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ABSTRACT 

A gravity droplet crossing a liquid-liquid interface is covered on the forefront with a film of the leaving liquid phase. 
The film thickness is not homogeneous over the droplet surface, and it reduces as the droplet penetrates the interface, 
particularly in the stretched area where it then ruptures. An expression for the film thickness in the stretched region is 
deduced from a force balance. The film rupture is expected to occur at a droplet position when the normal stress in the 
stretched film reaches the tensile strength of the liquid. By using some experimental data from literature the expression 
delivers 26 nm for the film thickness at rupture, while Burrill and Woods [1] obtained experimentally values between 
30 nm and 50 nm. 
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1. Introduction 

Dynamics of thin fluid films governs kinetics of many 
processes like coalescence and encapsulation of particles. 
Prior to coalescence the fluid separating the particles 
must be squeezed out and the remaining film ruptured. 
The flow in the film is mostly treated on the basis of the 
lubrication model, see e.g. Davis et al. [2], Chesters [3], 
Klaseboer et al. [4], Bazhlekov et al. [5]. From this mo- 
del, equations for calculating the film thickness as func-
ion of time were derived, but a determination of the film 
thickness at the rupture instant is not possible. The situa-
tion is similar with encapsulation of a particle. The parti-
cle to be encapsulated is forced to cross a thin layer of 
encapsulating material whereby a thin film of this mate-
rial envelops the particle, see e.g. Massoth et al. [6] and 
Abkarian et al. [7]. In contrast to coalescence, the film 
enveloping the particle should be stable and posses a 
homogeneous thickness. 

In a recent paper Oldenziel et al. [8] present experi-
mental results on the behaviour of liquid droplets at a 
two-liquid interface, mainly focusing on the time history 
of the film covering the upper part of the droplet. The 
movement of the droplet is provided by gravity; the soft 
interaction of the originally spherical droplet with the 
interface flattens the sphere to a rotational ellipsoid. The 
thickness of the film on the droplet is not homogeneous; 
it is maximal at the droplet vertex and decreases radially 
outwards. The film rupture was observed to occur in the 
outer region, and not at the droplet vertex. This informa-

tion is important in context with the estimation of the 
probability that the droplet during the interaction time 
mix with the upper liquid layer, being miscible with the 
droplet liquid. The time history of the layer observed in 
the experiments shows a spatial asymmetry, caused by 
experimental reality. The reported results also provide 
important insights into encapsulation and collision proc-
ess e.g. of two droplets of different sizes. They are in 
agreement with the theoretical models; several such 
models have been analysed in the review paper by Chan 
et al. [9], and the reader is referred to this source, also for 
further references. 

In addition to the film shape, of certain importance is 
also the question of the thickness of the film at the instant 
of its rupture, both in coalescence and encapsulating 
processes. The present paper provides a model for esti-
mation of the thickness of this film at the rupture. The 
model is based on a static force balance of the film 
formed on a droplet crossing a horizontal liquid-liquid 
interface. The droplet is assumed to be an oblate spheroid 
formed by revolution of an ellipse about its minor (verti-
cal) axis. 

2. The Physical Model 

The physical system consists of two sufficiently thick 
horizontal liquid layers of different densities, Figure 1(a). 
In the lower layer there is a liquid droplet of a lighter 
(upper) phase that moves upwards by gravity. As the 
droplet approaches the upper phase, it deforms the origi-

Copyright © 2012 SciRes.                                                                                 JEAS 



J. MITROVIC 28 

nally even interface, penetrates that phase, but remains at 
first separated from it by a thin film of the heavier (lower) 
phase. Since the droplet is not rigid, it also becomes de-
formed and changes its shape from nearly spherical to a 
flattened ellipsoid, Figure 1(b). As the droplet penetrates 
further the lighter phase, the liquid layer enveloping the 
droplet on its upper part thins down to a certain thickness 
when it then ruptures, and the droplet liquid becomes 
sucked by the lighter phase.  

Many experiments dealing with such penetration phe- 
nomena have shown that the droplet shape depends on 
the system properties and the velocity the droplet ap- 
proaches the interface, see e.g. Chan et al. [9]. The thick- 
ness of the liquid layer is not uniform over the droplet 
surface, and at certain distance from the vertical symme- 
try axis, near the inflection line of the interface separat- 
ing the continuous phases, the liquid film is extremely 
thin. This hinders the outflow of the upper portion of the 
film (bottle neck effect). The movement of the droplet 
results in a continuous thinning of the film in its outer 
region which subsequently ruptures.  

2.1. The Buoyancy Force 

Referring to Figure 1(a), the Archimedes force causing 
the droplet to ascend is 

34
π

3ASF gR             (1) 

where R is an equivalent radius of the droplet taken as a 
sphere. 

Prior to interaction start with the upper liquid phase 
and deformation of the interface, the whole droplet vol- 
ume is involved and causes this force. When the droplet 
is in interaction with the upper phase and is deformed as 
illustrated in Figure 1(b), the situation changes and the 
buoyancy force depends on the position of the droplet 
relative to the undisturbed interface. It seems reasonable 
to consider the droplet volume below the plane placed a 
distance m above the horizontal symmetry plane of the 
ellipsoid to cause the Archimedes force. The position of 
this plane is determined by the position of the horizontal 
circular line connecting the minima of the film thickness.  
 

   

Figure 1. Ascending liquid droplet in a continuous liquid (a) 
and its deformation at the interface (b). 

With this notion and the assumption of an ideal (rota-
tion-symmetric) ellipsoid with respect to its vertical axis, 
described parametrically,  

   cos , sin ; cos , sint a t b t x a t y b   t ,   (2) 

the volume V causing the buoyancy is 
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The Archimedes force, gV , may thus be expres- 
sed as  
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3 3AE

m m
F ga b

b b


             
 .      (4) 

For m = b the ellipsoid is surrounded by the heavier 
(lower) liquid and its total volume is involved in the 
buoyancy force.  

2.2. The Geometry of the Droplet 

The geometrical parameters of the ellipsoidal droplet 
depend on the process parameters. The movement of the 
droplet is assumed to be very slow and the dynamical 
effects are neglected. The shape of the droplet is then 
caused only by the force FAE which generates certain 
curvature of the droplet surface; the maximum curvature 
is expected in the horizontal symmetry plane, at y = 0. 
The local curvature of the ellipse is 

 3 22 2 2 2sin cos

ab

a t b t
 


,        (5) 

which for y = 0, that is for t = 0, gives the curvature 

V  of the ellipsoid surface in the vertical plane at y = 0, 

2V

a

b
                   (6) 

The curvature of the ellipsoid surface in the horizontal 
plane y = 0 is 1H a  , and the average curvature is 

2
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1
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a

a b
  

 

               (7) 

This curvature is used to obtain the ratio of the main 
ellipsoid axes. Neglecting the capillary pressure at x = 0, 
y = b, the force balance at x = a, y = 0, 

gb                    (8) 

delivers 

2
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b
   , 
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B
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
 ,      (9) 

where the Bond number B0 is defined with the axis b of 
the ellipsoid as the characteristic length. Obtaining b 
from experiments, Equation (9) determines the other axis, 
a; for , 0 0B  1a b  . 
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2.3. The Film Thickness at Rupture 

The movement of the droplet penetrating the interface is 
a complex process whose treatment requires a detailed 
analysis of fluid dynamics with overlapped interfacial 
effects. The so called lubrication model is mostly used 
for treatment of such or similar problems, see e.g. [2-5,9] 
for details. However, the dynamical effects are getting 
weaker as the film thins and may be neglected immedi-
ately prior to film rupture in comparison to static effects; 
the film rupture is viewed as follows. 

As the droplet moves upwards, the liquid film cover-
ing the droplet becomes stretched particularly in its outer 
(thinnest) region, and the thickness  decreases, Figure 
1(b). This impedes the liquid above the droplet from out-
flow. In addition, the droplet penetration increases the 
capillary pressure in the region of the inflection line of 
the interface, Figure 2. At this line, the tangential curva-
ture of the bell-shaped interface is zero, 0T  ; its 
normal curvature N  may be obtained from the equati- 
on of the ellipse, for small . Equation (5) then gives, for 
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Using the average  

  2N T     

for the capillary pressure one obtains 
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This pressure also retards the film drainage. It is larger 
than the capillary pressure in the film near the vertical 
axis ( 0,x y b  ) which may support formation a 
concave-convex interface in that region.  

To obtain an expression for the thickness  at the in-
stant of the film rupture we adopt the following model 
assumptions:  
a) The liquid film is a fluid sheet able of flowing and 

stretching. 
 

 

Figure 2. Bell-shaped interface generated by droplet pene- 
tration into upper continuous liquid phase. The inflection 
(blue) line is at distance m from the horizontal droplet sym- 
metry plane, Figure 1(b). 

b) The force FAE given in Equation (4) presses the liquid 
film above the droplet against the lighter upper phase, 
and a certain amount of the film liquid flows out acr- 
oss the gap (thickness ) at the inflection line, Fig- 
ures 1(b) and 2. Due to the upwards droplet move- 
ment the liquid in this gap is continuously stretched 
and exposed to the action of a steadily increasing cap- 
illary pressure, decreasing m in Equation (11). The 
film stretching arises both verti cally and azimuthally 
(increasing c in Figure 1(b)).  

c) The liquid film is held together by molecular interac- 
tion in the film cross-section. At a large film thick- 
ness the number of molecules in the film cross section 
is large and the resulting force arising from the mo- 
lecular interactions prevents the film rupture (the ori- 
gin of the molecular interaction is not the subject of 
this paper).  

d) As the film thins, the number of molecules occupying 
the cross-section decreases; at certain film thickness 
the stretching force overcomes the molecular interac- 
tion, and the film ruptures.   

Taking the sketched process sufficiently slow to ne- 
glect dynamical effects and disregarding capillary effects, 
one obtains the following force balance for the film 
cross-section along the inflection line. The projection of 
the buoyancy force FAE on the tangent at the inflection 
line (Figure 2) in the direction of the film flow,  
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where  tan d darc x y  , is balanced by the internal, 
resulting molecular force in the film that may be stated in 
terms of the tensile strength of the liquid. Denoting the 
tensile strength by , the force balance may be written as 

2
1 22π Rc ga   bf f          (15) 

hence 
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Using Equation (9), Equation (16) can be written as  
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The shape function  contains only the geometrical 
parameters of the ellipsoid, but it depends implicitly on 
the physical properties via the ratio a b according to 
Equation (9). For m = 0 it is 2 3   and 
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
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          (20) 

which is valid for a particular position of the droplets, 
Figure 1(b) . 

3. Illustration of Results 

Figure 3 illustrates Equation (9), the shape of the droplet. 
The ratio a b  of the ellipsoid axes increases almost 
linearly with B0.  

Figure 4 quantifies Equation (11) for chosen values of 
the axes ratio a b . The pressure  enhances the thin-
ning of the film in the region of the inflection line of the 
interface and resists the outflow of the liquid locked 
above the droplet. This effect is larger at larger B0. 

p

 

2gb
B0 

 
 

  

B0  

Figure 3. Effect of Bond number on droplet flattening ac-
cording to Equation (9). 
 

a b 1.6
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Figure 4. Capillary pressure on the inflection line acts agai- 
nst the outflow of the liquid locked above the droplet, Equa- 
tion (11). 

Figures 5 and 6 show the shape function  for se-
lected values of a b . This ratio does not that sensit- 
ively affect the function  in regions of practical import- 
ance, values of 0.6m b   and 0.7c a  . In connec- 
tion with Equation (19) one expects a larger film thick 
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Figure 5. Shape function  in dependence of m/b and c/a. 
Arrows: increasing a/b. The Bond number B0 correspond- 
ing to the values a/b is 0, 0.13, 0.27 and 0.41, respectively. 
 

a b

1 2

3

f f

f
 

a b

1 2

3

f f

f
 

 

Figure 6. Shape function  in dependence of m/b and c/a. 
Arrows: increasing a/b. The Bond number B0 correspond-
ing to the values a/b is 0, 0.41, 1.0 and 1.6, respectively. 
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ness R  at larger B0. Figure 7 illustrates the dimen-
sionless film thickens at the instance of the film rupture, 
Equation (19). The curve is similar to that in Figure 3.  

The tensile strength of the liquid  in the expression 
for the film thickness R  reflects implicitly the liquid 
structure and its molecular dynamics and depends on the 
system state, particularly on temperature. In addition the 
quantity  depends also on the purity and constitution of 
the liquid in case of mixtures. Theoretical values could 
be obtained from equations of state e.g. van der Waals 
equation at   0T . Its determination by experi-
ments is complex and several parameters may affect the 
results. For instance, in classical experiments, where 
solid walls are involved, the interaction of liquid mole-
cules with the walls plays an important role; if the inter-
action is weak, the liquid is expected to rupture on the 
wall surface and not in the bulk. With free liquid surfaces, 
surface active substances could lower the tensile stretch. 
This may partly explain the scattering of the experimen-
tal results. Skripov [9] reports data for  in the rage 200 
bar to 300 bar; while Williams and Williams [11] report 
data as low as 10 bar, see also [3,12]. The value  

p v 

6 210 10 N mbar  and the data from the experiments 
of Oldenziel et al. [7] are adopted for illustration:  

3250 kg m  , 0.81 0.84c a   , 1.17a b  , 

3.5mma  . With these data one obtains:  

1.98  , 3.0mmb   

Equation (16) gives the thickness of the film at instant of 

rupture: .  926 10 m 26 nmR
  

A comparison of the model result with experiments is 
almost impossible, because relevant experimental results 
are very rare in literature. As far as the author is aware, 
only the results reported by Burrill and Woods [1] are 
directly applicable. They studied the thin liquid film of 
water trapped between a rising oil drop and the bulk 
oil/water interface, including the film rupture. Measure-
ments gave the film thickness at rupture in the range 300 
Å to 500 Å (30 nm to 50 nm). This is of the same order 
of magnitude as the above model result (26 nm).  
 

 

Figure 7. Dimensionless film thickness at rupture. 

4. Conclusion 

The shape of a droplet exposed to gravity and interacting 
with a liquid-liquid interface is approximated by ellipsoid 
generated by revolution of an ellipse around its minor 
(vertical) axis. The geometrical parameters of the ellipse 
are obtained from the static equilibrium requirements. 
These requirements have delivered an equation for the 
rupture of the interfacial film. The film rupture is ex-
pected to occur when the Archimedes force of the droplet 
exceeds the molecular interaction in the film expressed in 
terms of the tensile liquid strength. Adopting some data 
from experiments by Oldenziel et al. [8] the thickness of 
the film at the rupture amounts to 26 nm. Burrill and 
Woods [1] report experimental data in the range of 30 
nm to 50 nm. Although the theoretical order of magni-
tude appears to be realistic, the main uncertainty in the 
film thickness at rupture is rooted in the inaccuracy of 
the tensile strength of liquid.  
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Nomenclature 

a,b —main axes of ellipse;  
c—parameter, Figure 1; 
B0—Bond number; 
F—force; 
g—acceleration due to gravity; 
m—parameter, Figure 1; 
p—pressure; 
—tensile strength of liquid; 
R—radius; 
t—parameter; 
V—volume; 
 

 

 

—shape function; 
—density, ∆ density difference; 
—surface tension; 
—curvature. 

Indices 
AE—Archimedes force ellipse;  
AS—Archimedes force sphere;  
N—direction of normal;  
R—rupture;  
T—direction of tangent.  
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