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ABSTRACT 

A class of finite step iterative methods, conjugate gradients, for the solution of an operator equation, is presented on 
this paper to solve electromagnetic scattering. The method of generalized equivalent circuit is used to model the prob-
lem and then deduce an electromagnetic equation based on the impedance operator. Four versions of the conjugate 
gradient method are presented and numerical results for an iris structure are given, to illustrate convergence properties 
of each version. Computational efficiency of these methods has been compared to the moment method. 
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1. Introduction 

One of the major problems in machine computation is to 
find an effective method to solve large system in reason- 
able time. There is, of course, no best method for all sys- 
tem because the goodness of a method depends to some 
extent upon the particular problem to be solved. Iterative 
methods have been considered to be more efficient for 
large system [1]. In fact, the preferred method is the one 
which insures rapid convergence after a finite number of 
steps, which has less numerical complexity and which in 
each steps should give information about the solution 
and should yield a new and better estimate than the pre- 
vious one. The conjugate gradient [1,2] method is consi- 
dered among the most efficient iterative scheme for the 
solution of a system of equations. In fact, with an arbi- 
trary initial guess, methods of conjugate gradients con- 
verge to the solution in at most N iterations, where N is 
the problem dimension. This method requires much less 
storage than the conventional matrix methods for a pro- 
blem with high complexity. In literature variants of this 
method are developed and used to solve electromagnetic 
problems [3-6].  

In this paper, some comparison data are given to show 

convergence properties of 4 versions of the conjugate 
gradients methods comparing to the moment method 
(MoM) [7] and to show the rate of convergence of each 
algorithm. Each version of the CGM used here has been 
developed using the new implementation of the CG algo- 
rithm presented in previous work [8]. 

This paper is organized as follows: Section 2 presents 
the problem formulation; it briefly reminds the metho- 
dology to extract the equivalent circuit and deduce the 
equation to solve. Section 3 presents four versions of the 
conjugate gradients methods. These algorithms have been 
applied to solve the operator equation deducted from the 
equivalent circuit. Comparison data on CPU time and si- 
mulation results have been presented in section four in 
order to choose the most convenient algorithm for this 
type of problem. Last section draws conclusion.  

2. Numerical Formulation of the Problem 

Let consider the Cantor iris located in the cross section 
of a parallel-plates waveguide [8]. The aim is to compute 
the current density of the considered structure when illu- 
minated by its fundamental mode: the TEM mode. The 
waveguide used is called EMEM waveguide, it is com-
posed of two perfect electric walls to the top and the bo- 
ttom, and lateral walls are magnetic. Boundary condi- 
tions are synthetically expressed by a Generalized Equi- 

*Four versions of the CG method are presented in this paper and nu-
merical results are given to compare computational efficiency of each 
version. 
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valent Circuit GEC method [9-11] which translates the 
relations between electric and magnetic fields into an 
equivalent circuit.  

The equation, to solve, verified on the metallic part of 
the structure is given by: 

0
ˆ ˆ ˆ

m mH ZJ H E            (1) 

with Ẑ  is an auto-adjoint operator, J  and 2
0E L . 

ˆ
mH  is the indicator of the metallic part of the disconti-

nuity surface:   

ˆ 1 on the metallic surface

ˆ 0  on thedielectric




m
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H
 

We remind that the impedance operator is given by the 
following formal relation [12] 

1,2,3,
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zn designs the impedance of each mode, and n is the 
mode number [12]. 
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 denotes the propagation con-

stant and a designs the waveguide width among the x-axis. 
The fn define the waveguide modal basis [11,12], and 

are determined as a function of the waveguide type. 
Due to the invariance of the problem, only TEM mode 

and Transverse Electric modes exist. The mode basis is 
then given as following: 
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In this paper, we focus on solving the Equation (1) de-
fined on the metallic part of the structure using variants 
of conjugate gradients methods. 

The conjugate gradients methods have the same prop-
erties, all of them proceeds by generating successive ap-
proximations to the solution, and search directions used 
in updating iterates and residuals. Only a small number 
of vectors need to be kept in memory. Also the solution 
is improved at a steady rate throughout the iterative 
process. 

In these algorithms, one has to evaluate the term ẐJ . 
Some transformations are needed in order to compute 
this term. In fact, the impedance operator used here is 
described using modal basis, it is a discrete operator ap-
plied on the spectral domain. It is also called a spa-

tial-spectral operator and it allows transition from spec-
tral to spatial domain. 

We remind that if we apply the impedance operator on 
J we obtain:  

ˆ
n n n

n

ZJ f z f J           (5) 

The x-axis is divided into N equivalent segments with 
negligible width and the current is assumed to be con-
stant over each segment. The unknown function J is ap-
proximated by a linear combination of N independent 
pulse function with N unknowns coefficients J1, J2, ···, JN. 
The equation to solve on the metallic part of the structure, 
using variants of conjugate directions methods is given 
by: 

      0n i i n n
n i

f x J x z f x E
    
 

      (6) 

  is the uniform distance between any two sampling 
point xi and xi+1, it is equal to a/N and is called the cell 
density. 

On the next section we present how can we solve such 
equation using variants of the CG algorithm. 

3. Four Special Cases of the Conjugate 
Gradient Algorithm 

The conjugate gradient method is special case of the con- 
jugate direction method [1]. In this method the directions 
vector are selected to be mutually conjugate but have no 
further restrictions. Various formulas can be given, each 
leading to a special method.  

We present four versions of the CG method, which 
yield simple algorithms, each of these variations has 
certain advantages [13]. 

3.1. The First Version 

The first version of the CG presented here is used in lit-
erature for an Hermitian positive definite operator. In our 
case, we have a complex operator, but we are trying to 
apply this version to solve the Equation (6). The algo-
rithm starts with an initial guess J0 of the unknown cur-
rent. In all cases examined here a zero estimate is used. 
The initial residual and direction vectors are computed as 
following:  

0 0
ˆ

mr H E 
 

0 0p r  

The following terms at the kth iteration are computed: 

ˆ ˆ
k m kw H Zp ;
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1k k k kJ J p   ; 

1k k k kr r w   ; 
2

1

2

k
k

k

r

r
  ; 

1 1k k k kp r p    

where pk is the direction vector and k  is the scalar 
coefficient. 

The values of the current obtained at the kth iteration 
are stored in the column vector Jk, with N components. 
Hence the ith element of J0 for example is the initial 
guess for the current over the ith segment.  

The essential cost of this algorithm is the one of the 
operator vector product operation: Ẑp . 

The number of operation required at each step for this 
version of the CG method can be tabulated as Table 1. 

Remind that the structure used is a regular iris on a rec-
tangular waveguide. In the CG algorithm given above, it is 
observed that the initial residual and the term wk are multi- 
plied by the Heaviside operator Hm, in order to impose the 
boundary conditions. So, each term evaluated here, con- 
tents numbers of zero equal to N/3, because the iris struc- 
ture used is composed of three equivalent regions, two of 
them constitute the metallic part and the third one is the 
dielectric. The number of non zero elements is then equal 
to 2N/3. So, in Table 1, all the N operations needed for the 
computation of each term, should be changed by 2N/3, 
like is done in the computation of wk. 

Note that, the computation of the term ˆ
kZp  is the 

most coasted operation in this algorithm. The computa- 
tion of this term is equivalent to the computation of ẐJ  
in Equations (5) and (6). This equation contains two se-
ries, so it needs 2N operations. Or, wk is equal to 

ˆ ˆ
M kH Zp , so the coast of wk is then equal to 2(2N/3), and 

the number of operations is approximated by O(4N/3) 
per iteration. N is the number of unknown coefficients in 
the assumed current density expansion.  

It is also observed that, one needs about O(N), storage 
locations to solve the present problem, utilizing this for-
mulation rather than the conventional O(N2) for the ma-
trix methods. 

The total number of operations needed is then at about 
O(4pN/3), where p is the number of iterations. 

3.2. The Second Version 

This version of the CG is more general and is used for a 
not Hermitian operator [1,2]. In this work we are trying 
to use this algorithm in order to solve our operator equa-
tion.  

The conjugate gradient algorithm for this case starts 
with a zero initial guess J0 and defines: 

Table 1. The number of operations required at each equa- 
tion in CGM. 

Evaluation of Mult/div Add/Sub 

wk 2(2N/3) 2(2N/3 – 1) 

αk 2N + 1 2(N – 1) 

Jk+1 N N 

rk+1 N N 

pk+1 N N 

βk N + 1 N – 1 
2

kr  N N – 1 

 

0 0
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And then develop each successive approximation by 
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2
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where Z* is the adjoint operator of Z. 
Comparing to the first version, an extra computations 

is required during the initial stage of the mentioned gene- 
ralized CG algorithm. In this implementation, one has to 
do two operator/vector operations at each iteration, which 
increases the computation cost. It can be then concluded 
that the number of operation in the generalized CGM at 
each iteration is a little larger than O(4N/3). 

3.3. The Third Version 

Another version of this method is used also to a not 
Hermitian operator [1,2,13]. We adopted this algorithm 
to our electromagnetic problem in order to solve the 
same operator equation. The algorithm is given as 

0 0
ˆ

mr H E   

0 0
ˆ ˆ

mp H Z r  

Iterate k = 1, 2,··· 
ˆ ˆ

k m kw H Zp  
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1 1
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k m k k kp H Z r p
    

The third version’s implementation is very approached 
to the second one. 

It is observed that the computational cost of this vari-
ant is particularly the same as the one needed in the sec-
ond version. 

3.4. The Forth Version: The BICG 

The forth version tested here is the bi-conjugate gradient 
(BiCG) method. C.Lanczos [14] proposed early this al-
gorithm in order to solve nonsymmetrical complex linear 
equation group. The bi-conjugate gradient for symmetri-
cal complex linear equation group used in this work is 
described as follows: 

0 0
ˆ

mr H E   

0 0 0 0 0 0
ˆˆ ˆ; ;r r p r P r    

And then develop each successive approximation by 
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  k k

k
k k

r r

p w
 

ˆ ˆ
k m kw H Zp  

1k k k kJ J p    

1k k k kr r w    

1ˆ ˆk k k kr r w 
    

1ˆ ,

ˆ ,
  k k

k
k k

r r

r r
 

1 1k k k kp r p    

1 1ˆ ˆ ˆk k k kp r p 
    

w* is conjugate of w, r* is conjugate vector of r, α* and  
β* are conjugate complex number of α and β. 

The major advantages of the bi-conjugate gradient 
method over the generalized conjugate gradient method 
(version 2 and 3)for the solution of a symmetric complex 
linear equation group are, first, that the former requires 
only one matrix- vector product whereas the latter re-
quires two, and second, that the former converges much 

faster than the latter.  
Remind that in all the versions described below, the 

indicator of the metallic part of the discontinuity surface 
of the structure ˆ

mH , is introduced in the computation of 
the initial residual and the operator-vector products. Re-
mind that this indicator is used to satisfy the boundary 
conditions, and to consider only the guide domain coin-
cident with the metallic domain. This formulation is 
more economical on memory space and on computer 
cost. In fact, this version needs at about O(N) storage and 
O(4pN/3) operations, where p is the iterations number. 

The stopping test used to decide about the conver- 
gence of these algorithms is the normalized squared re- 
sidual error expressed as follow: 

0

k
k

r
Err

E
   

where ε is the accuracy fixed. 

4. Numerical Convergence of the Conjugate 
Gradient Algorithms 

As an example we consider the analysis of electromagne- 
tic scattering from the Cantor iris in a parallel plate 
EMEM waveguide. The unknown current distribution 
over the metallic surface has been determinate using the 
various CG algorithms. The total and scattered electric 
fields have been then deducted. 

4.1. Comparison between the Different Methods 

All the forth versions tested in this work converge after a 
finite number of steps. We are interesting to the rate of 
convergence of these algorithms and have been com- 
pared to the one of the generalized Moment method. For 
the MoM the piecewise linear functions [15] are used as 
test functions. Results obtained, showing convergence 
rate, have been draped in Table 2. For the CG methods 
the stopping criterion was the normalized residual error 
which must be less than 10–7. Results are obtained with 
Intel core2duo 1.66G CPU and 2G-memory computer. 
All programs use matlabr2008a compiled language. 

Numerical results are presented on the table below, for 
3000 modes number. We are varying the number of un-
knowns to evaluate performance of each CG version. For 
the MoM the number of unknowns (N) designs the 
weighting functions number. 

It is observed that the class of conjugate gradient me- 
thods has a better performance than the MoM. In fact, all 
the CG versions tested here converge faster than the 
MoM. That is explained by the fact that the CG methods 
needs less storage and less operations number than the 
MoM. It is also noted that the cputime is increasing as a 
function of the unknowns’ number. 
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Table 2. Results of different methods (ε = 10–8). 

methods 
N 

CGv1  CGv2 CGv3 BiCG MoM 

 it time  it time it time it time cputime 

64 12 1.7  16 6.93 16 6.93 12 2.4 18.67 

128 15 3,7  27 18.1 27 17.9 16 4.46 36.03 

200 19 6.04  37 34.8 39 36.4 19 6.71 65.37 

300 27 11.6  63 84.5 64 83.2 27 13.53 109.71 

Unit of iterative time is second. it is number of iterations. 

 
Table 2 clearly illustrates that the BiCG and CGv1 are 

suitable for this type of problem as they are the faster 
methods. The BICG method is known as the most appro- 
priate method to solve complex problem, which is the 
case of our operator. 

The CGv1 is also recommended, as it needs less cpu- 
time than methods 2 and 3. But this method, known as 
the method of Hestenes, is used for an hermitian operator. 
In our case, we have a complex operator, but this method 
performs even well and is recommended. This shows the 
efficiency of these new CGs implementations. 

The use of versions 2 and 3 for the solution of an arbi- 
trary operator equation is in literature, recommended [13]. 

In our case, these algorithms converge faster than the 
MoM and slower than the CGv1 and the BiCG. 

From a numerical standpoint, it appears both versions 
perform equally well, the cputime taken by both tech-
niques is almost the same. 

From Table 2, it can be also noticed that the conver- 
gence of the CGM is related to parameters such as the 
cell density used within the discretization. 

Figure 1 shows the residual error behavior for the 
BiCG and the CG version 2 and 3 as a function of the 
iterations number. 

It is observed, that all versions converged in a small 
number of steps. The number of iterations needed to 
reach convergence is far less than the problem dimension, 
which shows the efficiency of this formulation. So, the 
total number of operations needed, is proportional to pN, 
and is far less than N3 for the conventional matrix meth-
ods. 

Figure 1 shows that, methods 2 and 3 both con- 
verged to a good solution (ε < 10–4) in 21 iterations, even 
though the initial guess was taken to be zero. For the 
second version magnitudes of the residuals decrease 
monotonically at each iteration. For the third version, 
even though the  error between the true solution and the 
solution at the end of iteration decreases, the residual is 
increasing and decreasing randomly, it do not go down 
until the end. For the BiCG the residual is decreasing 
monotonically and fastly, which makes this version more 

adequate for this type of problem. 

4.2. Simulation Results 

After one obtains the induced electric current Jy numeri- 
cally over the metallic surface, with a given excitation E0, 
using the CG algorithm, other parameters, such as the 
scattered and the total electric fields can be easily de-
ducted.  

The scattered field is computed by: 

ˆ
sE ZJ                (7) 

Figure 2 presents the scattered electric field deter-
mined by each version. 

It has been observed that from a theoretical standpoint, 
all the fourth method performs equally well. Numerical 
simulation shows that results obtained using these meth-
ods are perfectly the same.  

The total electric field is also represented and com-
pared to the MoM. 

The total electric field is computed by: 

0
ˆE E ZJ              (8) 

Figure 3 draws the normalized total electric field  
 

 

Figure 1. Errors of the three versions of the conjugate gra-
dient method. 
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Figure 2. The normalized scattered electric field evaluated 
by the CG methods, with a = 22.9 mm at F = 2 Ghz (case of 
an EMEM waveguide), N = 200, n = 3000. 

 

 

Figure 3. The normalized electric field depicted by the 
CGMs adopted in this work and the one evaluated by the 
MoM method. 
 
evaluated by the conjugate gradients methods and the 
one computed by the moment method for the iris struc- 
ture with EMEM walls. 

For the moment method, results are plotted for 3000 
sinusoidal mode functions; the piecewise test functions 
used are 200. 

Figure 3 shows that the electric field behavior is with 
respect to the boundary conditions. It is also observed 
that results found at convergence by the CGM and the 
BiCG are conforming to the one found by the MoM. 

In this section, it has been noticed that the class of CG 
methods as implemented, required less storage and less 
computational time than the MoM. Also simulation re- 
sults obtained by each method are in obvious agreement. 

5. Conclusions 

In this paper, four versions of the CG algorithm are 
tested. These versions are applied to solve an operator 
equation arising in electromagnetic scattering. These 
converge to the solution in a finite number of steps start-
ing from a zero initial guess. A numerical example is 
given to illustrate some properties of these versions. 

It is observed that the CG methods appear more attrac- 
tive than the conventional moment method as the error at 
each step is known and it provide less computational 
time. Also, CG methods require less storage. 

Out of the four CG algorithms, the conjugate gradient 
version used for an Hermitian operator and the biconju- 
gate gradient are recommended as they provide the lower 
computational time.  

Solution obtained using the four versions is the same 
and a less residual is achieved.  

Although, the first method is recommended for a Her- 
mitian positive operator, it gives the better result when 
applying to our complex operator. This shows the effi- 
ciency of this implementation of the CG algorithm, which 
converges in all cases independently of the type of the 
operator used. 
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