DF M  The Equation (28) is the geodesic 
curvature of light. The bilinear form 2 , 1 4F F   

, 1 4 ,ij ij
ij ijF F F  F , where * is the Hodge operator. 

Proof: Applying the property of the Hodge operator 
,  due to the metric g of ,M  [5,6] jointly with the 

definition of Yang-Mills functional in the space of shape 
operators   ,0 , *M E T M   and under the scheme of 
the energy tensor Tij, (given in the before section through 
of their Hamiltonian) we have the result wanted [9]. 

6. Propagation of Photons and Gravity 

We consider the photons propagation in a cut of a cone 
of light with the infinity null of the space-time (that is to 
say, only the regions of the space-time where photons 
interaction exists with hypothetical gravity particles) [13] 
(hypothesis of Kozameh), then we can obtain a curvature 
expression according to the quantized electromagnetic 
fields. But the questions arise: how to obtain a formula 
that includes the effects of distortion of the light for the 
gravity presence (curvature), using the condition hap- 
pened in the Equation (16) and that is simultaneously, an 
electromagnetic representation of curvature? Will it be 
possible to design an instrument to detect photons radi- 
ated by gravity? 

Theoretically, the region that can be capable to these 
electromagnetic measurements must be the shaped one 
with strings of such theoretical particles like the graviton 
and the dilaton that magnetic distortions of the photon 
detect [14]. 

We want quantum curvature though fields of light that 
interact with the gravity, but also we want to measure 
like quantized electromagnetic energy, which comes from 
the above mentioned distortion. 

Then it is necessary to use the Kozameh hypothesis 
[13], more curvature hypotheses in theory of the geomet- 
rical invariants of the space-time that allows us to meas- 
ure the distortion of the lines of movement in any parti- 
cle that falls down under the influence of the gravity field 
at quantum level, using the back-reaction in the back- 
ground of the space, with certain hypotheses (to see Fig- 
ures 1-3). 
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Figure 1. Flat- -Worldsheet of distortion angle obtained 
for the electromagnetic backreaction with the background 
radiation (gravity). 
 

     
(a)                           (b) 

Figure 2. Dilaton measuring distortion due to quantum grav- 
ity, according to the model computacional magnetic Φ = 
y/\sqrt(y + 1) – ((1/2)log(x + 1/x + (x – 1/x))cos) (see Equa-
tion (41)). The surface in (a), represents the space-time area 
before the photons back-reaction with background radia-
tion, their magnetic model is Φ = y/\sqrt(y + 1) – ((1/2)log(x 
+ 1/x + (x – 1/x))). In the surface (b), the distortion is meas-
ured by the magnetic oscillations cos, that is to say, the 
term of tough deviation in the Figure 1. 
 

 

Figure 3. Wave propagation of the background radiation 
(green), propagation of quantum electromagnetic waves, 
without background radiation (black) and propagation of 
quantum electromagnetic waves distorted with background 
radiation (blue). The stripe in brown represents the flat 
space with the corresponding distortions that create the angle 
. The difference between the two waves come reflected in 
the corresponding hollows. This figure gives us the micro- 
local aspect of the space-time in Max Planck dimension. 

Conjecture. The quantum curvature can be measure- 
able or detectable across the effects of reaction of the 
radiation of the electromagnetic fields with the gravita- 
tional field that produces the whose curvature, but these 
can only measure themselves for its Hamiltonians in the 
kinematics of the curved space in R4, with respect to its 
micro-local structure. 

The previous conjecture establishes that the electro- 
magnetic measurement can be realised, but only in indi- 
rect form and with fields without mass of electromag- 
netic origin (photons) which is not detectable for meas- 
uring devices (measuring devices do not exist for these 
ends). 

7. Model of Magnetic Distortion:Magnetic 
Deformationof Cuadri-Dimensional Part 
of the Strinf of Background Radiation 

We consider SO(3)k/2  4


4

, like the 4-dimensional part 
of the string of background 10-dimensional in which we 
replace the flat part of , (that is to say, we are con- 
sidering the part of , where there is distortion 4  ). 
We consider the corresponding algebra of electromag- 
netic fields at level k, given by the gauge group to this 
scale SU(2)k [15], and   as a real dilaton [14], both 
appearing in the exact string of background realised by 
the theory of 2-dimensional superconformal fields. The 
distortion of such 4-dimensional curved part of the back-
ground will be designed in the heteroric superstring the-
ory [12], in the language of the Lagrangian given by  

1 2( , , , ) d d ,
n n

n i i
i j

L g j      j       (29) 

The idea is to use the fields i , to establish a map of 
the basic space (that is a 2-dimensional manifold fitted 
like string in the space-time) to the real space-time in 
question, the latter modeling for a Riemanniana manifold 
[10]. 

The distortions will correspond the introduction of a 
constant magnetic field and its gravitational back-reac- 
tion on the 4-dimensional part curled of the background. 

In theory not deformed and using the notation of Dirac 
the action of the Lagrangian described for our string in 
SO(3)k/2  4

 , is [15]: 

   3

3
2 0 0 0 0

1

, ,
4

1
     d

2π

      ,
4π

SO

l l

l

L

k
I

z x x

Q
gRx

  

   


 

         







(30) 

where    3 , ,soI    , in Euler angles of SU(2) = S3, is 
the curvature of the 2-dimensional manifold fitted (em- 
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bedding inside) as string in the space-time, g, determines 
the metrics of the target and Q, is the dilaton charge with 
xL, is the coordinate of  . On the other hand, the ac- 
tion of a bosonic Lagrangian is given like (Table 2): 

   21 1
d ,

2π 4π
Lz G B x gR x 

       x (31) 

Comparing this action with the Equation (6) we obtain 
the fields of background radiation (since we want to ob- 
tain actions dilaton-gravity): 

00

0
0

1,   ,   cos ,
4

cos    ,
4 2

k k
G G G G G

a

k x
B Qx

k

   







    

   


 (32) 

Def. 2.1. A dilaton is a hypothetical particle that ap- 
pears for to do compact strings or quantum dimensions as 
the theory of Kaluza-Klein. Also is a particle of a scalar 
field  , that always accompanies to the gravity. 

After introducing the complex fermions combination 

  1 21 2 i       and the corresponding change 
of the affine bosonic currents J± = J1 ± iJ2, the super- 
sym-metric affine currents read: 

33 3 , 2J J J J                 (33) 

Let us redefine the indices in the fermion fields as: + 
→ 1, − → 2, then J3 = J3 + ψ1ψ2. From the Lagrangian 
point of view, the component of the field of the magnetic 
field H, of the part 4-dimensional of the radiation back- 
ground   2

3
k

SO  , it is given by the exact marginal 
operator  1 2

3grV H J    J . En forma similar la 
correspondiente deformación marginal gravitacional 
viene dada por  1 2 3

3grV R J J   . 
Similarly, when gravitational marginal deformations 

as in the operator Vgr = R(J3 + ψ1ψ2)J3, are included, 
where R, is the curvature parameter of the deformation, 
one can derive corresponding exact background of string 
theory via the Lagrangian calculations [16]. 

Here, following [17], we consider covariantly constant 
magnetic field i ijkH F 

jmknR
, and constant curvature 

, in the 4-dimensional background as 
above of closed superstring theory. When this chromo- 
magnetic field is in the μ = 3, direction the following de- 
formation is proportional to 

ijk lmn
ilR  

 1 2
3 ,J J   and the right 

moving current J is normalized as    1 0 2J J kg . 
Rewriting the currents in the Euler angles, i.e. 

3  s ,coJ k        3 cosJ k       , we ob- 
tain for the perturbation of the (heterotic) action in the 
Equation (28), the following expression: 

2
H

d cos
2π

gkk
z

The new space with the action  + , is conformally 
invariant. The background radiation corresponding to the 
perturbation of the Equation (10) is determined by fields 
of background radiation, that is to say, by gravitons Gαβ, 
through gauge fields F 

 , (electromagnetism), a anti- 
symmetrical field given for H , and a dilaton Φ, 
which ones are the solutions of the equations of movement 
[14,15]: 

 2 ,3 10 2 1
4 0

2 3 3 12
R F F

g
  


 
,      

 
  (35) 

2
2

1 1
2

4 2
R H F F

g
 

      0,      

0,

      (36) 

2 He


                    (37) 

2 , 21
H

2
e F F e   

 
     0,            (38) 

These are obtained of the changes of the following ac- 
tion 4-dimensional effective gauge (effective Lagran- 
gian): 

 24 2 2

,
2

1
d 4

12

1
                            ,

34

x Ge R

C
F F

g
  


      


 

H





 (39) 

where C, is a constant of the Equation (11). Realizing 
some gauge considerations of the vector potentials A

 , 
and the normalization to g, and H , we have that the 
background radiation, expiring with the distortions con- 
sidered in the action of Equation (10) takes the form 
through their gravity tensor G  

 

   

2
00

2 2 2

0

1, , 1 2H cos ,
4 4

1 2H cos , 1 2H ,
4 4

cos , Hcos , H,
4

 ,
2

k k
G G G

k k
G G

k
B A g k A g

x

k

 

 

  





 

   

   

  

 


 k

 (40) 

where H is the magnetic field as in (34). Similarly, when 
gravitational marginal deformations as in the vertex Vgr = 
R(J3 + ψ1ψ2)J3, are included, where R is the curvature 
parameter of the deformation, one can derive correspond- 
ing exact background of string theory via Lagrangian 
calculations, [17-19]. Again, the fields in this back-
ground which solve the effective field theory Equation 
(10), are [17]:  

,              (34) 
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   (41) 

The dependence on ξ, shows the existence of gravita- 
tional backreaction which was absent in the purely mag- 
netic deformed background (40) (to see Figure 2). 

In the following Table 2 we do an inventory of the ac- 
tions of the used Lagrangians. 

8. Electromagnetic Detectors of Curvature: 
Design of s Cosmic Sensor of Curvature 
with Penrose Censor 

Due there are no instruments for detection and direct 
measurement of the electromagnetic back-reaction, we 
can propose the design of an indirect detector based on 
the concept of cosmic censoring to detect curvature in 
regions near to a singularity of the space-time. 

Nevertheless we can use certain studies of the models 
of the space of de Sitter, to determine through Hilbert 
inequality and based on certain bound of cosmic censor- 
ing constructed by Penrose [20], the possible integral 
expression of the total Hamiltonian of electromagnetic 
energy, establishing a condition of domineering energy 
[11], where there is curvature (that is to say, if the energy 
is given by this cosmic censor, there is curvature meas- 
ured like energy that makes the censoring appear).  

The latter condition is in a certain sense similar in the 
mathematical context to the property of obstruction to the 
integrability of the field equations but in a practical form 
(similar physicist) who can serve to us to design a detec- 

tor and curvature meter at quantum level, using theoretical 
hypotheses [13]. 

To realise curvature detection it is necessary to be sure, 
that the above mentioned property or observable it comes 
from an intrinsic property of the gravitational field in the 
space-time, which create the geometric stage of the space. 

But the space is influenced by this field on every par- 
ticle that composes it, that is to say, an intersection be- 
tween the cone of light of every particle and the infinity 
null exists of the gravitational field that creates the dis- 
tortion of the space [21]. 

In these intersections exist the detectable and measure- 
able part that can be measured through microscopic elec- 
tromagnetic fields and on the other hand that has the 
gravitational nature that provokes the curvature, generat- 
ing enough energy to be bounded by the cosmic censor 
of Penrose [22]. 

Relative studies to curvature from quantum distortions 
(like established in the previous section), confirm the 
hypotheses of consider the Lagrangian to be able to meas- 
ure curvature from a quantum level, the above mentioned 
with the geometric hypotheses on a cinematic model of 
the predefined space for the geometry for the case of 
curvature. 

We consider the kinematic models given by the spaces 
that are asymptotically de Sitter and anti-de Sitter [23,24]. 

Proposition 8.1. Considerating the Cosmic Censorship 
hypothesis given by Penrose [20], we have that the area 
A, of a singularity (black hole visualized as a spherically 
symmetric space) is proportionally minor that the quasi- 
local mass around of singularity given for 16πM2 [11]. 
Then in the events of the space like one asymptotically 
de Sitter space its have: 

 
2

2

2 21 log 4π ,
S

 
      

 
        (42) 

which represents the curvature measured like energy 
doing to appear the censure given in the second member 
of the inequality and that it goes out to re-shine for the 
Lagrangian action of gravitational field moving away or 
approaching the singularity (asymptotically de Sitter and 
anti-de Sitter spaces). 

Proof. [22,25]. 
The minimum energy (second member of the In-Equa- 

tion (42)) must be obtained directly in a geometrical 
condition given by an invariant of curvature. From the 
exponential of empty expect value , of the effect 
action given by the Equation (39), we obtain the coupling 
constant g, and as by the generalized Gauss-Bonnet 
theorem we have [7,26]. 

e

2 π ,n nR              (43) 
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then n = 2/2 = 1, since dim M = 2. To compact world- 
sheets where the Euler characteristic  = 2  2g. Pero (43) 
is the curvature invariant given to the spherical map M  
S2. 

For the case of M, see it like a space 4-dimensional, it 
is necessary to consider the spherical map M  S3, in 
this case the electromagnetic fields can be used like 
gauges remembering that SU(2)  S3. 

Then the cohomological classes of the Cartan forms 1, 
and 2 are annulled (H1(SU(2), R) = 0, that is the case of 
the integrals like discussed in the page foot 1, 

 1ω 0 0i iA A    
 

     ,  

Also it does it  2 , 0H M  , to 2M S  [5], that 
is to say, 2 ), remaining only the cohomological 
group generated by 3

0 
 , to know,  [7, 

27]. Then the value of the integral of this group of co-
homology is [7,26]: 

 3H SU 2 ,

  3
32

2

1
ω 2 ,

8π
SU S

F F


          (44) 

But by the background radiation of the Minkowski 
space M, where the energy of the matter is, it is had that 
J k T   , where k  is the density of background 
radiation which establishes for the curved part of the 
space (that in this case has spherical symmetry) together 
with the energy and matter tensor that do not 

2 2

1
T d π

4π
S S

k d J
G

   
 2          (45) 

But conserved current in whole space is (this include 
 1 2J J 

   , in our analysis of the Section 7), 

1
,

2
J E k S k  

              (46) 

Then the energy inside in the sphere satisfies [7,28] 

    3
32

2

1 1
ω 1

2 216π
SU S

g



          (47) 

since the electromagnetic energy with respect to the en-
ergy of background radiation can fulfill that 

24π 8π , ij
ijF F              (48) 

Then from (44), (46) y (47), the condition is had 
216πM A                (49) 

which is (42) for a singularity detected of spherical type 
[25,28] (see Figures 4 and 5). 

A table given for manifestations of mass-energy “de- 
tected” by this indirect method showing curvature exis- 
tence [29] is the Table 3. 

 
(a) 

 
(b) 

Figure 4. (a) The corresponding wave of “energy-density” 
in the cosmic sensor of detection of curvature. The waves 
obtained by the effect of radiation reaction, given by con-
jecture [13]. (b) The same way as it is moving away from 
the gravitational field (interaction with the gravitons), these 
stop producing detectable energy for our cosmic sensor, 
tending to a flat space in the infinite nullity. This tendency 
can be observed like the similar hyperbolic of a space of 
Minkowski or Anti-de Sitter space [24]. In this analysis, 
cylindrical waves [29], of the form are used M(R)/R2 = 1 + 
exp(R)(J, z(1  R, R)),  (0, 1). 
 

 

Figure 5. Surface of waves of “energy-density” in the quasi- 
local mass region of the space-time. This surface include the 
waves given in the Figure 4. 
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9. Applications and Technological  
Development 

The equivalence class of the potentials Ai, can be re-in- 
terpreted precisely as a connection (operator of form) on 
a trivial bundle of lines and admitting bundles of not 
trivial lines with form operator provided with arbitrary 
fields F (like the curvature of this connection). 

The Aharonov-Bohm effect [5], it provides of a physical 
justification of this formulation. Precisely the resultant 
physical theory and their generalizations are known like 
the gauge theory [30]. 

The following Table 4, establishes the correspondence 
of operators of form provided with arbitrary fields of 
Maxwell under the action of the corresponding Lagran- 
gian and their corresponding curvature tensor [31]: 

Certain simulations have been realized considering 
certain restrictive conditions to models of the space-time 
(to see Figure 6). In particular there have been consid- 
ered to be models with Lorentzian metrics of negative 
curvature:  

Has been innovated into the design and making of several 
electromagnetic devices of measurement and detection of 
curvature (to see Figures 7 and 8), which use signals of 
light to measure the curvature with the information of the 
angles of deviation of the incidental signals of light in the 
surface of the object or body. In case of curvature detec-
tion is designed a sensor of curvature based on an inte-
gral operator on Gaussian curvature. The patent of these 
devices is in administrative step. 

There are many technological applications that cans be 
realised by the concept of gravity quantum through their 
observable that is quantum curvature. For example in nano- 
structures, we can create through geometrical potentials 
and light waves the Curvature-induced geometric potential 
in strain-driven nanostructures [32], and evaluate their 
curvature in this level [32].  

The use of electromagnetic fields to measure observ- 

able of other fields like the curvature that is an observ- 
able geometric one of the gravitational field in the space- 
time they suggest the possibility of a unified theory in a 
curved similar sense of their vector bundle. The equation 

0,D F   (given in the Equation (20)) is not quite dif-
ferent of the Equation (12), simply is a particular case of 
this last equation to the case of the actions of a electro- 
magnetic field determined to the 2-forms F, defined in a 
SU(n)-vector bundle.  

This way there are obtained fundamental 2-forms of 
curvature FD, that are integrable in the same sense as the 
integrals of line given by the Hermitian forms for the 
Maxwell tensor of the Lagrangian, namely: 

,
M

F F ,               (50) 

Table 3. Manifestations of mass-energy detected through 
the method of the cosmic censor of Penrose and their cor-
responding curvature in a asymptotically flat space—time 
[23]. 

Mass-Energy Detected 
#

Object of Measurement Curvature 

1 Total mass-energy Bondi Tensor 

2
Energy of gravitational 
waves to infinite 

Bondi Tensor 

3 Massless fields 
FRW-Cohomology, k = 0, 
Eastwood-Dighton Tensor, Weyl 
Tensor 

4
Potentials of gravitational 
energy 

RW-Cohomology, k = 1 and 
examples of Cylindrically 
symmetrical de Sitter spaces 
(Figures 3 and 4) 
Weyl Tensor 

5
Energy of gravitational 
waves (quasi-locals)) 

Cylindrically symmetrical gravi-
tational waves (Figures 3 and 4)
Weyl Tensor 

6 Energy of electrostatic field 
Reissner-Nordstrom solution 
Weyl Tensor 

 
Table 4. [31]. Different tensor of curvature measured by Maxwell’s gauges (vector bundle with shape operator). In the second, 
third and the fourth lines there is curvature, which could be expressed by Maxwell's fields, through their integral of action 
and shape operator under the Hamiltonian regime corresponding of the Lagrangian. In the third and the fourth lines we 
have that the electromagnetic energy tensor is joined to Bach tensor of curvature as in the unified field theory conformably 
invariant proposed by Merkulov [4]. In the fourth line it is obtained under the application of the scolium. 5.1., a quantized 
version of the Bach tensor . kl

Tensor of curvature measured by Maxwell’s gauges 
# 

Maxwell Field Lagrangian             Action        Connection & Vector Bundle             Curvature Tensor 

1 F LMAX = 1/4FijFij                      U(1)-Bundle Ai (Vector Potential)              There isn’t 

2 F LYM = 1/4(Fij, Fij)                      SU(n)-Bundle Connection D             FD = D2 Ward Tensor 

3 T L = LMAX  LYM                    


        [.]),( HE   Connection: [F1, F2]             Bij Bach Tensor 

4 T L = LMAX LYM                      SG(M)0 Connection: 
,

             Proposed Tensor 

 ][ jiji  kl
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Figure 6. Variable behavior of the density of matter , in a 
space-time region with Hubble expansion given for h = 4.71 
 10–28 [2,4], considering angles of deviation of the light un- 
der F = constant, in points of the space-time to demonstrate 
the possibility of measuring curvature with electromagnet- 
ism [2,3]. The prospective of movement in the elected geo-  

desic determine though the Lagrangian of . The obtained 



spectra has curve similar to that of the field G, in Einstein 
field equations for the case of a space of negative curvature 
in the 4-dimensional model of the space-time isotropous in 
three dimensions proposed to the Ricci tensor [3]. 
 

 

Figure 7. Determination of curvature of a sphere using hy-
perbolic light waves [3]. There are considered to be two 
directions and main curvatures measure themselves in these 
directions using a device of measurement of the curvature 
through light waves, presented in ASME/USA in 2009 [1,5]. 
 

 

Figure 8. Device of measurement of curvature that uses 
light waves to measure curvature of 2-dimensional and 3- 
dimensional objects: (a) Photosensitive grill with complexes 
phases. The grills are two, which receive the reflexes of the 
incidental waves of light in the object or body to measure 
their curvature; (b) Device of rotation and control of wave 
emission under a constant electromagnetic field; (c) Shades 
of main directions of emission only for control of position of 
the body. These get connected to a computer with a pro-
gram that it transforms the sheen intensities in angles 
though the phases of the photosensitive grills [1]. 

on embeddings of  in M. Using the Stokes theorem 
it is possible to demonstrate that the contours established 
by the minimal trajectories in Hamiltonian regime on the 
sphere given for S2, and under the action of Maxwell 
field to displace particles of M, along the minimal circles, 
there is obtained a tensor of curvature similar to the ten- 
sor of Riemann in the electromagnetic context and their 
symmetrical part, that is to say, a useful version of the 
Ricci tensor to calculate Gaussian curvature (to see Fig- 
ures 7 and 8). The action of Maxwell fields displacing 
particles of M, along deformable circles is similar to the 
action continued by the field of displacement defined in 
mechanics to determine curvature using the deformable 
contours of field [5]. 

3 ,S

A possible progress of this approach of proposed cur- 
vature, through bundle of light it is the securing of a field 
of displacement of the curled (curved) similar one of the 
similar operator D, according to Maxwell tensor ones 
considering the similar structure of the space-time. This 
is precisely what allows to glimpse the Eastwood-Digh- 
ton tensor Eijk, in the securing of a model of conformal 
curvature for Einstein equations in a spinor bundle [12]. 

Defining the concept of conformal gravity, there is an 
approach of the tensor of Riemann obtained through the 
calculation of the Ricci tensor using a conformal factor 
determined by the anti-symmetrical component of Rij 

(Weyl tensor Wij), to know 

1ˆ ˆ ,
4ij ijR g               (51) 

where 2ˆ .g g  This is other version of the Ricci ten- 
sor, considering the space-time of Einstein with solutions 
to the equations 0,ijB    [4], which is com- 
parable to the use of a bundle of lines for any quadric of 
a Lorentzian manifold. This opens the possibilities men- 
tioned previously of a shape operator defines through 
rays of light that give shape to the curved image of the 
space-time, similar to a celestial vault. 

0,ijkE 

9.1. Applications to the Coherency, Background 
and Expansion of the Space-Time 

The temperature of the Cosmic Microwave Background 
(CMB) is nearly isotropic. That is, when you look at dif-
ferent patches of the CMB, their temperatures are the 
same to within 1 part in 10,000. This implies that when 
the universe became transparent (about 300,000 years 
after the Big Bang), it was nearly homogeneous [33]. The 
homogeneity, or smoothness, of the universe is referred 
to by cosmologists as the horizon problem (Figures 9 
and 10). 

9.2. Electrodynamical Configuration 

Using the cohomological classes of the integrals in elec- 
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trodynamics calculated by Lagrangianos module the 
groups calibrates, U(1), U(2), SO(2), SU(2), SU(2, 2), etc 
we can establish the following spaces of electrodynamic 
configuration and their constituent elements (see Table 
5). For other side the the Table 5, it serves to us to un- 
derstand the decomposition of an electrodynamic space 
in their orbits considering their manifold structure (to see 
Figure 11). Likewise, considering the backreaction in the 
space—time, the orbital spaces become more clear (Fig- 
ure 11). 
 

 

Figure 9. A theoretical study related to the propagation of 
photons in quantum gravity, shows that the region of space- 
time of the mechanical well of a singularity is supported by 
an energy that decreases asymptotically in the infinite. This 
hypothetical energy we can construct it with the expression 
of a Lagrangian like the given in (Table 2) with cylindrical 
gravitational wave by   +(1/10000(exp(–4)J,z(3,1) + 
exp(–4)Y,z(2,1))) (wave model for energy of gravitational 
waves (see last line of the Table 3)) [13,23]. 
 

 

Figure 10. The behavior of the electromagnetic inflation in 
early step of the universe. The electromagnetic radiation 
was represented in their totality by the cosmic microwave 
background and neutrino background. In this model is have 
used the pure dilaton   1/3 – ((1/2)log( + 1/ + ( – 1/))) 
(nether back-reaction) [14]. 

Table 5. Electromagnetic worldsheets. 

Electromagnetic 
Space 

Electromagnetic waves and strings 

SU(2)j    Electromagnetic Heterotic strings 

SU(1,1)/SO(2) Horocycles (hyperbolic plane waves) 

flat R4 Light 

S3 = S2   4 Twistor Kinematic Space 

S3    Twistor Light 

SU(2)k ×  × K6. Radiative Space-Time: strings in ten dimension

SO(3)k/2 ×   Background string in the Lagrangian model 

SU(2) = S3 Fields and Maxwell Potentials 

I+  Cp Kozameh Light Zone 

Cp Light Cone: light waves 

 

 
(a) 

 

Figure 11. The surface w = (2/3) tanh(x/y) = Orbit PM+  
Orbit PM+. From the quantum level this explains the 
process of particle coupling (see (a) and (b)). Superposing 
the two images of light space we obtain the surface of flat 
hyperbolic space with singularity. Hyperbolic waves in the 
proof of change of orientation due existence of singularity 
are given in [13]. 
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9.3. Factible Electro-Gravitational Ultra-Sensor 

The Theoretical devices to measure gravity it haves de- 
signed from the first serious affirmations on gravitation 
given by Galileo and Newton. Nevertheless, with the step 
of the time and due to born of new theories of the uni- 
verse based in studies inside the field theory from the 
theory of the relativity, up to the theory M, they have 
marked the need to design using gauge theories, instru- 
ments that could measure at least in indirect form or by 
means of sophisticated methods of metrology based on 
dimensional relations gauge field that are constructed by 
Gaussians units or of another type observables of field as 
the curvature [34]. 

An example of such devices there are the electro- 
gravitational devices that try to use electromagnetic waves 
and electromagnetic field interactions to measure gravity 
using the concept of background radiation [35] and the 
traces of particles obtained in the laboratories of the 
atomic accelerators as the given in the CERN (Organisa- 
tion européenne pour la recherche nucléaire), measuring 
the distortion of these waves based on the traces of the 
particles left in the fog cameras of the accelerators. Other 
better attempts have been realized by the CMB (Cosmic 
Microwave Back-ground), radiation spectrums being ob- 
tained in the direct measurements by the satellites in the 
space, for example SMAP. 

One important idea inside the study of the microscopic 
space-time is the group representations of SU(2), where 
one of which considering the super-symmetry is S3 
(sphere of dimension 3) [5,15]. In her the topological 
invariant of their 2-form ω3, given in the Equation (45) 
and whose cohomology in not null (see Section 8) it 
shows clearly that the gravity presence can be warned at 
least on the surface of this sphere, which can be consid-
ered to be a mini-twistor in the presence of gravity con-
sidering a ambitwistor space of couples ( Z ,W ), to the 
microscopic space-time, where Z , are the fields of 
gauge nature (in this case electromagnetic fields) and the 
fields of particles of the gravity (gravitons), (that in this 
case is the background). 

Based on it, and considering the value of curvature to 
be the contour deformation on a surface (initial idea cre- 
ated by relativity to understand curvature in a space-time 
surface [2]), at the same time that a field distortion cre- 
ated like an undulation in the space time for back-reac- 
tion for photon propagation in the presence of gravity 
(see Figures 2 and 3 (using string theory)), we can ex- 
trapolate this idea to the design of a type of accelerome- 
ter that can be connected to the devices of navigation of a 
traveling satellite by the space, where said accelerometer 
involves in their interior a sensor of ultra-sensitive grav- 
ity based on a solid sphere S3, of material similar to a 
colloid, captured the changes of the weight of a liquid 

also of colloid type (perhaps of major density that of the 
ball S3) due to the universal factor G. 

10. Conclusions 

The methods through Lagrangian actions are useful to 
obtain expressions of measurable electro-gravitational 
gauges in a gravitational dynamic system that can be 
adapted for the detection of observable of the energy- 
matter tensor expressed from the microscopic level in the 
equations like the given by the system (35,36,37,38) 
(which one is a gravitational-dilaton version of the Dirac 
equation) up to the macroscopic dimension of Einstein’s 
space-time, for tensor saying T  .  

Then the existence of the observable gravity effects 
initiate from a field of quantum gravity generating quan- 
tum curvature and torsion observables of the space, 
which can be detected in Einstein’s dimension like cos- 
mic censoring for gravitational waves shaped by elec- 
tromagnetic waves according to the cosmic censor cal- 
culated for Penrose [11,12,20,22]. This cosmic censoring 
can be detected by a model of ultra-sensor that we design 
on the ball S3, of certain distortion of the space-time cre- 
ated for back-reaction (Figure 12).  

But these methods are based on much in the gauge 
theory and of the information of the gravity through 
models of gravitational waves by means of electromag- 
netic waves where the detection will be realized by means 
of spiraling created for the back-reaction that will take 
place through traces of a electro-gravitationally observable 
type, whose geometry is a 6-dimensional superstring. 
 

 

Figure 12. The curvature will be able to express itself like a 
Gaussian curvature according to spherical harmonics given 
by Legendre polynomials. The sensor is a sensor of free fall 
that can register different force factors G. The actions of 
change can be reprogrammed by the proper device consid-
ering these to be a Lagrangian action of the Section 8 [10]. 
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The method that we propose in the Section 9.3, might 
adapt itself at quantum level capturing these small inter- 
actions and recording in information of quantum gravity 
codified by field elements already classified under the 
different types of sub-particles that define at quantum 
level material forces.  
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Tαβ—Tensor of matter and energy (Also acknowledge 
as stress-energy-momentum tensor).  Notation 

LMAX—Maxwell Lagrangian. 
Abbreviations LYM—Yang-Mills Lagrangian. 

—Action Lagrangian. CMB—Cosmic Microwave Background. 
4 —Minkowsky space. QFT—Quantum Field Theory. 

M—Space-Time defined as complex Riemannian mani- 
fold with Hermitian structure given by J. 

WMAP—International Deep Exploration Space Sys-
tem from “Soil Moisture Active Passive”. Consist in one 
cosmological sensor of the electromagnetic type and a 
network of data.  

HE —Supercanonical algebra of fields F. This is the 
space of connections F2  F1 – F1  F2 – [F1,F2]. 

SU(2)j   —4-dimensional curved part of back- 
ground space. 

CERN—European Organization of Nuclear Research 
(from french: Organisation européenne pour la recherche 
nucléaire). Φ—Dilaton (field of string). 

F—Maxwell tensor (is the 2-form F = Fαβdxαdxβ). FRW—Cohomology Friedman-Robertson-Walker met- 
rics. The cosmological principle (principle of homogene-
ity and isotropy of the universe to great scale). The co-
homology are the relations of similarity in dual spaces. 

SU(2) —group that defines the finite actions through 
unitary anti-Hermitians matrix of range. 

Rαβ—Curvature Tensor of Riemann. 
ω—Cartan form in the exterior calculus. 
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