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ABSTRACT 
Electrical impedance tomography (EIT) is a technique for determining the electrical conductivity and permittivity dis-
tribution inside a medium from measurements made on its surface. The impedance distribution reconstruction in EIT is 
a nonlinear inverse problem that requires the use of a regularization method. The generalized Tikhonov regularization 
methods are often used in solving inverse problems. However, for EIT image reconstruction, the generalized Tikhonov 
regularization methods may lose the boundary information due to its smoothing operation. In this paper, we propose an 
iterative Lavrentiev regularization and L-curve-based algorithm to reconstruct EIT images. The regularization pa-
rameter should be carefully chosen, but it is often heuristically selected in the conventional regularization-based recon-
struction algorithms. So, an L-curve-based optimization algorithm is used for selecting the Lavrentiev regularization 
parameter. Numerical analysis and simulation results are performed to illustrate EIT image reconstruction. It is shown 
that choosing the appropriate regularization parameter plays an important role in reconstructing EIT images. 
 
Keywords: Electrical Impedance Tomography (EIT), Reconstruction Algorithm, Iterative Lavrentiev, Regularization 

Parameter, Inverse Problem.

1. Introduction 
Electrical impedance tomography (EIT) is an imaging 
technique which determines the electrical conductivity 
and permittivity distribution within a medium using elec-
trical measurement from a series of electrodes on its sur-
face [1－3]. Electrodes are brought into contact with the 
surface of the object being imaged. A set of voltage (or 
current) are applied and the corresponding currents (or 
voltage) are measured [4]. These voltages and currents 
are then used to estimate the electrical properties of the 
object using an image reconstruction algorithm [5]. The 
relatively poor spatial resolution of the reconstructed im-
ages in EIT is often quoted as its major disadvantages, 
compared with already established scanners with good 
resolution. In this respect, it must be clarified that the 
motivation of EIT is somewhat different from that of the 
conventional imaging techniques. Despite its limited 

resolution, its task is to provide a reliable, real-time, 
portable and cost efficient imaging tool. Depending on 
the particular application and the resolution specifications, 
EIT can sometimes provide an optimum cost-effective 
imaging solution. Example application areas include 
geophysical inversion [6], industrial process monitoring 
[7], and medical diagnosis [8]. 

However, the process of property estimation in EIT is 
a highly nonlinear, ill-conditioned, and ill-posed problem. 
The sensitivity matrix, which relates interior admittivity 
perturbations to perturbations in the boundary data, is 
heavily ill-conditioned with respect to inversion. So, it 
requires special treatment in the form of regularization or 
a truncation of a singular value expansion [9]. When ap-
proaching an ill-posed problem, instead of attempting to 
solve the original problem one often opts to solve a simi-
lar one which is less demanding. Therefore, effective EIT 
image reconstruction algorithms are required. 

Some papers on image reconstruction algorithms have 
been published [10–14], but little work on EIT image 
reconstruction is published. The first proposed EIT re-
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construction algorithm is the equipotential back-projec-
tion [15]. This technique reconstructs images by project-
ing the change in measurements at each electrode pair 
across the equipotential region for that current injection 
pattern, multiplied by an image filter. However, unlike 
the X-ray used in CAT scanning or general inverse scat-
tering problems [16]. Currents in EIT do not move in a 
line, but cover the region from the current source to drain. 
A bias is thus introduced into the image since the equi-
potential region is an approximation to the region pro-
ducing the measurement change at each electrode. A fi-
nite element-based reconstruction algorithm was pro-
posed in [7], but limited scalar/vectors can be recon-
structed with this algorithm. A reconstruction algorithm 
for breast tumor imaging based on linearization approach 
was proposed in [8], but the number of independent con-
ductivity regions that can be calculated is too small. In 
[17] it was assumed that the resistivity distribution could 
be well approximated as a linear combination of some 
preselected basis functions. Prior information on the 
structures and conductivities were used for the construc-
tion of these basis functions. The disadvantage of this 
method is that one may obtain misleading results when 
prior information is incompatible. 

In this paper, we propose an iterative Lavrentiev regu-
larization-based algorithm to reconstruct EIT images us-
ing knowledge of the noise variance of the measurements 
and the covariance of the conductivity distribution. As 
the regularization parameter should be carefully chosen, 
an L-curve-based optimization algorithm is applied. Nu-
merical analysis and simulation results are provided. The 
remaining sections are organized as follows. Section 2 
forms the problem of EIT image reconstruction and out-
lines the motivations of this paper. Section 3 details the 
iterative Lavrentiev regularization-based EIT reconstruc-
tion algorithm, followed by the simulation examples in 
Section 4. Finally, Section 5 concludes the whole paper. 

2. Electrical Impedance Tomography (EIT) 
Taking EIT imaging in medical applications as an exam-
ple [18,19], different tissues of the body are shown to 
have different electrical characteristics. Most tissues can 
be considered isotropic with the exception of muscles and 
brain tissue which are anisotropic. It is usually assumed 
to be homogenous and isotropic, where the constitute 
parameters such as the conductivity and permittivity are 
independent of position and direction. Therefore, the un-
derlying relationships that govern the interaction between 
EIT electricity and magnetism are the Maxwell’s equa-
tions. The medium ( Ω ) is modeled as a closed and 
bounded subset of three-dimensional space with smooth 
boundary ( ∂Ω ) and uniform conductivity (σ ). The elec-
tric field ( E ) enclosed in Ω is expressed in terms of the 

scalar potential φ  

E φ= −∇ ,                 (1) 

where 

i j k
x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
             (2) 

is the vector differential operator, and φ  is the potential 
in the medium. The current ( J ) is given by the multipli-
cation of the conductivity. The electric field can then be 
computed as 

J σ φ= − ∇ .                (3) 

As there are no interior current sources, EIT simulation in 
the medium can be described in terms of a scalar voltage 
potential satisfying Kirchoff’s voltage law 

0σ φ∇ ⋅ ∇ = .                (4) 

The boundary current density ( j ) can then be repre-
sented by 

j nσ φ= ∇ ⋅ .                (5) 

According to this relationship, the problem of deter-
mining the potential inside the medium from boundary 
measurements can then be carried out [20]. 

3. Iterative Lavrentiev Regularization and 
L-Curve-Based EIT Image           
Reconstruction 

To apply regularization-based image reconstruction 
methods, EIT problems can be formulated as a system of 
linear equations [21] 

'
D

     0
              A

M Z v
d

LV

A A A X
VA I

+    
⋅ =    
    

          (6) 

where nX ∈£  is the nodal potential distribution, 
n

LV ∈£ is the potential values on the boundary electrodes, 

ZA , VA  and DA are the local matrices. This equation 
can be represented by 

AX Lξ+ =                    (7) 

where ξ  is the error in the data with 

[ ]L   V n mX U ∗ += ∈£  and [ ]d0     I n mL ∗ += ∈ ¡ . One 
standard approach used to solve linear estimation prob-
lems is the least square estimation, but this estimate is 
unsatisfactory because the calculated independent con-
ductivity region is too small.  
  The inverse of the A cannot be directly computed be-  
cause the singular values will grow without bound. This 
will amplify the noise components in the solution associ-
ated with the numerical null space of A . That is to say, 
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small measurement perturbations L L ε≈ +  may produce 
large variations in X such that the 3-norm residual error 

2
AX L−  is unbounded. Therefore, the matrix TA A  is 

poor conditioned because EIT makes current injection 
and measurement on the medium surface including 
higher current densities near the surface where conduc-
tivity contrasts will result in more signal than for con-
trasts in the center. This problem can be resolved by 
regularization [22]. That is, assume A  is an invertible 
and real-valued matrix, it can then be decomposed by 
singular value decomposition (SVD) 

( )diag T
iA U s V=                (8) 

Correspondingly, Equation (7) can be expressed by 

( ) ( )1 1 1

1

diag
n

T T
i i i i

i
A L V s U L X s u vη− − −

=

= = + ∑     (9) 
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Figure 1. Tikhonov-based regularization filter ( )2w sα  at 
different α  
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Figure 2. The norm of the regularization solution errors as a 
function of the regularization parameter of α  

As instability may arises due to division by small sin-
gular values, to overcome this problem we apply an itera-
tive Lavrentiev-based regularization algorithm. 

Lavrentiev regularization replaces Equation (7) by [23] 

AX X Lα αα+ = ,              (10) 

where α  is the regularization parameter. Correspond-
ingly, the iterative Lavrentiev regularization is 

( ) 1 ,          1, 2,3,......k kA I X X L kα α −+ = + =    (11) 

This equation can be changed into 

( ) ( )1 1
1 ,     1, 2,3,......k kX A I X A I L kα α α− −

−= + + + =  
(12) 

Suppose the solution of the Equation (7) is µX  

µ µ ( ) ( )

µ

1 1
1

'

k k

k k
v

X X X A I X A I b

X A X
A A

α α α

α α
α α

− −
−− = − + + +

   = =   + +   

 (13) 

where 'X is the normalized function with 0v > . Note 
that v  refers to the smoothness source conditions. Con-
sidering the function 

( )
k

vF A A
A

α
α

 =  + 
              (14) 

when vA
k v

α=
−

, it arrives its maximum 

( )max

v k
v k vF A v

k v k
α −   =    −   

           (15) 

Hence, we have 
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          (16) 

where vM  is a constant parameter for the specific v . 
Therefore, this algorithm is converged with a conver-
gence rate of  

µ ( )v
kX X O k− =             (17) 

In fact, the Lavrentiev regularization just uses the filter 
function 

( )
2

2
2

sw s
sα α

=
+

             (18) 
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with a regularization parameter of α , as shown in Figure 
1. In conventional regularization-based reconstructed 
algorithms, the regularization parameter is often heuristi-
cally selected; however, it determines the cut-off of the 
filter, as shown in Figure 2. Further analysis results show 
that when the regularization parameter is very small, fil-
tering of the noise will be inadequate and X α  will be 
highly oscillatory. In contrast, when the regularization 
parameter is too large, the reconstructed image will be 
overly smooth. Therefore, some effective algorithms 
should be developed to optimize the regularization pa-
rameter. To reach this aim, we apply an L-curve [24]- 
based optimization algorithm.  

L-curve is a parametric plot of the squared norm of the 
regularized solution against the squared norm of the 
regularized residual for a range of values of regulariza-
tion parameter. The L-curve criterion for regularization 
parameter selection is to pick the parameter value corre-
sponding to the “corner” of this curve. Let X α  denote 
the regularized solution and let r HX Yα

α = −  denote 
the regularized residual. Define  

( ) ( ) ( )2 ,     logR r Rαα ρ α α= =            (19) 

( ) ( ) ( )2
,     logS X Sαα η α α= =            (20) 

We can then select the value of α  that maximizes the 
curvature function 

µ $ µ $

µ( ) $( )
' '''' '

3 22 2' '

ρ η ρ η
κ

ρ η

−
=

 
+ 

 

 ,           (21) 

where µρ  and $η  are represented, respectively, by 

µ µ( )2log AX Lρ = − ,            (22) 

$ µ( )2log Xη = ,               (23) 

The µ '
ρ , $ '

η , µ ''
ρ  and $ ''

η  denote the first and second 

derivatives of µρ , $η  with respect to α . As shown in 
Figure 3, the L-curve has two characteristic parts: the 
more horizontal where the solution is dominated by the 
regularization errors, the vertical part where the solution 
is dominated by the right-hand errors. The solutions are 
over- and under-smoothed, respectively. The corner of 
the L-curve corresponds to a good balance between 
minimization of the sizes, and the corresponding regu-
larization parameter α  is a good one. In this way, an 
optimum regularization parameter α  can be optimiza-
tion determined.  
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Figure 3. The curvature of the L-curve 

 

     
Figure 4. Simulated distribution 

 

     
Figure 5. Iterative Lavrentiev reconstructed image with 

0.01α =  

4. Simulation Examples 
In many industrial process and biomedical EIT applica-
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tions, it is often the case that one knows in advance what 
materials (tissues) are included within the measurement  
domain. As mixtures of materials are known to have in-
termediate conductivities, this effectively restricts the 
admissible solutions, i.e., the pixels of the reconstructed 
images, to lie within a set of known values. In this sense, 
the bound-constrained (with bounds on the values of the 
admittivity distribution) is to locate the detected inho-
mogeneities. 
  As an example, one can allow that the admittivity dis-
tribution to be reconstructed is mainly homogenous with 
an unknown number of shaped inclusions. In EIT appli-
cations, the current with a frequency of 10-100kHz is 
widely used. These patterns are similar to those appearing 
in Figure 4, which shows the simulated admittivity dis-
tribution with the three inhomogeneity patterns. Although 
the geometry (shape and dimension) of these patterns is 
assumed to be known a priori, their number, admittivity 
values and exact location are to be recovered from the 
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Figure 6. Regularization selection with L-curve-based 
optimization algorithm 
 

      
Figure 7. Iterative Lavrentiev reconstructed image with 
L-curve optimized regularization parameter 

image reconstruction. For the reconstructions, simulated 
measurements contaminated with 2% Gaussian noise 
have been assumed. Regularization parameter 0.01α =  
is often used in conventional regularization- based recon-
struction methods, e.g., [25], but from Figure 5 we notice 
that it fails to capture the boundary shape and interior gap 
of the inhomogeneities. To get around this disadvantage, 
the regularization parameter is optimized with the 
L-curve algorithm, as shown in Figure 6. Correspond-
ingly, Figure 7 gives the reconstructed image using the 
optimized regularization parameter (here is 0.40α = ). 
Comparing the two images, the enhancement is obvious. 
This result comes in support of the fact that this method 
is robust to noise. 

5. Conclusions 
EIT is a technique used to create images of the electrical 
properties in the interior of a medium from measurements 
on its boundary, which is particularly important for 
medical and industrial applications [26,27]. Usually a set 
of voltage or current measurements is acquired from the 
boundaries of a conductive volume. In this paper, we 
presented an iterative Lavrentiev regularization and L- 
curve-based algorithm to reconstruct EIT images using 
knowledge of the noise variance of the measurements and 
the covariance of the conductivity distribution. The regu-
larization parameter should be carefully selected, but it is 
often heuristically selected in conventional regulariza-
tion-based reconstruction algorithms. So, an L-curve- 
based optimization algorithm is applied to choose the 
Lavrentiev regularization parameter. The method is vali-
dated with numerical analysis and simulation results. 
Further research efforts are planned to focus on experi-
mental investigations [28,29] and other computational 
electromagnetic-based algorithms [30]. 
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