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ABSTRACT 

Coupled natural convection and surface radiation within a square cavity, filled with air and submitted to discrete heating 
and cooling from all its walls, is studied numerically. The thermally active elements are centrally located on the walls of 
the cavity. Two heating modes, called SB and SV, are considered. They correspond to bottom and vertical left elements 
sinusoidally heated in time, respectively, while the top and vertical right ones are constantly cooled. The remaining por- 
tions of all the walls are considered adiabatic. The parameters governing the problem are the amplitude  0 1a 

 0 1 

 

and the period  of the temporally sinusoidal temperature, the emissivity of the walls , the 

relative lengths of the active elements 

0.001 1  
 0.5B h H L        and the Rayleigh number . The effect of 

such parameters on flow and thermal fields and the resulting heat transfer is examined. It is shown that, during a flow 
cycle, the flow structure can present complex behavior, depending on the emissivity and the amplitude and period of the 
exciting temperature. The rate of heat transfer is generally enhanced in the case of sinusoidal heating. Also, the reso- 
nance phenomenon existence, characterized by maximum fluctuations in flow intensity and heat transfer, is proved in 
this study. 

 610Ra  

 
Keywords: Natural Convection; Thermal Radiation; Heatlines; Cross Gradients of Temperature; Periodic Heating; 

Resonant Heat Transfer; Numerical Study 

1. Introduction 

Natural convection coupled with surface radiation in 
closed cavities has been extensively studied using nu- 
merical simulations and experiments, owing to the prac- 
tical importance of such configurations in many engi- 
neering applications (convective heat losses from solar 
collectors, thermal design of buildings, air conditioning 
and, recently, electronic cooling). The majority of the 
existing studies, which are of numerical nature, con- 
cerned with rectangular cavities where the temperature 
gradient is either horizontal or vertical, including differ- 
ent kinds of boundary conditions [1-6]. Results of these 
studies show that radiation affects the dynamical and 
thermal structures of the fluid, reduces natural convec- 
tion heat transfer component, and contributes to increase 
the total amount of heat exchanged in the configurations 
considered. Most of the works conducted in the past on 
natural convection coupled with radiation inside rectan- 

gular enclosures have been substantially oriented to study 
unidirectional heat transfers resulting from imposed 
temperature gradients (due to heat fluxes or temperature 
differences) either parallel or normal to gravity. In some 
practical situations, much more complex boundary con- 
ditions may be encountered where horizontal and vertical 
temperature gradients could be simultaneously imposed 
across the cavity. This justifies the presence of published 
works where the rectangular cavities are heated from be- 
low and cooled from above and simultaneously submit- 
ted to various specified thermal boundary conditions at 
the sidewalls. In the absence of radiation effect, Cor- 
cione [7] investigated steady natural convection of air- 
filled rectangular enclosures heated from below, cooled 
from above and submitted to various thermal boundary 
conditions at the sidewalls. With respect to the basic 
thermal configuration wherein the sidewalls are insulated, 
the heat transfer rate resulting from the hot bottom wall  
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increases when each adiabatic sidewall is replaced with a 
cooled one, while showing only slight decreases as such 
replacement is carried out through a heated sidewall. 
Cianfrini et al. [8] studied natural convection heat and 
momentum transfer in air-filled tilted square enclosures 
with differentially heated opposite walls. The results ob- 
tained for the average Nusselt number of the whole cav- 
ity were expressed through a semi-empirical dimension- 
less correlation. More recently, Deng [9] studied laminar 
natural convection in a two-dimensional square enclosure 
having two and three discrete heat source—sink pairs on 
the vertical sidewalls. The effects of the size and the ar- 
rangement of the sources and sinks on the fluid flow and 
heat transfer characteristics were investigated. El Ayachi 
et al. [10] analyzed the interaction of radiation and natu- 
ral convection in a square cavity filled with air and dis- 
cretely heated and cooled from the four walls. In this 
study, the bottom active wall is at higher temperature 
than that of the top active wall. As results of their study, 
compared to pure natural convection, heat transfer across 
the cavity was found to be enhanced notably with the in- 
crease of the active wall emissivity, while the effect of 
the insulated wall emissivity was insignificant. 

In the above-mentioned studies, thermal boundary 
conditions were assumed to be either steady isothermal 
or constant heat flux wall conditions. However, in many 
engineering applications, the energy provided to the sys- 
tem is variable in time and gives rise to unsteady natu- 
ral-convection flow. Solar collectors and printed circuit 
boards are examples of such systems submitted to vari- 
able thermal boundary conditions. In addition, thermal 
and dynamical behaviors of a fluid subjected to time-de- 
pendent thermal conditions are impossible to predict on 
the basis of the results obtained with constant tempera- 
ture or heat flux conditions. This justifies the presence of 
some works in the literature in which the variable aspect 
of the thermal boundary conditions was considered. In an 
earlier study, Lage and Bejan [11] studied theoretically 
the problem of natural convection in enclosures with one 
side heated with a pulsating heat flux. They showed that 
the buoyancy-induced flow resonates to a certain fre- 
quency of the pulsating heat input and the resonance 
phenomenon is characterized by maximum fluctuations 
observed in the heat transfer evolution with the period of 
the time-dependent temperature. The numerical results 
obtained by Lakhal et al. in the case of a square cavity 
totally [12] or partially [13] heated from below with pe- 
riodic variable temperatures showed that the resulting 
flow structure and heat transfer were strongly dependent 
on the amplitude and the period of the variable tempera- 
ture. Later, Lakhal et al. [14] studied transient natural 
convection in a square cavity isothermally cooled from 
above and partially heated from the side. The heating 

temperature was varied sinusoidally in time and in a pul- 
sating manner. The pulsating temperature leads to better 
enhancement of the heat transfer in comparison with that 
engendered by the sinusoidal varying temperature. An- 
tohe and Lage [15] investigated theoretically and nume- 
rically the transport of momentum and heat while consi- 
dering clear fluid and fully saturated porous medium dif- 
ferentially heated enclosures with a time-periodic pulsat- 
ing heat flux. The numerical simulations indicated that 
the natural-convection activity within the enclosure rea- 
ches several local maxima for certain values of the heat- 
ing frequency, referred to as resonance frequency. Kwak 
and Hyun [16] and Kwak et al. [17] also studied such a 
resonant phenomenon of natural convection. It was clear- 
ly noted from their studies that the resonant frequency 
might be well predicted by the Brunt-Väisälä frequency, 
which is characterized by the thermal stratification of a 
system. The case of convection heat transfer was consid- 
ered by Abourida et al. for a square cavity filled with air 
and submitted to variable thermal boundary conditions 
on its horizontal [18] and vertical [19] walls. Different 
modes of heating were considered. At high Rayleigh 
numbers, results reported in [18] showed that the perio- 
dic heating can be used to enhance slightly or to reduce 
notably the heat losses in comparison with the case of 
constant temperatures. For a cavity with vertical active 
walls [19], it was reported that the buoyancy-driven flow 
presents a tendency to enter in resonance with the peri- 
odic heating only when the cold temperature is maintain- 
ed constant. The resonance phenomenon was not encoun- 
tered when both hot and cold temperatures were varied 
simultaneously. Douamna et al. [20] considered two-di- 
mensional transient natural convection in a horizontal 
channel periodically heated from below with a tempera- 
ture varying sinusoidally with time. Results of the study 
showed that the three different routes leading to chaos 
are identified by progressively varying the amplitude and 
the period of the variable heating temperature. In a recent 
work, Zhao et al. [21] analyzed transient laminar natural 
convection induced by two discrete heating elements 
flush-mounted on one vertical wall of a square enclosure. 
The resonance frequencies were obtained numerically 
and predicted by theoretical analysis. More recently, El 
Ayachi et al. [22] investigated natural convection cou- 
pled with thermal radiation in a square cavity, differen- 
tially heated with a temperature varying periodically in 
time. The existence of the resonance phenolmenon was 
observed in this study and found to be more intensified 
by increasing the emissivity and the amplitude of the ex- 
citing temperature. The critical period of the exciting tem- 
perature leading to the resonance phenomenon was found 
to be independent on the amplitude the excitation and the 
emissivity of the walls. 
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The importance of natural convection coupled with ther- 
mal radiation in a cavity subjected to periodic boundary 
conditions in time, is justified by the relevance of such a 
transitional process to many technological applications. 
The power supply of electronic circuits by an alternating 
current, the collectors of solar energy, rooms housing and 
building hollow blocks, in which recirculation is perio- 
dically driven by daily solar heating, are concrete exam- 
ples. 

In our knowledge, works dealing with time periodic 
combined natural convection-radiation in rectangular ca- 
vities subjected to crossed thermal gradients are non- 
existent. This work is, therefore, a numerical contribution 
to the study of natural convection and surface radiation 
within a square cavity filled with air and discretely heat- 
ed and cooled, in a periodic manner, from the four walls. 
The main parameters governing the problem are the 
emis-sivity of the walls and the characteristics of the ex- 
citing temperature (amplitude and period). The effect of 
these parameters on heat transfer and fluid flow within 
the cavity is examined. 

2. Problem Formulation 

The schematic view of the geometry considered in the 
present study is given in Figure 1. It consists of a square 
cavity  discretely heated and cooled from the 
four walls. Two heating modes are considered. In the 
first one, named SB heating mode, the bottom active ele- 
ment is heated with a temperature varying sinusoidally in 
time, while the vertical left active element is maintained 
hot at a constant temperature. In the second mode, called 
SV heating mode, the vertical hot element temperature 
varies sinusoidally in time while that of the bottom active 
wall is considered constant. The inner surfaces, in con- 
tact with the fluid, are assumed to be gray, diffuse emit- 
ters and reflectors of radiation. The flow is conceived to 
be laminar, two-dimensional and incompressible with ne- 
gligible viscous dissipation. All the thermophysical pro- 
perties of the fluid are assumed constant except the den- 
sity in the buoyancy term which is assumed to vary line- 
arly with temperature (Boussinesq approximation); such 
a variation gives rise to the buoyancy forces. 

 1Ar  



Taking into account the above-mentioned assumptions, 
the non-dimensional governing equations, written in vor- 
ticity-stream function  formulation, are as fol- 
lows: 

 - 

   

2 2

2 2
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Figure 1. Studied configuration and imposed thermal exci-
tations. 
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The dimensionless stream function and the vorticity 
are related to the non-dimensional velo
by

city components 
 the following expressions: 

, and
v u

u v
x yy x

   
     
   
 

    (4) 

2.1. Boundary Conditions 

The dimensionless boundary conditions, associated to the 
problem are such: 

0u v     on the cavity walls   (5a) 

0T   on the cooled elements     (5b) 
SB Mode 

 sin 2πa t 1

on the bottom heated element

1                      

on the vertical heated element

T

T

 







     (5c) 

SV Mode 

 

1

on the bottom heated element

1 sin 2π

on the vertical heated element

T

T a t 




  


     (5d) 
T

x y

  
   

    


   (2) 
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0 on the adiabatic elementsr r

T
N Q

n


  


  

“n” being the normal direction to the consid
batic wall. 

2.2. Coupling between Radiation and Natural 
Convection 

to radiation. Thus air does not participate 
directly to the radiative heat transfer process (the ene

surfa mplicated in the radiation exchange. 

(5e) 

ered adia- 

The working fluid (air) is considered to be perfectly 
transparent 

rgy 
lid equation remains unchanged) but indirectly via the so

ces that are i
The coupling of the thermal model is performed by com- 
puting the radiative exchanges. The calculation of the 
radiative heat exchange between the internal walls of the 
cavity is based on the radiosity method. The grid used for 
convection  81 81  is retained in the presence of ra-
diation and consists of 324 isothermal elementary seg- 
ments. Each segment is sufficiently short to be assumed 
isothermal. The view factors between the isothermal ele- 
mentary surfaces were determined by the Hottel’s [23] 
crossed string method. The summation rules were checked 
to be sure that the view factors summation equals unity 
for each surface. The inner surfaces of the enclosure are 
assumed to be opaque, diffuse and gray. The dimensional 
radiosity equation for the ith element of the enclosure, in 
the case of a radiatively non-participating medium is: 

 1i i i iJ E I     

iJ   is the outgoing radiation energy flux of the surface 
Si. It consists of emission, Ei, plus the reflection of in- 
coming energy,  1 i iI  . 

The non-dimensional radiosity equation may be writ- 
ten as: 

 
4

1 1  
j

i
i i i ij j

Sr

T
J F J

T
 
 

    
 

      (6) 

The non-dimensional net radiative heat flux leaving a 
surface S  is evaluated by: i

2.3. Heat Transfer 

4

1i
r i ij j

T
Q F J

T


 
    
 

        (7) 
jSr

 

 

he mean Nusselt numbers, charac- 
ns of natural convection and ther- 

mal radiation through the heated walls, are evaluated as: 
 on the vertical heated wall 

At each time step, t
terizing the contributio

   
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   
0.5

2

B


 
0

0.5
2

dr rV rd x
B

N Q y

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 on the horizontal heated wall 
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y




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    
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    
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2

0
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2

d

B
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B
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

  N Q x




    (12) 

The instantaneous convective, radiative and total Nus- 
selt numbers across the whole cavity are defined respec- 
tively as: 

         
         

cv V cv H cv

rd V rd H rd

Nu t Nu t Nu t

Nu t Nu t Nu t

 

 

     cv rdNu t Nu t Nu t 

The mean Nusselt numbers, averaged in time over pe- 
riods are calcul

    (12) 

ated as: 

 

 

0

0
drd

rd

Nu t t


 

1
d ;

1

cv

rd

cv rdcv
cv

Nu Nu t t Nu





 

      (13) 

cv rdNu Nu Nu                 (14) 

where cv and rd are respectively the periods of the tem- 
poral variations of convective and radiative N
bers (they are identical in general). 

2.4. Heatlines Formulation 

zat

ves of the function H 

usselt num- 

Visuali ion of the paths followed by the heat flows 
through the enclosure requires the use of the heatlines 
concept (lines of constant heat function H). Such lines 
are defined through the first derivati
as follows [24]: 

,
H H T

uT vT
y

T
y x x

   
    

   
   (15) 

The dimensionless heat function equation can be de- 
rived easily from Equation (15) as: 

   2 2

2 2

vT uTH H

x yx y

  
   

  
   (16) 

B


Equation (16) is a conduction type problem with a 
source term becoming zero if the fluid flow subsides 
(fluid at rest). The solution of Equation (16) yields the 
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values of the heat function in the nodes of the com
tational domain. The contour plots of the heat 
values provide heatline patterns. The H field is defined 
th

pu- 
function 

rough its first-order derivatives and only differences of 
H values are required instead of its intrinsic values. Thus, 
we have the freedom to state that  0,0 0H   (an arbi- 
trary reference value for the heat function H). The boun- 
dary conditions for the dimensionless heat function, Equ- 
ation (16), are obtained by integrating Equation (15) along 
the considered boundary. The following equations can be 
used to determine the values of heat function at the walls 
of the cavity: 

 

   

   

0

0

0, d               for 0

,1 0,1 d   for 1

y

x

T
H y y x

x

T
H x H x y

y

 
   

    








   (17) 

   

1

1

1, 1,1 d for 1

,0 1,0 d for 1

y

x

T
H y H y x

x

T
H x H x y

y


   

 
   





3. Method of Solution 

The non linear partial differential governing equations, 
Equations (1)-(3), were discretized using a finite differ- 
ence technique. First and second spacial derivatives were 
approximated by means of central differences and the 

nce. The integration 
sured by the Alternating 

time derivatives by a forward differe
of Equations (1) and (2) was en
Direction Implicit method (ADI). At each time step, the 
Poisson equation, Equation (3), was treated by using the 
Point Successive Over-Relaxation method (PSOR) which 
with an optimum over-relaxation coefficient equal to 
1.92 for the grid adopted in the present study. The set of 
Equations (6), representing the radiative heat transfer 
between the different elementary surfaces of the cavity, 
was solved by using the Gauss-Seidel method. The nu- 
merical code was validated against the results of Aki- 
yama and Chong [2] obtained in the case of a square cav- 
ity differentially heated. Results of comparisons, made in 
terms of convective Nusselt numbers, evaluated at the 
heated wall and presented in Table 1, show a fairly good 
agreement with relative maximum deviations limited to 

 1.07% 1.36 %  for  0 1   for Ra varying in the 
range 3 610 10Ra  . Results of a qualitative compari- 
son in terms of isotherms, streamlines and heatlines, 
against those obtained by Deng [9] are presented in Fig- 
ure 2 for Ra = 105 and Pr = 0.71 in the case of a square 
cavity discretely heated and cooled on the four walls 

n effe od qualitative agreement 
can be aring these figures. Details relative 

given in Table 2. The results presented in this table jus- 
tify the selected grid of 81  81 as a reasonable compro- 
mise between computational effort and required accuracy. 
More precisely, the maximum deviations observed in 
terms of min max, , cvNu

without radiatio ct; a go
 seen by comp

to the sensitivity of the results vis-à-vis of the grid are 

   and rdNu  remain within 
0.61%, 0.90%, 1.28% and 0.11%, respectively, when the 
grids of 61  61 and 101  101 are considered. 

4. Results and Discussion 

The main parameters governing the problem are the am- 
plitude of the exciting temperature  0 1a  , it’s pe- 
riod  0.001 1  , the emissivity of the walls 
 0 1  , the Prandtl number, Pr, the Rayleigh number, 
Ra, and the relative length of active elements, B. To 

d values of B, Pr 
 a  respectively. In 

  a

highlight the influence of a, an
and Ra are fixed to 0.5, 0.72 (air)

 , the 
nd 106


the following, the results obtained are presented in terms 
of temporal variations of maximum max nd mini- 
mum  min  stream

e


Nu (Nu b
 functions and total Nusselt number 

d (
). 

ing the sum of the convective and radiative 
Nusselt numbers). The mean values of these quantities, 
averaged in time over one flow cycle are also discussed 
to point out the effect of the variable temperature on the 
coupling between natural convection and surface radi- 
ation for both cases of heating consid SB and SV 
modes

 
Table 1. Effect of Ra and  on  Nu cv , evaluated on the 

heating wall of a square cavity for .  298 5 KHT  and 

.

ere

  2 885 KCT . 

  = 0 

Ra 103 104 105 106 

Present work 1.118 2. 57 627 9.475 


Ra 103 104  106 

Presen work 1.250 2.242 192 8.100 

Akiy and
1 2 8  

2  4.

 = 1 

 105

4.

 4

Akiyama and
Chong [2] 1.125 2.250 4.625 9.375 

 

t 

ama 
Chong [2] .250 .250 .250 .125

 
Ta id se ty an for R 6 and us 
values of . 

 

ble 2. Gr nsitivi alysis a = 10  vario

= 0 

Grids min max Nucv Nurd 

61  61 −3 02.847 .0111 10.393 0 

81  81 −32.682 0.0112 10.338 0 

101  101 −32.622 0.0113 10.319 0 

min max Nucv Nurd 

61  61 −35.575 10.163 15.908 
 − 3  1  1  

101  101 −35. 513 10.143 15.881 

 = 1 
Grids 

1.494 

081  81 35. 58

269 1.

1.5 2 0.137 5.890
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Figure 2. Numerical code validation in terms of heatlines in the case of a differentially heated square cavity for Ra = 105 and 
Pr = 0.7: (a) Deng [9] and (b) Our code. 
 
4.1. Temporal Variation of Ψmin, Ψma d Nu x an 0

 a = 0
For SB and SV heating modes, the evolution with time of 
Ψmin, Ψmax, and Nu, are presented in Figures 3-5 for 

0   (absence of radiation), various values of a, 
0.008   (for SB mode) and 0.00825   (for 


SV 

ence c
u

nsidered (Figure 6),  

mode). The choice of these two values of  is guided by a 
series of tests showing significant effects on fluid flow 
and heat transfer, which are discussed later. The refer- 

ase corresponding to a constant heating tempera- 
ture (a = 0) is represented in these fig res by a con- 
tinuous horizontal line. Figures 3 and 4 show that, glob-
ally the evolution in time of Ψmin and Ψmax is periodic, the 
amplitudes of the oscillations are visibly enhanced when 
the amplitude a of the exciting temperature is increased. 
It can be seen from Figure 3 that, in the case of the SB 
heating mode, the main flow intensity is higher in com- 
parison to the case of SV heating mode. It can also be 
noted that the monocellular flow structure, observed for a 
= 0, disappears in favor of a secondary flow whose size 
and intensity increase with a (Figure 4). In terms of heat 
transfer, the increase of the amplitude a is accompanied 
by a proportional increase in the amplitude of the sinu- 
soidal evolution of Nu (Figure 5). 

The effect of radiation on the temporal variation of 
Ψmin, Ψmax and Nu is shown in Figures 6-8 in the case of 
highly emissive walls  1  . 

The amplitude of Ψmin oscillations is clearly reduced 
for both heating configuration co
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Figure 3. Effect of the amplitude a on  tmin  for ε = 0. 

 
while that of Ψmax is slightly affected, negatively in the 
case of the SB heating mode and positively in the SV one 
(Figure 7). It should be noted that for the two heating 
modes, SB and SV, the clockwise cell, constituting the  
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Figure 5. Effect of the amplitude a on Nu(t) for ε = 0. 
 
main flow, remains dominant during the evolution of the 
cycle, while the secondary counterclockwise flow, plays 
a less impo , 
shows that d, the 
mplitude of Nu oscillations, ificantly enhanced; 

indicating an improvement of the total heat transfer when 

rtant role. For the heat transfer, Figure 8
when radiation of the walls is considere

a is sign
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Figure 7. Effect of the amplitude a on Ψmin(t) for ε = 1. 
 
radiation is taken into account. 

4.2. Streamlines, Isotherms and Heat-Lines over 
a Flow

From the temporal evolution of max, discussed above, it 

 Cycle 

 Ψ
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

appears that the secondary flow intensity is less impor- 
tant in the case of SV mode than in the SB one. That is 
why in this subparagraph, the study will be limited to this 
later configuration. Figures 9 and 10 correspond to the 
case of constant thermal excitation and are used 
as reference, respectively for  = 0 and  = 1. 

 0a 

On the other hand, in Figures 11 and 12 are presented 
the streamlines, isotherms and heatlines, obtained during 
a flow cycle in the case of sinusoidal exciting tempera- 
ture  1, 0008a   , respectively for = 0 (non-radia- 
tive walls) and  = 1 (strongly radiative walls). Also, in 
Figures 11 and 12, the letters (a), (b), (c), (d) and (e) 
correspond to the selected times in Figures 4 and 7. As 
can be seen from Figure 9, the flow is dominated mainly 
by a large cell zone surrounding three small others lo- 
cated in the central part of the cavity. Once the modu- 
lated temperature is applied (a = 1), a fundamental change 
in the flow structure is observed (Figure 11). Thus, the 
streamlines show that during the evolution of the cycle, 
the flow passes through various states characterized by 
the dominance, at the instant (a), of large clockwise do- 
minant cell and the appearance, at instants (b), (c) and 
(d), of a secondary counterclockwise cell, small and of  
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Figure 11. Streamlines (left), isotherms (center) and heatlines (right) over a flow cycle for the SB mode in the case where  = 0. 
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low intensity in the lower left corner of the cavity. The 
corresponding isotherms are tightened at the active ele- 
ments, indicating that the convective heat exchange is 
good in this region of the cavity. Lines corresponding to 
heat flux (heatlines) show a similarity with the stream- 
lines and demonstrate the dominance of convective heat 
transfer (high values of the stream function). 

Furthermore, for  = 1 and a = 0, Figure 10 shows a 
more complex flow structure consisting of a large and 
intense main cell zone and four small secondary counter- 
clockwise cells taking place in the four corners of the 
cavity. By introducing a sinusoidal thermal excitation 

, a specific examination of the streamlines of Fig- 
reveals that the flow structure, during one cycle of 

evolution, is dominated by a large and intense clockwise 
cell, surrounded, at the four corners of the cavity, by se- 
condary counterclockwise cells more or less important 
according to the considered instants. Because of this 
complexity, the isotherms show a consistent temperature 
distribution, generally characterized by large thermal gra- 
dients in the vicinity of the active elements. Meanwhile, 
the heatlines show a similar shape to that of the stream- 
lines, reflecting the dominance of convective heat trans- 
fer in such a situation. 

4.3. Effect of the Period τ on 

-70

-60

-50

-40

-30

   a = 0
  a = 0.25
  a = 0.5
  a = 0.75
  a = 1

SB mode 

min


0.001 0.01 0.1 1

 
 

 1a 
ure 12 

-70

-60

-50

-40

-30

  a = 0
  a = 0.25
  a = 0.5
  a = 0.75
  a = 1

SV mode
min


0.001 0.01 0.1 1

 

Figure 13. Variations of min  with the period τ for ε = 0 

and different values of a. 
 

,max min   and 

Nu  

Based on a set of preliminary tests, the time-averaged 
values of the stream functions and the Nusselt number 

enom s charact zed by 

(max, min, and Nu), obtained for various periods, let 
suppose the existence of the resonance phenomenon 
within the cavity. This ph enon i eri
maximum fluctuations in the response of the system to an 
external excitation with well-defined period. This effect 
was reported in the past by several authors, both in the 
absence of radiation effect [11-21] and in the presence of 
radiation [22]. Hence, variations of max min,   and 
Nu  are presented versus  for both considered heating 
modes and various values of . The values corresponding 
to ithe case of the sothermal heating sources are also 
presented in the same figures as references. 

In the absence of radiation  0  , variations of 

max min,   and Nu  are presented in Figures 13-15, 
respectively. 

Variations of the main flow intensity, min , with  
Figure 13) show that min  increases with τ to a peak, 
characterizing a resonance phenomenon, for a critical 
value of τ, which is of 0008 for the SB mode and 0.00825 
for the SV one. Such a difference between these critical 
periods can be attributed to the difference between the 
flow intensities for the two heating modes. Higher inten- 
sities of the main flow would lead to lower values of the 
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resonant periods. Above this threshold, a further increase 
of τ leads to a continuous weakening of the flow intensity 
toward asymptotic values greater than those correspond- 
ing to the constant heating temperature  0a  , reached 
at high values of τ. By increasing the amplitude a of the va- 
riable temperature, the peak becomes more important and 
the resonance phenomenon becomes mo nced,  re pronou
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Figure 15. Variations of Nu  with the period τ for ε = 0 
and different values of a. 
 
but without changing the critical periods. 

It was reported in previous studies that the resonance 
occurs when th  time duration, necessary for the flow to e
rotate through the full cavity (period of a fluid wheel 
[11]), is equal to that of the cyclic modulated temperature. 
The rotational dimensional period required for a quantity 
of fluid to rotate along the vertical and horizontal walls 
in an enclosure can be expressed as [11]: 

 2 L H

v


 
 


 

where  and L H   
tively. The

determ
y

are the length and height of the en- 
 scale of the characteristic ve- 

locity is ined by Lage and Bejan [11]. 
Fo e secondar  flow, Figure 14 also shows a reso- 

nance phenomenon in the evolution of 

closure, respec
v  

r th

max
ode with alm

 which is 
well marked and premature for the SB m ost 
the same critical period observed in the evolution of 

min
resona
Beyo

, while for the SV mode, the occurrence of this 
nce is delayed and depends on the amplitude a. 

nd the critical period, max  
on the h

decreases and stabi- 
lizes at values depending eating mod consid- 
ered. 

f 

e 

Regarding variations o Nu  with  Figure 15), the 
resonance phenomenon is also observed and appears to 
e more important in the case of SB mode, with critical 

periods identical to those on 
b

min  
 one). The

of the oscillating a
vious

note th

(0.008 for the SB 
mode and 0.00825 for the SV  later values are 
not affected by the increase mplitude a, 
a result in accordance with pre  numerical findings 
[22]. Also, it is important to at beyond the critical 
value of , Nu  

ich dep
SB m

decreases to a minimum value reached 
for 0 wh ends on the heating mode imposed. In 
the case of ode, 0 0.09 

s
, while in the case of the 

SV one,   is substantially les  and is 0.01, values beyond 
which 

0

Nu  increases ptotic trend, depend- 
ing on a. 

In the case of highly emissive walls Figures 
16-18 show that the fluid circulation and t e total heat 
transfer are more enhanced in comparison with the case 
of  = 0. When  passes from 0 to 1, the enhancement of  

until an asym

 1  , 
h
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Figure 16. Variations of min  with the period τ for ε = 1 

and different values of a. 
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the time averaged heat transfer, Nu , is of about 142% at 
the resonance. 

The evolutions with τ are similar to those obtained 
without radiation effect. The resonance phenomenon is 

ned for the same critical periods for both considered 
heating modes. 

The contribution of radiat to total heat transfer  

obtai

ion 
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through the cavity is also examined in this study for the 
two considered configurations, SB and SV heating modes. 
The obtained results show that for a moderate value of 
the emissivity , the contribution of radiation is 
not negligib e to that obtained for the 
steady state case (a = 0). Note that in the case of the SV 
mode, an increase of a leads to a decrease in the con- 
tribution of radiation. In the SB heating mode, this 
decrease occurs specifically for high values of . For  = 
1, a higher contribution of radiation to total heat transfer 
is obtained (between 59% and 62%) when compared to 
that of natural convection. 

5. Conclusion 

The problem of natural convection coupled with thermal 
radiation inside a square cavity, submitted to cross gra- 

 stu
 and
ed. In such a situation, the solu- 

with and without thermal radiation, are pe- 
riodic in time with periods identical to that of the ex- 
citing temperature. A resonance phenomenon, character- 
ized by maximum fluctuations of the flow intensity and 
heat transfer rate, is observed. The resonance period of 
SB mode is slightly lower than that of SV one. Both 
these periods have the particularity of being independent 
on the excitation amplitude and the walls emissivity. Ex- 
cept for low values of the excitation period, time variable 
heating improves, generally, heat transfer than constant 
heating, which makes the former interesting for the heat  

removal through the cavity. Moreover, the control of the 
coupling convection-radiation, in the unsteady regime, 
appears to be a good means to control heat transfer for 
very specific values of the governing parameters. 
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Nomenclature 

Ar: aspect ratio of the cavity  1rA L H    
B: relative lengths of the active portions,  
B h H L       
cv: convection 
Fij: view factor from Si surface to Sj one 

g: acceleration due to gravity, 2m s  
h : length of the vertical active portions, m 
H  : height of the cavity, m 
Ji: dimensionless radiosity, 4

i CJ T   
 : width of the horizontal active elements, m 

L : length of the cavity, m 
Nr: convection-radiation interaction parameter, 

 4
r C H CN T H T T       

Nu: average Nusselt number 
Pr: Prandtl number, Pr    
Qr: dimensionless radiative heat flux, 4

r r CQ Q T   

Ra: Rayleigh number,   3
H CRa g T T H      

rd: radiation 
t: dimensionless time, 2t t H   
T  : dimensional fluid temperature, K 
T: dimensionless fluid temperature, 

  C H CT T T T T       

CT  : temperature of the cold elements, K 

HT  : temperature of the heated elements, K 
: temperature difference, T  H CT T T 

 r C H CT T T T     

 ,u v : dimensionless horizontal and vertical velocities, 

   , ,u v u v H     

 ,x y : dimensionless coordinates,    , ,x y x y H    

Greek Symbols 

 : thermal diffusivity of fluid, 2m s  
 : thermal expansion coefficient of fluid, 1 K  
 : emissivity of the walls 
 : thermal conductivity of fluid,  W K m  
: kinematic viscosity of fluid, 2m s  
: dimensionless period of the heating temperature, 

2H     
 : dimensionless vorticity, 2H      
 : dimensionless stream function,     
 : Stéfan-Boltzman constant,  

 8 25.6697 10 W m K     

    
mperature,  T : dimr ensionless reference te

4

Subscripts 

C: cooled surface 
H: heated surface 

Superscripts 

: dimensional variable 
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