
Journal of Data Analysis and Information Processing, 2019, 7, 91-107
http://www.scirp.org/journal/jdaip

ISSN Online: 2327-7203
ISSN Print: 2327-7211

DOI: 10.4236/jdaip.2019.73006 Jul. 25, 2019 91 Journal of Data Analysis and Information Processing

Reconfigurable Multi-Butterfly Parallel Radix-r
FFT Processor

Jiyang Yu, Bowen Cheng, Zongling Li, Weiwei Liu, Luyuan Wang

China Academy of Space Technology, Beijing, China

Abstract
The design of reconfigurable multi-butterfly parallel radix-r FFT (Fast Fouri-
er Transform) processors is proposed. FFT is widely used in signal processing,
and the application needs real-time and high performance, while most of the
traditional designs are limited to the power of two, which wastes the buffers
and multipliers in big data. In response to the problem, we improve the pa-
rallel FFT algorithm with the design of reconfigurable control machine com-
bined with buffer/multiplier, and the cost function with the input of ra-
dix/number/paddling number/time consuming is deduced. Constrained with
the number of buffer and multipliers, the radix and number can be computed
with the optimum cost function, and the resolution space of computing per-
formance and hardware cost is presented. The proposed guarantees the
real-time performance with better flexibility compared with the previous lite-
rature, and the comparison also suggests the effectiveness of the design.

Keywords
FFT, Reconfigurable, Multi-Butterfly, Parallel Processing

1. Introduction

The Fourier Transform is the basic algorithm for time-frequency domain
processing, and the necessary tool for digital spectrum analysis. The Fast Fourier
Transform (FFT), as the element theory in signal processing, is widely used in
the research on electromagnetic characteristics, satellite navigation and commu-
nications and radar signal processing [1]. The DSP chips were often used for the
FFT real-time implementation, and nowadays the ASIC of FFT could decrease
the cost and enhance the performance, which makes the great success in prac-
tice.

S. A. Salehi provided pipeline architecture for FFT which is limited to the

How to cite this paper: Yu, J.Y., Cheng,
B.W., Li, Z.L., Liu, W.W. and Wang, L.Y.
(2019) Reconfigurable Multi-Butterfly Paral-
lel Radix-r FFT Processor. Journal of Data
Analysis and Information Processing, 7,
91-107.
https://doi.org/10.4236/jdaip.2019.73006

Received: April 8, 2019
Accepted: July 22, 2019
Published: July 25, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jdaip
https://doi.org/10.4236/jdaip.2019.73006
http://www.scirp.org
https://doi.org/10.4236/jdaip.2019.73006
http://creativecommons.org/licenses/by/4.0/

J. Y. Yu et al.

DOI: 10.4236/jdaip.2019.73006 92 Journal of Data Analysis and Information Processing

power of two [2]. A normal I/O order radix-2 architecture for MIMO is shown
in [3]. The pruning mechanism is applied to reduce the time consuming, while
the performance is affected by points [4] [5] reduced circuit complexity for large
N-point FFT with single-path delay feedback, and the radix is also limited to 22.
The traditional FFT design, is basically restricted to the radix-2/4 and the cor-
responding architectures, while the buffers and multipliers can be easily wasted
for big data processing; and the previous literature often optimize the computing
with constant parallel architectures, which makes it difficult to balance between
performance and resources.

In previous works, [6] enhanced the performance by computing 4-channel
FFT with single butterfly, which is focused on parallel data flow between mul-
tiple FFTs. The in-place radix-r architecture is deduced in [1], and a constant
geometry is proposed in [7].

The reconfigurable multi-butterfly parallel radix-r FFT processor is proposed,
based on the improved parallel strategy. By designing configurable controller
combined with hardware resources such as cache/multiplier, the parallel algo-
rithm is improved. The design cost function of FFT with the input of radix,
point, zero paddling and calculation time is given. In the actual design process,
taking cache and multiplier resources as constraints, the optimal FFT design ar-
chitecture is obtained by calculating the radix and number of points under the
optimal cost function. The form of solution space is given for the computational
performance and resource occupation of the design. Because of the use of pro-
cessor architecture, the algorithm can be adjusted according to the availability of
resources in the actual hardware design process, which not only ensures the
flexibility of the design, but also guarantees the real-time requirements of paral-
lel computing.

The architecture of parallel FFT processor is given in Section 2, include the
internal sub-module design and connection relationship; the performance is
analyzed based on the parallel architecture in Section 3, and the improved paral-
lel algorithm is deduced for the designed processor; Section 4 compares the de-
sign with previous literatures; Section 5 concludes.

2. The Parallel FFT Design

The point is configured by the external input interface, while the optimal radix
and the parallel degree of multipliers are deduced by point. Then the parameters
are used to form the FFT architecture.

The whole architecture in Figure 1 mainly includes: parameter calculation,
FFT control, butterfly computing unit, input/output buffer, data buffer, teleme-
try component. Data is input buffer first, internal control parameters are calcu-
lated according to input parameters. FFT control controls butterfly computing
unit, telemetry component and related cache. The final calculation results are
output by output buffer, parameters and internal state are output by telemetry
component. The internal architecture is shown as in Figure 2.

https://doi.org/10.4236/jdaip.2019.73006

J. Y. Yu et al.

DOI: 10.4236/jdaip.2019.73006 93 Journal of Data Analysis and Information Processing

Figure 1. Multi-butterfly parallel radix-r FFT architecture.

Figure 2. The internal architecture of the FFT processor.

2.1. The Work Mode of FFT Processor

Processor receives external input data, and output results after calculation. The
workflow is as follow: first use internal cache to receive external input data, and
the register set save external input and output control information; then, calcu-
late input data; at last, output results to output cache, refresh the register set, and
waiting for the external data.

2.2. The Internal Architecture of FFT Processor

According to the workflow of the processor, the internal hardware structure of
the processor in Figure 3 is as follow.

The processor mainly includes 8 sub-modules:
1) State Processing Unit;
2) Inline Bus;
3) Integer Processing Unit;

Parameters
Comp.

Input RAM

FFT
Control

Butterfly
Unit（0~N-1）

Data Buffer

Output RAM

Telemetry

Parameters
Input

Data
Input

Telemetry
Output

Data
Output

Result
Store

Operand
fetch

Para.
Config.

FPGA

SPU（State
Processing

Unit）

ILB（Inline
Bus）

IM（Input
Memory）

OM（Output
Memory）

IPU（Integer
Processing

Unit）

MM（Middle
Memory）

FPUG（Floating-
point Processing

Unit Group）

Data

Data

DataData

Ctrl

Ctrl

Ctrl DataData

DataData

Ctrl

DataData

FPGA

Input
Data

Output
Data

Reg Set

Input/Output
Ctrl

https://doi.org/10.4236/jdaip.2019.73006

J. Y. Yu et al.

DOI: 10.4236/jdaip.2019.73006 94 Journal of Data Analysis and Information Processing

Figure 3. The internal architecture of SPU for FPGA.

4) Floating-Point Processing Unit;
5) Reg Set;
6) Input Memory;
7) Middle Memory;
8) Output Memory.
While, SPU is used to handle all state controls generated according to the al-

gorithm; ILB is used to connect three-tier cache and floating-point processing
units and to interact with SPU for data; IPU is used to support integer compu-
ting requirements in SPU; FPUG are used for the floating-point computing; RS
receive the input control information and internal state interaction; IM store the
data input, and MM store the intermediate data, while OM store the results.

2.3. The Design of Sub-Modules
2.3.1. State Processing Unit (SPU)
The state processing unit (SPU) is used to control and command all working
components. Its function is to extract the state code from the state memory, send
it to the state code register, and then enter the state decoder for decoding. Ac-
cording to the state code information, all the internal information needed for
various operations is updated, so that all parts can coordinate their work and
complete the various operations specified by the state code.

The SPU includes timing control logic, state code memory, state code register,
state code decoder, state counter SC (State Count), state address register, state
code pointer register SPTR and stack pointer register SP. Its internal structure is
shown below.

1) Timing Control Logic
When the FPGA is started, the SPU is controlled to take out the state code and

increase the state count.

Micro Operation Control

Timing
Control
Logic

State Code
Decoder

State Code
Register

State
Counter

State
Address
Register

+1/2/3

State Code
Memory

StateRG IPUSPTR

Stack
Pointer

SP

https://doi.org/10.4236/jdaip.2019.73006

J. Y. Yu et al.

DOI: 10.4236/jdaip.2019.73006 95 Journal of Data Analysis and Information Processing

2) State Code Register
Store the status code currently being executed.
3) Sate Code Decoder
When the state code is fed into the state decoder, the state code is decoded by

the decoder, that is, the state code is converted into various specific operations,
so that the state machine can correctly perform various functions required.

4) State Address Register
To store the next status code address to be executed. When a status code is

removed from the status code memory according to the SC pointing address, SC
automatically adds 1/2/3 to the next status code. When reset, (SC) = 0, so the
address selection of system status code must start from unit 0.

There are two ways to form a status code address: one is to execute sequen-
tially, adding 1/2/3 through SC; the other is to change the sequence of execution
procedures. Generally, the transfer address is formed by the transfer class status
code and sent to the status code address register as the next status code address.

1) State Code Pointer Register
SPTR is used to address external data to form an external data address poin-

ter.
2) Stack Pointer
SP is used to store the top address of the stack. The stack accesses data ac-

cording to the “first in, last out” principle.

2.3.2. Inline Bus (ILB)
The inline bus ILB in Figure 4 updates the internal control register by decoding
the data written by the SPU, and controls the data transmission between the
connected components according to the value of the register. These data trans-
fers in Figure 5 include:

1) Data transmission from input cache IM to intermediate cache MM;
2) Data Transfer from Intermediate Cache MM to Intermediate Cache MM;
3) Data transmission from intermediate cache MM to output cache OM;
4) Data transmission from intermediate buffer MM to floating point processing

unit group FPUG;
5) Data transmission from FPUG to intermediate cache MM.

2.3.3. Integer Processing Unit (IPU)
The main function of IPU module in Figure 6 is to carry out arithmetic logic
operation, and complete data transmission, calculation and bit variable processing
tasks with SPU. Among them, arithmetic logic operation is mainly composed of
ACC, general register B, register, Boolean processor and operation state register
PSW. As shown in the figure below.

2.3.4. Floating-Point Processing Unit (FPUG)
Floating point processing unit group FPUG in Figure 7 is used to calculate the
output data of intermediate buffer MM, including four basic computing mod-
ules: floating point addition, multiplication, division and square. The number of

https://doi.org/10.4236/jdaip.2019.73006

J. Y. Yu et al.

DOI: 10.4236/jdaip.2019.73006 96 Journal of Data Analysis and Information Processing

Figure 4. The internal architecture of ILB.

Figure 5. ILB inner modules data transmission indication.

each module varies according to the task requirements of parallel FFT compu-
ting and the amount of remaining resources of current FPGA. Once the design
requirements are identified, the number of four modules can no longer change.

2.3.5. Memory Group (MG)
Internal cache has three parts: input cache IM, intermediate cache MM and
output cache OM. All three caches are dual-port RAM.

Address Decoder &
ILB Inner Control Reg

MUX MUX

MUX

MUXMUX

MM

FPUG

ILB

IM OM

SPU

ENEN

EN EN

EN

MUX
1-To-3

MUX
3-To-1

EN

EN

IM

MM

OM

FPUG

I

II

III

IV V

https://doi.org/10.4236/jdaip.2019.73006

J. Y. Yu et al.

DOI: 10.4236/jdaip.2019.73006 97 Journal of Data Analysis and Information Processing

Figure 6. IPU inner modules data transmission indication.

Figure 7. FPUG inner modules data transmission indication.

3. Analysis of Computational Performance
3.1. The FFT Algorithm

Suppose the point is N, where MN r= , r, M is the positive. Then, the radix-r
FFT can be represented as [1]:

()
()

()

() () ()

() () ()

() () () ()

()
()

()

11 1

11 1

1 1 1

0 10 0 0 1
1

1 11 0 1 1
2

1 0 1 1 1 1

1 1

1 2

1

MM M

MM M

M M M

r rr r
N N Nm

r rr r
m N N N

r r r r r r rm r
N N N

m
p

m N

m r N

W W WX j
X j W W W

X j W W W

X j
X j W

X j W

−− −

−− −

− − −

× × − × × × ×

× × − × × × ×

× − × × − × × − × −

−

−

−

 =

⋅
×

⋅

()1r p−

 (1)

ACCB

a1 a2

PSW Bool
Pro.

ALU

Address

Control

Data

FA/FM/F
D/FS/0

FA/FM/F
D/FS/1

FA/FM/F
D/FS/x

Start0
A0
B0

dv0
C0

dv1
C1

Start1
A1
B1

Cx
dvx

Startx

Ax
Bx

https://doi.org/10.4236/jdaip.2019.73006

J. Y. Yu et al.

DOI: 10.4236/jdaip.2019.73006 98 Journal of Data Analysis and Information Processing

1

1
1 1m

M m M m
k mj l r k r q

−

− + −
+ −= ⋅ + ⋅ + (2)

2
2

0

m
m i

i
i

l k r
−

− −

=

= ⋅∑ (3)

1

0

M m
i

i
i

q n r
− −

=

= ⋅∑ (4)

3.2. The Parallel FFT Algorithm

For the N0-point parallel FFT (0N is positive integer), the pre-work should be
done as:

1) Choose the current optimal radix-r and FFT point N;
2) The parallel computing flow is designed according to the number of current

hardware additive multiplication.

3.2.1. Parameter Calculation
This section describes the parameter calculation method and implementation
process.

1) Number of Zero Complementation Points
For the N0-point FFT, the actual number of points N of FFT is calculated by

radix-r.
0logr NN r = (5)

where, is the ceiling operation.
The number of zeros to be paddling is

() 0log
0

r Nr r N ∆ = − (6)

where, 0log2, r Nr r ∈
.

2) Time Consuming
For the radix-r N-point FFT, time consuming is:

0

0

log 12.5
0

1.5 log
0

log

log

r

r

N
r

N
r

T r r N

r N

β

β

−

+

=

=
 (7)

where, 1β ≥ , represents the time coefficients caused by branch jumps, data
access and computing module delays in current computing systems. When the
hardware structure is fixed, β is fixed. In this paper, 15.7β = .

3) Optimal Parameter Selection Based on Cost Function
In the calculation of FFT, the choice of parameters should take into account

not only the calculation speed, but also the current occupancy of space resources.
Therefore, the calculation time and zero-filling points should be unified plan-
ning.

()0γ γ > is defined as the ratio of computing time to buffer cost. Then the
total cost function is

Tδ γ= ∆ + (8)

The process of determining parameter r is to find the minimum value of ()rδ ,

https://doi.org/10.4236/jdaip.2019.73006

J. Y. Yu et al.

DOI: 10.4236/jdaip.2019.73006 99 Journal of Data Analysis and Information Processing

which is ()()min rr δ .
Examples are as follows:
For the 0 171N = point FFT, the zeros paddling of different radix are as in

Figure 8.
The computing cycles for different radix are as in Figure 9.
Suppose 310γ −= , then the cost function ()rδ is as in Figure 10.
From Table 1, the radix should be 6 according to the least zeros paddling, and

should be 2 according to the minimum computing cycles. The optimal radix is 3
with the minimum cost function by generally analysis.

Figure 8. Zeros paddling comparison for different radix.

Figure 9. Computing cycles for different radix.

https://doi.org/10.4236/jdaip.2019.73006

J. Y. Yu et al.

DOI: 10.4236/jdaip.2019.73006 100 Journal of Data Analysis and Information Processing

Table 1. Comparison of main parameters for different radix.

Radix Zeros Paddling Computing Cycles Cost Function

2 85 0.0909e6 0.1759e3

3 72 0.0991e6 0.1711e3

4 85 0.1286e6 0.2136e3

5 454 0.4388e6 0.8928e3

6 45 0.1495e6 0.1945e3

7 172 0.2992e6 0.4712e3

8 341 0.5457e6 0.8867e3

9 558 0.9271e6 1.4851e3

10 829 1.4894e6 2.3184e3

11 1160 2.2871e6 3.4471e3

12 157 3.3833e6 4.9403e3

13 2026 4.8503e6 6.8763e3

Figure 10. Cost function with different radix.

4) The Implementation of Parameters Computing
Generally, logarithmic calculation is calculated by look-up table method and

CORDIC algorithm. Because parameters can be calculated in the initialization
process, the real-time requirement for parameter calculation is not high. The use
of look-up table method and CORDIC algorithm will occupy a large amount of
memory resources or logical resources. In this design, a simple integer logarith-
mic calculation method is designed by local optimization of Taylor series expan-
sion method and table lookup (256 table lookup data).

The optimal radix could be deduced according to (4)-(8), in which the tran-

https://doi.org/10.4236/jdaip.2019.73006

J. Y. Yu et al.

DOI: 10.4236/jdaip.2019.73006 101 Journal of Data Analysis and Information Processing

scendental functions are used frequently.
The logarithm of traditional Taylor series expansion is as follows

() () 1

1
ln 1 1 i i

i
x x i

∞
−

=

+ = −∑ (9)

In the finite order, the closer x approaches 1, the greater the error. This leads
to a high order of accuracy in order to ensure the whole range.

The derivation is as follows,

() ()() ()()ln 1 ln 2 1 2 ln 2 ln 1 0.5 1x x x+ = + = + + − (10)

The following improvements are made to Taylor series expansion

()
() (]

()() (]
ln 1 , if 0,0.5

ln 1
ln 2 ln 1 0.5 1 , if 0.5,1

x x
x

x x

 + ∈+ =
+ + − ∈

 (11)

The error of formula (11) is less than 10−4, as shown in the following Figure
11.

In the process of parameter calculation, for practical use, the point N0 is less
than 65,536, which can be expressed by 16-bit integer. At this time, the radix r
will not exceed 256, and can be expressed by 8-bit integers.

The calculation of formula (4)-(8) is mainly concentrated on the logarithm of r
obtained from N0, which is deduced as follows.

() () 0
0 0 0 0

0

ln ln 256 ln 256 ln ln 1
256

L
H L H

H

N
N N N N

N

= + = + + +

 (12)

And,

0
0

ln
log

lnr
N

N
r

= (13)

Figure 11. Improved Taylor series expansion error.

https://doi.org/10.4236/jdaip.2019.73006

J. Y. Yu et al.

DOI: 10.4236/jdaip.2019.73006 102 Journal of Data Analysis and Information Processing

where, 0

0

0 1
256

L

H

N
N

< < , 0 256HN < .

For N0, the logarithm of r can be simplified into the following three steps:
1/(lnr) and 0ln HN are calculated by using 8-bit 256 data lookup tables;

()()0 0ln 1 256L HN N+ is calculated according to (11); the results plus a constant
ln256, and then are divided by lnr, which is 0logr N .

3.2.2. Implementation of Parallel Computing
In the process of any radix FFT processing, the butterfly computing matrix W is
first calculated, which is only related to the calculating series M and the base
number r. Therefore, after calculating the parameters, W is calculated once and
stored, and then only data is taken out for calculation in each butterfly calcula-
tion. The r-ary reverse order of input data can ensure the correct order of settle-
ment results when calculating the output. Each iteration needs to calculate N/r
butterfly calculation. Before each butterfly calculation, the twiddle factor needs
to be calculated. In fact, the rotating factor can be selected in the butterfly calcu-
lation matrix W. This ensures that the twiddle factor does not need additional
calculation, calculates the address of the number of operands for butterfly calcu-
lation, takes out r operands, and the rotating factor and the butterfly meter. The
calculation matrix is multiplied separately to complete the butterfly calculation,
and the storage address of the calculated butterfly results is stored.

Because Singleton’s fixed structure is adopted in the design of the algorithm, X
and Y caches are used to store the input and output of each fixed structure. The
pseudo code of the whole algorithm is as follows.

For the case of only one multiplier and one adder, the whole algorithm flow
needs to be serially operated according to the above pseudo-code, and the calcu-
lation time is as described above.

As can be seen from the above algorithm, there are two ways to improve the
algorithm by using parallel computing method:

1) Parallel computation is carried out for the matrix operation in the butterfly
computation of line 15 of the algorithm.

2) Parallel computing is carried out for N/r butterfly computing units.
The Radix used in practical application is generally less than r = 10. Wino-

grad’s second-order matrix multiplication is not suitable for use. Therefore, the
traditional matrix multiplication structure (mid-product algorithm) is used for
calculation.

In butterfly computing process, the r data of A(fetch_idx) are multiplied by r
twiddle factors to form the r multiplication is not suitable for use. Therefore, the
traditional matrix multiplication of r r× matrix and 1r× vector, needs r2 mul-
tiplications and r(r − 1) additions.

The parallel computing architectures are discussed as follow with the different
resources:

1) When the number of multipliers nm is less than r2, and the number of addi-
tions na is less than r(r − 1);

https://doi.org/10.4236/jdaip.2019.73006

J. Y. Yu et al.

DOI: 10.4236/jdaip.2019.73006 103 Journal of Data Analysis and Information Processing

The twiddle factors must be pre-processed, and the time cost is mr n ; the
time cost of matrix multiplication is (){ }2max , 1m ar n r r n − . The parallel
process applies nm threads computing. For convenience, 1a mn n≥ + .

Set r = 5 and nm = 3 as the example, to illustrate the parallel design of butterfly.
Denote the operands as opi, the twiddle factors as tfi, and the product of the two
as iop′ ; the butterfly matrix is denoted as wi,j, and the result is opoi, where

[], 0, 1i j r∈ − . And the parallel proceed is as follow in Figure 12.
2) When the number of multipliers nm is not less than r2, and the number of

additions na is not less than r(r − 1).
The resources of adders and multipliers are greater than a fully parallel re-

quirement, and multi-butterflies could be configured parallel to enhance the
performance. The parallel degree is (){ }2min , 1m aP n r n r r = − . When

1a mn n≥ + , 2
mP n r = . Each group includes Q = N/r/P butterflies.

Improve the alg. 1, then the multi-butterfly parallel FFT alg. 2 is as follow in
Figure 13.

3.3. Analysis of Parallel Algorithm
3.3.1. Time Cost Analysis of Parallel Algorithm
According to the performance of the parallel alg. in Section 3.2.2, the gap pipe-
lines in the single butterfly and the multi-butterfly are adjusted to enhance the
parallelism. In each state the time cost of the butterfly is deduced as:

1) When the number of multipliers nm is less than r2, and the number of addi-
tions na is less than r(r − 1);

2
bf m

NT r n
r

 = (14)

2) When the number of multipliers nm is not less than r2, and the number of
additions na is not less than r(r − 1).

Figure 12. The parallel threads of Mul. and Add.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

Multiplication Addition Idle

Mul. Thread 1

Mul. Thread 2

Mul. Thread 3

Add. Thread 1

Add. Thread 2

Add. Thread 3

Results

https://doi.org/10.4236/jdaip.2019.73006

J. Y. Yu et al.

DOI: 10.4236/jdaip.2019.73006 104 Journal of Data Analysis and Information Processing

Figure 13. The Alg.1 and Alg.2 for FFT.

2bf
m

NT
r n r

=

 (15)

Then, the total time cost is

2 2

2
2

log , if

log , if

r m m

fft

r m
m

NN r n n r
r

T NN n r
r n r

 < =
≥

 (16)

3.3.2. Resources Cost Analysis of Parallel Algorithm
The buffers of 8 modules in FFT processor are composed by block ram, while the
SPU/ILB/IPU/RG/FPUG occupies the slices. The first 4 modules resources con-
suming are the same with different parallel degree, and the resources of FPUG
increases with parallel degree growth.

Take Xilinx Virtex-II 3000 as an example, SPU/ILB/IPU/RG costs 2973 slices;
floating-point adder costs 273 slices; floating-point multiplier costs 75 slices and
4 fix-point multipliers. Then, the total costs are

2973 273 75m aSrCost n n= + + (17)

According to (17), the parameters space is depicted in Figure 14. The plane of
value 14,336 represents the maximum slices in Xilinx Virtex-II 3000, and the
vertical oblique plane represents boundary (1a mn n≥ +). The appropriate para-

Alg. 1 Radix-r FFT

Input: r, N, x;
Output: y;

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Alg. 2 Multi-butterfly Parallel Radix-r FFT

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Threads h （0，1，...，P-1）i（0，1，...，Q-1）

//P threads.

Input: r, N, x;
Output: y;

https://doi.org/10.4236/jdaip.2019.73006

J. Y. Yu et al.

DOI: 10.4236/jdaip.2019.73006 105 Journal of Data Analysis and Information Processing

meters can be selected according to the space.

4. Comparison

The design method in this paper is compared with the previous literature [1] [6]
[8] [9]. According to Table 2, it can be seen that the design method is flexible,
the same computing performance occupies the least resources in the application
process, and the optimal design parameters can be obtained according to the ac-
tual situation of hardware resources.

5. Conclusion

This paper presents a design method of configurable multi-butterfly parallel
computing radix-r FFT processor. In the information processing process, FFT
has a wide range of applications, large demand and high real-time requirements.
The existing design methods are mainly limited to base 2/4 and the correspond-
ing parallel architecture. It is easy to waste storage and multiplier resources with
different number of points and multipliers under large data. In order to solve this
problem, the parallel FFT algorithm is improved by designing a configurable

Table 2. Comparison of different parallel algorithms.

 Radix Flexibility Performance

[6] 4 Constant Arch. Constant

[8] 2n Constant Arch. Constant

[9] 22 Constant Arch. Constant

[1] r Constant Arch. Constant

Proposed r Reconfigurable Adaptive

Figure 14. The parameters space.

https://doi.org/10.4236/jdaip.2019.73006

J. Y. Yu et al.

DOI: 10.4236/jdaip.2019.73006 106 Journal of Data Analysis and Information Processing

controller combined with hardware resources such as buffer and multiplier. The
FFT design cost function with cardinality, number of points, number of zeros
and computing time as input are given. In the actual design process, with the
constraints of buffer and multiplier resources, the optimal FFT design architec-
ture is obtained by calculating the number of points and cardinality under the
optimal cost function and the form of solution space is given for the calculated
performance and resource occupancy. The design method in this paper has good
flexibility, and its parallel computing architecture also guarantees the real-time
performance of the calculation. The comparison with the previous literature
shows that the design method is effective under the same design parameters.

Acknowledgements

This work was carried out by Professor Dan Huang and Professor Zong Qi
(Chongqing University of Technology). We gratefully acknowledge their invalua-
ble cooperation in preparing this application note.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Yu, J.-Y., Huang, D., Li, X., et al. (2016) Conflict-Free Architecture for Mul-

ti-Butterfly Parallel Processing In-Place Radix-r FFT. IEEE 13th International Con-
ference on Signal Processing, Chengdu, 6-10 November 2016, 496-501.

[2] Salehi, S.A., Amirfattahi, R. and Parhi, K.K. (2013) Pipeline Architectures for Real-Valued
FFT and Hermitian-Symmetric IFFT with Real Datapaths. IEEE Transactions on
Circuits and Systems II: Express Briefs, 60, 507-511.
https://doi.org/10.1109/TCSII.2013.2268411

[3] Glittas, A.X., Sellathurai, M. and Lakshminarayanan, G. (2016) A Normal I/O Order
Radix-2 FFT Architecture to Process Twin Data Streams for MIMO. IEEE Transac-
tion on Very Large Scale Integration Systems, 24, 2402-2406.
https://doi.org/10.1109/TVLSI.2015.2504391

[4] Ayhan, T., Dehaene, W. and Verhelst, M. (2014) A 128: 2048/1536 Point FFT
Hardware Implementation with Output Pruning. 22nd European Signal Processing
Conference, Lisbon, 1-5 September 2014, 266-270.

[5] Siu, T., Sham, C. and Lau, F.C.M. (2017) Operating Frequency Improvement on
FPGA Implementation of a Pipeline Large-FFT Processor. 19th International Con-
ference on Advanced Communication Technology, Bongpyeong, 19-22 February
2017, 5-9. https://doi.org/10.23919/ICACT.2017.7890046

[6] Yu, J.-Y., Huang, D., Li, X., et al. (2013) Four Parallel Channels Radix-4 FFT with
Single Floating-Point Butterfly. Applied Mechanics and Materials, 427-429, 708-711.

[7] Ma, C., Qu, X., Chen, H., et al. (2013) A Novel Conflict-Free Parallel Memory
Access Scheme for FFT Constant Geometry Architecture. Science China, Informa-
tion Sciences, 4, 57-63. https://doi.org/10.1007/s11432-013-4826-5

[8] Vinodh Kumar, C. and Sastry, K.R.K. (2017) Design and Implementation of FFT

https://doi.org/10.4236/jdaip.2019.73006
https://doi.org/10.1109/TCSII.2013.2268411
https://doi.org/10.1109/TVLSI.2015.2504391
https://doi.org/10.23919/ICACT.2017.7890046
https://doi.org/10.1007/s11432-013-4826-5

J. Y. Yu et al.

DOI: 10.4236/jdaip.2019.73006 107 Journal of Data Analysis and Information Processing

Pruning Algorithm on FPGA. 7th International Conference on Cloud Computing,
Data Science & Engineering, Noida, 12-13 January 2017, 739-743.
https://doi.org/10.1109/CONFLUENCE.2017.7943248

[9] Santhosh, L. and Thomas, A. (2013) Implementation of Radix 2 and Radix 22 FFT
Algorithms on Spartan6 FPGA. 4th International Conference on Computing,
Communications and Networking Technologies, Tiruchengode, 4-6 July 2013, 1-4.
https://doi.org/10.1109/ICCCNT.2013.6726840

https://doi.org/10.4236/jdaip.2019.73006
https://doi.org/10.1109/CONFLUENCE.2017.7943248
https://doi.org/10.1109/ICCCNT.2013.6726840

	Reconfigurable Multi-Butterfly Parallel Radix-r FFT Processor
	Abstract
	Keywords
	1. Introduction
	2. The Parallel FFT Design
	2.1. The Work Mode of FFT Processor
	2.2. The Internal Architecture of FFT Processor
	2.3. The Design of Sub-Modules
	2.3.1. State Processing Unit (SPU)
	2.3.2. Inline Bus (ILB)
	2.3.3. Integer Processing Unit (IPU)
	2.3.4. Floating-Point Processing Unit (FPUG)
	2.3.5. Memory Group (MG)

	3. Analysis of Computational Performance
	3.1. The FFT Algorithm
	3.2. The Parallel FFT Algorithm
	3.2.1. Parameter Calculation
	3.2.2. Implementation of Parallel Computing

	3.3. Analysis of Parallel Algorithm
	3.3.1. Time Cost Analysis of Parallel Algorithm
	3.3.2. Resources Cost Analysis of Parallel Algorithm

	4. Comparison
	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

