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Abstract 
In this study, we regard written texts as time series data and try to investigate 
dynamic correlations of word occurrences by utilizing an autocorrelation 
function (ACF). After defining appropriate formula for the ACF that is suita-
ble for expressing the dynamic correlations of words, we use the formula to 
calculate ACFs for frequent words in 12 books. The ACFs obtained can be 
classified into two groups: One group of ACFs shows dynamic correlations, 
with these ACFs well described by a modified Kohlrausch-Williams-Watts 
(KWW) function; the other group of ACFs shows no correlations, with these 
ACFs fitted by a simple stepdown function. A word having the former ACF is 
called a Type-I word and a word with the latter ACF is called a Type-II word. 
It is also shown that the ACFs of Type-II words can be derived theoretically 
by assuming that the stochastic process governing word occurrence is a ho-
mogeneous Poisson point process. Based on the fitting of the ACFs by KWW 
and stepdown functions, we propose a measure of word importance which 
expresses the extent to which a word is important in a particular text. The va-
lidity of the measure is confirmed by using the Kleinburg’s burst detection 
algorithm. 
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1. Introduction 

We use language to convey our ideas. Since our physical function is limited to 
speaking or writing only one word at a time, we must transform our complex ideas 
into linear strings of words. In this transformation, it is essential to use memory, 
because our thought processes are far more complex than a linear object, and this 
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one-dimensional is the origin of various types of correlations observed in written 
texts or speeches. In this regard, the questions that arise are how to characterize 
various types of correlations in linguistic data and how to relate them to our 
thought processes. These questions motivated us to initiate the study of dynamic 
correlations in written texts. 

One major way to capture the correlations is to analyze word co-occurrence 
statistics, which is a traditional quantitative method in linguistics. This approach 
has been successfully applied to the extraction of semantic representations [1], 
automatic key word and key phrase extraction [2] [3], local or global context 
analysis [4], measuring similarities at the word or context level [5], and many 
other tasks. Another way to investigate correlations in linguistic data is to use a 
mapping scheme, that is, to translate the given sequence of words or characters 
in a text into a time series and thereby capture the correlations in a dynamical 
framework. The mapping scheme has an obvious advantage for our purpose be-
cause dynamic correlations can be related to the underlying stochastic processes 
that generate the time-series data. This means that if we successfully model the 
translated time-series data by a certain type of stochastic process, then we can 
obtain insights from that model to understand relations between the text and the 
complex idea represented. Up to now, time-series analyses of written texts have 
been made at three different linguistic levels: Mappings performed at the letter 
level [6] [7] [8], at the word level [9] [10] [11], and at the context or topic level 
[12] [13]. Among these, word-level mapping is attractive because the funda-
mental minimum unit of thought is considered to exist at the word level [10]. 
Furthermore, word-level mapping offers a simple procedure by which a given 
sequence of words is converted into a time series without any additional mani-
pulations. In the mapping, all the words are enumerated in order of appearance, 
as 1,2, ,i N=  , where i plays the role of time in a text having a total of N words. 
This means that the time unit of the word-level mapping is selected as one word, 
and therefore the conversion is simply equivalent to assigning a unique index i to 
each word according to the order of its appearance in a text. Hereafter, we call this 
index the “word-numbering time”. Studies using word-level mapping share, 
however, the common disadvantage that the dynamic correlations cannot be ex-
pressed in an appropriate way, and so such mapping is not suitable for discuss-
ing the stochastic properties of each word. The major reason for this is that we 
cannot define an autocorrelation function (ACF) appropriately when we use the 
word-numbering time, as will be described in Section 3. This situation necessi-
tates the use of gap-distribution functions [9] [11] or more sophisticated ap-
proaches [10] to characterize stochastic properties of words when we apply the 
word-numbering time. The utilization of ACFs is, however, essential in this 
study because it is the most direct quantity for expressing dynamic correlations 
of words, and thus it will be of great help in relating dynamic correlations with 
underlying stochastic processes. 

The goal of this study is to find a modification of the word-level mapping that 
is suitable for defining and calculating appropriate ACFs in the mapping scheme. 

https://doi.org/10.4236/jdaip.2019.72004


H. Ogura et al. 
 

 

DOI: 10.4236/jdaip.2019.72004 48 Journal of Data Analysis and Information Processing 
 

With that modification, we then calculate ACFs for words in written texts and 
investigate word-level dynamic correlations in terms of the functional forms of 
the ACFs. In particular, we focus on dynamic correlations ranging from a few 
sentences to several tens of sentences because complex ideas require such a 
length to be conveyed. Through the analysis of ACFs, we will find that the func-
tional form of ACFs for words with dynamic correlations are completely different 
from those without dynamic correlations. Using this result as a base, a measure 
that quantifies the strength of dynamic correlations will be presented, and the 
validity of the measure will be discussed. The measure expresses, in a sense, how 
important the corresponding word is in a text and thus has a wide range of real 
applications in which the importance of each word is required. 

The rest of the paper is organized as follows. In the next section, we outline 
related studies with special emphasis on how the models used in the related stu-
dies can be interpreted in terms of stochastic processes. Then, we devote a sec-
tion to explaining the modification of the word-level mapping, the definition of 
an appropriate ACF for word occurrences, and how to calculate the ACF from 
real written texts. Section 4 describes 12 texts, frequent words from which are in-
vestigated using ACFs. These 12 texts represent a wide variety of written linguistic 
data. Section 5 shows our systematic analysis of ACFs calculated for words in the 
12 texts. A measure representing word importance in terms of dynamic correla-
tions is also presented. In the final section, we give our conclusions and suggest 
directions for future research. 

2. Related Work 
2.1. Models of Word Occurrences 

A homogeneous Poisson point process [14] with word-numbering time can be 
considered as the simplest model of word occurrences in texts, because it has the 
key property of “complete independence” in which the number of word occur-
rences of a considered word in each bounded sub-region in “time” along text 
will be completely independent to all the others. The homogeneous Poisson 
point process is suitable if a word occurs with a very low constant probability for 
each unit time. This means that the probability of word occurrence per unit time 
(per each word) must be stationary and fixed at a certain low value throughout a 
text in order to apply the homogeneous Poisson point process appropriately. 
This stationary condition is too strong and limits the applicability of the model 
to word occurrences in real texts. Therefore, extensions of the homogeneous 
Poisson point process have been tried to remove the limitation. We briefly de-
scribe here how word occurrences have been modeled in two related studies in 
which the extensions of the homogeneous Poisson process can be achieved. 

Sarkar et al. [11] has used word-numbering time and modeled the word oc-
currences in texts by use of a mixture of two homogeneous Poisson processes, in 
which one process describes the ordinary state of word occurrences with a low 
occurrence rate and the other process expresses the excited state with a high oc-
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currence rate. The model does not explicitly capture the dynamic correlations of 
a considered word, but, instead, simply indicates the time interval where the dy-
namic correlations persist as the duration of the excited state. 

A further extension has been achieved by use of an inhomogeneous Poisson 
process which is defined as a Poisson point process having a time-varying oc-
currence rate [15] [16]. Adilson et al. [9] have adopted the formulation of one of 
the inhomogeneous Poisson processes, i.e., the Weibull process [14] [16] [17], 
for modeling word occurrences in texts. 

Obviously, the two models mentioned above have more expressive power than 
that of a homogeneous Poisson process. However, these models do not serve to 
clarify dynamic correlations of word occurrences because the key property of 
“complete independence” is also common to these two models. In other words, 
since the “complete independence” property is inherited to these two models, an 
occurrence of a considered word in a text does not affect the probability of occur-
rences of the word at different times. This memoryless property makes the appli-
cations of these models hard to clarify dynamic correlations of word occurrences. 

Another unsatisfactory point which is common to the two related studies is 
that the gap distribution function has been used to characterize stochastic prop-
erties of a considered word. Note that when the word-numbering time is em-
ployed, the “gap” is merely the number of other words encountered between oc-
currences of a considered word in the text. Therefore, that distribution function 
does not express the dynamical correlation explicitly, although it is suitable to 
present characteristics of stochastic processes such as homogeneous Poisson, 
mixture of two homogeneous Poisson and inhomogeneous Poisson processes in 
which the complete independence property is held. 

To avoid the inappropriate use of the gap distribution function for representing 
dynamic correlations, we will discard the gap distribution function and in the 
next section, we will introduce an ACF that is more suitable for analyzing dy-
namic correlations of words. 

2.2. Models of Linguistic Data with ACFs 

There are other works in which linguistic data are treated as time series, as they 
are in this work and in which some methods of time series analysis are used to 
achieve the researchers’ purposes. Examples of classical works that use ACFs can 
be seen in [18] and [19], where time series of sentence length were analyzed with 
ACFs. A more generalized method for applying time-series analysis to linguistic 
data has been established by Pawlowski [20]. He used ACFs for analyzing se-
quential structures in text at phonetic and phonological levels [20] [21] [22] [23]. 
That is, the direction of Pawlowski’s study is similar to ours, although he did not 
investigate dynamic correlations of word occurrences. 

3. Calculation of ACF for Written Texts 

We propose to use ACFs instead of the gap distribution functions to describe 
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and analyze dynamic correlations in written texts. In standard signal processing 
theory, the definition of an ACF for a stationary system, ( )C t  [24], and its 
normalized expression, ( )tΦ , are given by 

( ) ( ) ( )
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1lim d
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T
C t A A t

T
τ τ τ
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where ( )A τ  is a time-varying signal of interest. As seen in the equations, the 
ACF measures the correlation of a signal ( )A τ  with a copy of itself shifted by 
some time delay t. A slightly different definition of an ACF for a random process 
is used in the area of time-series analysis [24] [25]. That definition is 

( )
( )( ) ( )( )

2 ,
E A A t

R t
τ µ τ µ

σ

 − + − =
               

(3) 

where ( )E A tµ =     and ( )( )22 E A tσ µ = −    are the mean (the expectation  

value) and variance, respectively, of the stochastic signal ( )A t . Assuming an 
ergodic system, in which the expectation can be replaced by the limit of a time 
average [24], Equations (2) and (3) are basically equivalent except that Equation 
(3) handles the deviation from the mean value and measures the correlation of 
the deviation but Equation (2) measures the dynamic correlation of ( )A τ  itself. 
This slight difference between Equations (2) and (3), however, affects the limit 
values of the ACFs as the lag t approaches infinity in a different manner: 
( ) 0R t →  as t →∞  always holds, from its definition, but ( )limt t→∞ Φ  is not 

always zero. We adopt Equation (2) as the definition of ACF in this study, be-
cause the limit value of ACF given by ( )limt t→∞ Φ  carries important informa-
tion about a considered word, as will be described in Subsection 5.5. 

In order to calculate an ACF for a word based on Equation (2), we must de-
fine both the meaning of ( )A t  for a word and the meaning of time t for a 
written text. Since we intend to clarify the dynamic properties of words through 
ACFs, it is natural to have ( )A t  indicating whether or not the considered word 
occurs at time t. Therefore, we define ( )A t  as a stochastic binary variable that 
takes value one if the word occurs at time t and otherwise takes value zero. Next, 
we consider an appropriate definition of the time unit such that the ACF calcu-
lated by Equation (2) will have properties that are preferable for the analysis of the 
dynamic characteristics of word occurrences. As mentioned before, if we use the 
word-numbering time, then the ACF shows a curious behavior that greatly im-
pairs the use of ACFs. The problem with using word-numbering time is that 
( )tΦ  with word-numbering time invariably takes the value zero at 1t =  be-

cause the probability of contiguous occurrences of the same word in a written 
text is extremely low. Figure 1(a) schematically illustrates such a situation; this 
is completely different from the typical ACF of a normal linear system, which is 
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shown in Figure 1(b). Acceptance of the curious behavior shown in Figure 1(a) 
means that we discard almost all of the standard methods that have been devel-
oped in various fields for analyzing ACFs. For example, analysis through curve 
fitting with model equations is widely used to characterize observed ACFs. Since 
the functional form of ACFs with the curious behavior seen in Figure 1(a) has not 
been identified, we must forgo this analysis when we use the word-numbering 
time. However, if an ACF behaves as it does in a usual linear system and shows 
gradual decrease of correlation, as seen in Figure 1(b), then a suitable model 
function can be used, as will be seen in Subsection 5.2. 

Since the curious behavior seen in Figure 1(a) is unacceptable, we must in-
troduce another definition of time unit, different from the word-numbering 
time. In this study, we use ordinal sentence number along a text as a time. Spe-
cifically, if a considered word occurs in the t-th sentence (counting from the be-
ginning of the text), then we say that the word occurs at time t. Hereafter, this 
definition of time will be called “sentence-numbering time”. We can verify that 
the sentence-numbering time is suitable for our purpose by the following reason-
ing. Consider a word that plays a central role in the explanation of a certain idea. 
Then, in the context of describing the idea, the word is sequentially used over mul-
tiple sentences after the first occurrence. This means that we can expect a higher 
probability of the word’s occurrence in a subsequent sentence given that the word 
occurred in the previous sentence; this makes the ACF take rather high values at 

1t =  and gradually decrease as t increases, which is the natural behavior of ACFs 
seen in Figure 1(b). Therefore, the sentence-numbering time enables the ACF to 
behave as a normal monotonically decreasing function of time. 

With the sentence-numbering time, we can define the signal of word occur-
rence, ( )A t , as a stochastic binary variable: 

( )
( )
( )

1 the word occurs in the -th sentence

0 the word does not occur in the -th sentence

t
A t

t

= 
        

(4) 

where t is a non-negative integer. From Equation (1), we can define the discrete 
time analog of the continuous time ACF as 
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Figure 1. (a) Schematic behavior of ACF with the word-numbering time; (b) Typical ACF of 
usual linear systems. 
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where N is the number of sentences in a considered text. A further simplification 
can be achieved by noting that ( )A i  is a binary variable. Let jp  be the ordinal 
sentence number at which the considered word occurs: that is, 1p  is the sen-
tence number of the first occurrence of a considered word, 2p  is that of the 
second occurrence, and so on. If ( )A i  is zero in Equation (5), then the contri-
bution of ( ) ( )A i A i t+  in the equation is vanished. Thus, it is sufficient to think 
only about ( )jA p , which is assumed to be 1, in Equation (5). Equation (5) then 
simplifies to 

( )
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where we have assumed that the total number of occurrences of the word in a 
text is m. The third equality holds because ( ) 1jA p =  by the definition of jp . 
Substituting 0t =  into the above equation yields ( )0C m N= , and this leads 
us to the normalized expression of the ACF: 

( ) ( )
( ) ( ) ( )

1
.

0

m

j
j

C t Nt A p t
C m N t =

Φ = = +
− ∑

               
(7) 

Throughout this work, we use Equation (7) to calculate the normalized ACF 
of a word. 

4. Texts 

We used the English version of 12 books as written texts for this work. They are 
listed in Table 1 with their short names and some information. The books were  

 
Table 1. Summary of English texts employed. 

Short name Title Author Download URL 

Carroll Alice’s Adventures in Wonderland Lewis Carroll https://www.gutenberg.org/ebooks/11  

Twain The Adventures of Tom Sawyer Mark Twain https://www.gutenberg.org/ebooks/74  

Austen Pride and Prejudice Jane Austen https://www.gutenberg.org/ebooks/1342  

Tolstoy War and Peace Leo Tolstoy https://www.gutenberg.org/ebooks/2600  

Melville Moby Dick; or, The Whale Herman Melville https://www.gutenberg.org/ebooks/2701  

Darwin On the Origin of Species Charles Darwin https://www.gutenberg.org/ebooks/1228  

Einstein Relativity: The Special and General Theory Albert Einstein https://www.gutenberg.org/ebooks/5001  

Lavoisier Elements of Chemistry Antoine Lavoisier https://www.gutenberg.org/ebooks/30775  

Freud Dream Psychology Sigmund Freud https://www.gutenberg.org/ebooks/15489  

Smith An Inquiry into the Nature and Causes of the Wealth of Nations Adam Smith https://www.gutenberg.org/ebooks/3300  

Kant The Critique of Pure Reason Immanuel Kant https://www.gutenberg.org/ebooks/4280  

Plato The Republic Plato https://www.gutenberg.org/ebooks/1497  
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obtained through Project Gutenberg (http://www.gutenberg.org). Five of them 
are popular novels (Carroll, Twain, Austen, Tolstoy, and Melville) and the rest 
are chosen from the categories of natural science (Darwin, Einstein, and La-
voisier), psychology (Freud), political economy (Smith), and philosophy (Kant 
and Plato), so as to represent a wide range of written texts. The preface, contents 
and index pages were deleted before starting text pre-processing because they 
may act as noise and may affect the final results. 

Before calculating the normalized ACF with Equation (7), we applied the fol-
lowing pre-processing procedures to each of the texts. 

1) Blank lines were removed and multiple adjacent blank characters were replaced 
with a single blank character. 

2) Each of the texts was split into sentences using a sentence segmentation 
tool. The software is available from https://cogcomp.org/page/tools/. 

3) Each uppercase letter was converted to lowercase. 
4) Comparative and superlative forms of adjectives and adverbs were converted 

into positive forms. Plural forms of nouns were converted into singular ones and 
also all the verb forms except the base form were converted into their base form. 
For these conversions, we used Tree Tagger which is a language independent 
part-of-speech tagger available from  
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/.  

5) Strings containing numbers were deleted. All punctuation characters were 
replaced with a single blank character. 

6) Stop-word removal was performed by use of the stop-word list built for the 
experimental SMART [26] information retrieval system. 

Some basic statistics of the used texts, evaluated after the pre-processing proce-
dures, are listed in Table 2. The heading “frequent word” at the last column of the 
table indicates that words listed in the column appeared in at least 50 sentences  

 
Table 2. Basic statistics of the 12 texts, evaluated after pre-processing procedures. 

Text Vocabulary size Length in words Length in sentences Number of frequent words 

Carroll 1848 8191 1098 10 

Twain 5981 25,682 4288 46 

Austen 4643 39,590 5523 136 

Tolstoy 14,555 212,483 28,432 797 

Melville 14,413 85,557 8556 237 

Darwin 5316 58,611 3991 212 

Einstein 1893 11,642 963 24 

Lavoisier 3841 42,417 3029 155 

Freud 4006 19,533 1828 30 

Smith 6817 140,905 11,318 537 

Kant 5792 75,285 5715 289 

Plato 5400 35,491 4468 103 
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in the relevant text. Note that the set of these frequent words for each text con-
tains not only content words, some of which play central roles in the explanation 
of important and specific ideas in the text, but also words that occur frequently 
merely due to their functionality. The former are context-specific but the latter 
are not. In other words, the former are important to describe an idea and thus 
they are expected to be highly correlated with duration of, typically, several tens 
of sentences where the idea is described. On the other hand, the latter are not 
expected to show any correlations because their occurrences are not con-
text-specific but are governed by chance. As will be described in the next section, 
we will calculate the normalized ACF with Equation (7) for the frequent words 
and will find how these two kinds of frequent words behave differently in terms 
of ACF. For the calculation, we mainly employed the R software environment 
for statistical computing (version 3.1.2) [27] to implement our algorithm, but 
supplementary coding in the Java programming language (JDK 1.6.0) was used 
to speed up the calculation. 

5. Characteristics of Correlated and Non-Correlated ACFs 
5.1. Typical Examples of Correlated and Non-Correlated ACFs 

Figure 2 and Figure 3 show typical ACFs for words exhibiting strong dynamic 
correlations (Figure 2) and for those exhibiting no correlation (Figure 3). In 
these figures, words were picked from the frequent words of the Darwin text. As 
depicted in Figure 2, the ACF for a word having strong correlation takes the ini-
tial value of ( )0 1Φ = , then gradually decreases as the lag increases. Here the 
“lag” simply means the parameter t of ( )tΦ  and is the distance between two 
different time points at which two values of ( )A i  are considered to calculate 
their correlation. The behaviors of ACFs in Figure 2 indicate that once a word 
emerges in a text, then it frequently appears in the following several tens of sen-
tences but the probability of appearance gradually decreases. This situation can 
be thought as relaxations of the occurrence probability in a considered text and 
is very similar to various relaxation processes observed in real linear systems. 
The monotonically decreasing property, which is common to ACFs for linear 
systems, thus validates our definition of the time unit. 

In contrast with these, each of the ACFs in Figure 3 takes the initial value of 
( )0 1Φ = , then abruptly decreases at 1t =  to some constant value γ  unique 

to each ACF at 1t ≥ . The stepdown behavior observed in Figure 3 indicates 
that the duration of dynamic correlation is essentially zero for each of the words 
picked in Figure 3 and so these words do not have any dynamic correlations. 

5.2. Curve Fitting Using Model Functions 

To analyze the characteristic behaviors of ACFs described in the previous sub-
section, we introduced two model functions to express ACFs and attempted to 
fit these two parametrized functions to the calculated ACFs. One of the model 
functions is ( )KWW tΦ , which is used for ACFs showing dynamic correlations,  
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Figure 2. Examples of the normalized ACFs, ( )tΦ , of words exhibiting strong dynamic correlations. Shown 

are ACFs for the words: (a) intermediate; (b) seed; (c) organ; (d) instinct. Which were picked from the set of 
frequent words in the Darwin text. In each plot, the circles represent the values of the ACF obtained using Equ-
ation (7) and the line expresses the best fit function ( )KWW tΦ  (see Subsection 5.2) with the parameters dis-

played in the plot area. 
 

 
Figure 3. Examples of the normalized ACFs, ( )tΦ , of words exhibiting no dynamic correlations. The ACFs 

are for the words: (a) remark; (b) subject; (c) explain; (d) reason. Which were picked from the set of frequent 
words in the Darwin text. In each plot, the circles represent the values of the ACF obtained using Equation (7) 
and the line expresses the best fit function ( )Poisson tΦ  (see Subsection 5.2) with the parameter displayed in the 

plot area. 
 

as in Figure 2, and is defined by 

( ) ( )KWW exp 1 ,tt
β

α α
τ

   Φ = − + −  
                    

(8) 

where ,α β  and τ  are fitting parameters satisfying the inequality conditions 
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0 1,α< ≤                            (9) 

0 1,β< ≤                           (10) 

0 .τ<                            (11) 

Setting 1α =  in the above equation yields 

( )KWW ; 1 exp ,tt
β

α
τ

   Φ = = −  
                    

(12) 

which is well known as the “Kohlrausch-Williams-Watts (KWW) function” or 
“stretched exponential function” and is widely used in material, social and eco-
nomic sciences as a phenomenological description of relaxation for complex 
systems [28]. Since the optimized value of the parameter α is one for each plot in 
Figure 2, the ACFs in Figure 2 are well described by Equation (12), as indicated 
by all the curves in the figure. However, we found that there are many words 
showing dynamic correlations and having ACFs that are gradually decreasing 
but take positive finite values in the limit t →∞ . Typical examples of such 
ACFs taken from the Darwin text are displayed in Figure 4. The positive finite 
values of ACFs as t →∞  cannot be represented by the original KWW function, 
Equation (12), because its limit value is zero. In order to extend the descriptive 
ability of the model function to ACFs with non-zero limit values, we introduced 
one additional parameter, α, to the original KWW function and defined the 
slightly modified ( )KWW tΦ  shown in Equation (8), which allows a limit value 
of 1 0α− >  when t →∞ . This modification ensures good fitting results for 
ACFs showing dynamic correlations and having positive limit values, as seen in 
Figure 4. 

Another model function is ( )Poisson tΦ , which is suitable for ACFs exhibiting  
 

 
Figure 4. Examples of the normalized ACFs of words exhibiting dynamic correlations and having positive finite 
limit value as t →∞ . The ACFs are for: (a) difference; (b) genus; (c) hybrid; (d) formation, which were picked 
from the set of frequent words of Darwin text. Circles and lines have the same meaning as in Figure 2. 
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no dynamic correlations, as in Figure 3. ( )Poisson tΦ  is defined as a stepdown 
function:

 
( )

( )
( )Poisson

1 0

0

t
t

tγ

=Φ = 
>                     

(13) 

where γ is a fitting parameter satisfying 

0 1.γ< <                           (14) 

For ACFs exhibiting no correlations, as in Figure 3, it is obvious that ( )Poisson tΦ  
is the one and the only expression needed. 

In the fitting procedures using the two model functions, we found that the set 
of ( )KWW tΦ  and ( )Poisson tΦ , Equations (8) and (13), offers full descriptive 
ability for all the calculated ACFs: for example, when fitting using ( )Poisson tΦ  
gives a poor result, ( )KWW tΦ  provides a satisfactory fitting. We used the pack-
age “minpack.lm” in this study that provides an R interface to the non-linear 
least-squares fitting. 

5.3. Classification of Frequent Words 

Another important point to note is that these two expressions for ACFs, ( )KWW tΦ  
and ( )Poisson tΦ , are not mutually exclusive. Rather, they are seamlessly con-
nected in the following sense. Substituting a very small value of τ  such that 

1τ   into Equation (8) yields ( )KWW 1 constantt αΦ ≅ − =  for 1t ≥ . Com-
bining this fact with ( )KWW 0 1Φ =  leads us to an understanding of the nested 
relationship between ( )KWW tΦ  and ( )Poisson tΦ : ( )Poisson tΦ  is formally in-
cluded in the expression of ( )KWW tΦ  as the special case 0τ → . This means 
that if ( )Poisson tΦ  gives a satisfactory fitting, then ( )KWW tΦ  with a small value 
of τ  is also suitable to describe the ACF. An example of such a situation is 
shown in Figure 5, indicating that both ( )KWW tΦ  and ( )Poisson tΦ  give good 
fitting results for the ACF of the word “subject” in the Darwin text. Based on the 
results shown in Figure 5, it might be thought that the model function ( )Poisson tΦ  
is not necessary because ( )KWW tΦ  gives satisfactory fittings not only for dy-
namically correlated ACFs, as in Figure 2, but also for non-correlated ones, as in 
Figure 5(a). However, this is not true because of the following two principles of 
model selection. First, the theory of statistical model selection tells us that, given  

 

 
Figure 5. Fitting results for the ACF of “subject” in the Darwin text. (a) The result using ( )KWW tΦ  (b) that using 

( )Poisson tΦ  are shown. Optimized values of the fitting parameters are shown in each plot. 
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candidate models of similar explanatory power, the simplest model is most likely 
to be the best choice [29]. In the case of Figure 5, we should thus choose 

( )Poisson tΦ , which has one fitting parameter, as the better model rather than 
( )KWW tΦ , which has three parameters. Second, we should reject any model if 

the values of the best fit parameters make no sense [29]. With regard to this 
point, the fitting in Figure 5(a) is obviously inappropriate because the value of 
the fitting parameter 71.72 10τ −≅ × , which is formally interpreted as a “relaxa-
tion time” of occurrence probability, is too small to represent real relaxation phe-
nomena of word occurrences in the text. Consequently, the second principle also 
tells us that we should choose ( )Poisson tΦ  for describing the ACF of Figure 5. 

Based on the two principles of model selection described above, we set three 
criteria for model selection through which the best model is determined from 
the two candidates, ( )KWW tΦ  and ( )Poisson tΦ . If the ACF of a considered word 
is best described by ( )KWW tΦ  in terms of the criteria, then the word is called a 
“Type-I” word. If the best description is given by ( )Poisson tΦ , then the word is 
called a “Type-II” word. Type-I words are those words that have dynamic corre-
lations, as in Figure 2 and Figure 4, while Type-II words have no dynamic cor-
relations, as in Figure 3 and Figure 5. 

The following criteria classify a word as Type-I or Type-II without any ambi-
guity and are applied throughout the rest of this work. 

(C1) After fitting procedures using both functions, ( )KWW tΦ  and ( )Poisson tΦ , 
we evaluate the Bayesian information criterion (BIC) [30] [31] [32] for both cas-
es. The BIC calculation formula used for our fitting results will be described in 
the next subsection. If the BIC of the fitting using ( )Poisson tΦ , BIC(Poisson), is 
smaller than the BIC of the fitting using ( )KWW tΦ , BIC(KWW), then we judge 
that ( )Poisson tΦ  is better for describing the ACF of a considered word and we 
categorize the word as a Type-II word. This judgment using BIC is a more strict 
realization of the first principle described above. 

(C2) If BIC(KWW) is smaller than BIC(Poisson) and the best fitted value of 𝜏𝜏 
in ( )KWW tΦ  is smaller than 0.01, then we judge that ( )Poisson tΦ  is better and 
we classify the considered word as a Type-II word. This judgment is a realization 
of the second principle, that is, we treat values of τ smaller than 0.01 as making 
no sense. 

(C3) If BIC(KWW) is smaller than BIC(Poisson) and τ is greater than or 
equal to 0.01, then we judge that ( )KWW tΦ  is better and we classify the word as 
a Type-I word. 

The reason for selecting the threshold value of τ as 0.01 in criteria (C2) and (C3) is 
as follows. It is natural to consider the minimum unit of the sentence-numbering 
time to be one sentence because the time is restricted to positive integers. Thus the 
“effective relaxation time” or the “effective duration” of dynamic correlations 
should also take values greater than or equal to one. The “effective relaxation time” 
of the ACFs described by ( )KWW tΦ  is approximately given by [33] [34] 
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( )1 ,e
ττ β
β

= Γ
                       

(15) 

where β and τ are the parameters in ( )KWW tΦ  and Γ denotes the gamma func-
tion. Substituting 0.2β =  into the above equation, where 0.2 is a typical value 
of β for Type-I words as can be seen in Figure 2 and Figure 4, and solving the in-
equality 1.0eτ >  with Equation (15) for τ gives the condition 0.008333333τ > . 
From this result, we tentatively set the threshold value of τ as 0.01, and this value 
is used throughout this work. 

We classified all frequent words into one of the two types according to the cri-
teria (C1)-(C3). Table 3 summarizes the numbers of words belonging to each of 
the two types in our text set. The ratio of Type-I to Type-II words varied from text 
to text, but typically Type-I and Type-II words appeared in about the same pro-
portion. 

5.4. Model Selection Using the Bayesian Information Criterion 

As stated above, we used both of the two model functions, ( )KWW tΦ  and 
( )Poisson tΦ , to describe each of the calculated ACFs and then determined which 

model function to use by checking the criteria (C1)-(C3) for a considered ACF. In 
the determination, we used the Bayesian information criterion (BIC), which has 
been widely used as a criterion for model selection from among a finite set of 
models [30] [31] [32]. The BIC is formally defined for model M as 

( ) ( ) ( )ˆBIC ln ln .M n L M k n= +                  (16) 

where L̂  is the maximized value of the likelihood function of the model M, k is 
the number of fitting parameters to be estimated, and n is the number of data 
points. In a comparison of models, the model with the lowest BIC is chosen as  

 
Table 3. Numbers of frequent words belonging to each of the two types. 

Text Type-I (%) Type-II (%) Total 

Carroll 5 (50.0) 5 (50.0) 10 

Twain 11 (23.9) 35 (76.1) 46 

Austen 13 (9.6) 123 (90.4) 136 

Tolstoy 273 (34.3) 524 (65.7) 797 

Melville 56 (23.6) 181 (76.4) 237 

Darwin 109 (51.4) 103 (48.6) 212 

Einstein 17 (70.8) 7 (29.2) 24 

Lavoisier 99 (63.9) 56 (36.1) 155 

Freud 14 (46.7) 16 (53.3) 30 

Smith 384 (71.5) 153 (28.5) 537 

Kant 143 (49.5) 146 (50.5) 289 

Plato 40 (38.8) 63 (61.2) 103 
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the best one. Under the assumption that model errors are independent and iden-
tically distributed according to a normal distribution, the BIC can be rewritten 
as 

( ) ( )( ) ( )
2

1

1 ˆˆBIC ln ln .
n

i i
i

M n x x M k n
n

θ
=

 
= − + 

 
∑

          
(17) 

where ix  is the i-th data point, ˆix  the predicted value of ix  by model M, and 
( )ˆ Mθ  is the vector of parameter values of model M optimized by the 

curve-fitting procedures. In the above equation, we have omitted an additive 
constant that depends on only n and not on the model M. 

For our application, M is KWW or Poisson, ix  the ACF of a considered 
word calculated with Equation (7) at the i-th lag step, ˆix  is the predicted value 
of the ACF given by ( )KWW tΦ  or ( )Poisson tΦ  at t i= , the parameter vector is 
( ) ( )ˆ KWW , ,θ α β τ=  or ( )ˆ Poissonθ γ= , the numbers of parameters are 
( )KWW 3k =  or ( )Poisson 1k = , and n = 100, which represents the maximum 

lag step used in the ACF calculation. We evaluated BIC(KWW) and BIC(Poisson) 
by use of Equation (17) and classified a considered word as Type-I or Type-II ac-
cording to the criteria (C1)-(C3) described above. That is, if BIC(KWW) < 
BIC(Poisson) and 0.01τ ≥ , then we judge that ( )KWW tΦ  is the better model 
and we classify the word as a Type-I word, otherwise ( )Poisson tΦ  is the better 
model and we classify the word as Type-II. 

5.5. Stochastic Model for Type-II Words 

We consider here a stochastic model for Type-II words and attempt to derive 
( )Poisson tΦ , which is the model equation used for ACFs of Type-II words. We 

first assume that the observation count tX  of a considered Type-II word in the 
first t sentences of a text obeys a homogeneous Poisson point process. This is 
because the process is the simplest one having the property that disjoint time in-
tervals are completely independent of each other, and this property makes the 
process suitable for the Type-II case which does not show any dynamical corre-
lations. Then, the probability of k observations of the word in t sentences is giv-
en by 

( ) ( ) ( )exp .
!

k

t

t
P X k t

k
λ

λ= = −
                  

(18) 

where λ is the rate of word occurrences (occurrence probability per sentence) 
and the mean of tX  is given by [ ]tE X tλ=  [14]. Since the binary variable of 
word occurrence, ( )A t  defined by Equation (4), can be expressed in terms of 

tX  as 

( ) 1,t tA t X X −= −                        (19) 

the mean of ( )A t  turns out to be 

( ) [ ] [ ] ( )1 1 .t tE A t E X E X t tλ λ λ−= − = − − =             
(20) 

We then consider the ACF of ( )A t  which is defined by 

https://doi.org/10.4236/jdaip.2019.72004


H. Ogura et al. 
 

 

DOI: 10.4236/jdaip.2019.72004 61 Journal of Data Analysis and Information Processing 
 

( )
( ) ( )

( )( )2
.

E A t A t s
s

E A t

+  Φ =
 
                      

(21) 

The above definition is essentially the same as Equation (2) for ergodic sys-
tems in which expectation values can be replaced by time averages [24]. We will 
derive the ACF for the homogeneous Poisson point process from Equation (21). 
Noting that the numbers of occurrences in disjoint intervals are independent 
random variables for the homogeneous Poisson point process, the numerator of 
Equation (21) becomes 

( ) ( ) ( ) ( ) 2 .E A t A t s E A t E A t s λ+ = + =                      
(22) 

where we have used Equation (20) and the stationary property,  
( ) ( )E A t E A t s= +       . For the denominator of Equation (21), we obtain 

( )( ) ( )( ) ( )( ) ( )( )2 2 21 1 0 0 1 .E A t P A t P A t P A t λ  = = × + = × = = =     
(23) 

The first equality holds because ( )A t  is either 0 or 1, and the last equality 
holds because we assume that the occurrence rate (occurrence probability per 
unit time) is λ. Substituting Equations (22) and (23) into Equation (21) yields an 
expression for ( )sΦ , 

( )
( )
( )

1 0

0

s
s

sλ

=Φ = 
>                       

(24) 

which is equivalent to ( )Poisson tΦ  given by Equation (13). Since λ is the rate 
constant of the homogeneous Poisson point process, it can be simply evaluated 
from real written text by 

number of sentences containing a considered wordˆ ,
number of all sentendes in text

λ =
       

(25) 

and the evaluated λ̂  can be directly compared with the fitting parameter γ in 
Equation (13) to confirm the validity of the discussion above. 

Figure 6 shows a scatter plot of λ̂  evaluated by Equation (25) versus the 
best-fit parameter γ of ( )Poisson tΦ  for all Type-II words in the considered texts. 
Although we have picked Type-II words from the Twain, Austen, Darwin, La-
voisier, and Freud texts, and omitted other texts from Figure 6 for clarity, the 
overall tendency of the relation between λ̂  and γ for Type-II words of the 
omitted texts is the same as that shown in Figure 6. We can see in the figure that 
the best-fit values of the parameter γ show reasonable agreement with λ̂  but 
are somewhat too large on average. This is probably due to the window size used 
in the calculation of the ACF. Specifically, we used a maximum lag step of 100 to 
calculate the ACFs as shown in Figures 2-5 since we focused on dynamic corre-
lations up to several tens of sentences. However, if the relation γ λ=  holds, 
then a maximum lag step of 100 is too short to correctly evaluate γ because ap-
propriate γ should reflect all occurrences of considered word over the entire text 
length, as indicated in Equation (25). 
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The influence of the short window size of lag steps mentioned above is evident 
in Figure 7, which displays the relationship between the average value of ˆγ λ  
for Type-II words in each text and the inverse of the text length. The values used 
in Figure 7 are tabulated in Table 4. It follows from Figure 7 that the average 
value of ˆγ λ  gradually approaches the limit value of 1 as the text length be-
comes shorter. This indicates that the influence of the short window size in eva-
luating γ reasonably becomes smaller as the ratio of the window size to the text 
length becomes larger. The overall behavior of γ vs. λ̂ , plotted in Figure 6, and 
the additional information supplied by Figure 7 convince us that the derivation 
of ( )Poisson tΦ  based on the properties of the homogeneous Poisson point 
process described above is fundamentally correct. 

Through the discussion on Type-II words described above, we can recognize 
that the value of the fitting parameter γ in Equation (13) carries important in-
formation: γ is the estimator for the rate constant of the homogeneous Poisson 
point process. This is the reason for employing Equation (2) as the starting point 
of the normalized ACF. If we employ Equation (3) instead of Equation (2), then 
all the ACFs of Type-II words become ( )0 1Φ =  and ( )0 0tΦ > = , without  

 

 

Figure 6. Comparison of λ̂  evaluated by Equation (25) and the best-fit parameter γ in 
Equation (13) for Type-II words in the Darwin, Twain, Freud, Lavoisier and Austen texts. 
The dashed line represents the relation ˆγ λ= . 

 

 

Figure 7. Plot of the inverse of text length versus the average of ˆγ λ  for each text. The 
dashed curve is provided as a visual guide. 
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Table 4. Average values of γ , λ̂  and ˆγ λ  for Type-II words from each text. 

Text Text length in sentences 1/(text length) Average of γ  Average of λ̂  Average of ˆγ λ  

Carroll 1098 9.11 × 10−4 0.1260 0.1106 1.1397 

wain 4288 2.33 × 10−4 0.0352 0.0247 1.4227 

Austen 5523 1.81 × 10−4 0.0274 0.0200 1.3680 

Tolstoy 28,432 3.52 × 10−5 0.0129 0.0055 2.3592 

Melville 8556 1.17 × 10−4 0.0197 0.0128 1.5315 

Darwin 3991 2.51 × 10−4 0.0416 0.0274 1.5223 

Einstein 963 1.04 × 10−3 0.0774 0.0622 1.2455 

Lavoisier 3029 3.30 × 10−4 0.0403 0.0275 1.4646 

Freud 1828 5.47 × 10−4 0.0527 0.0363 1.4510 

Smith 11,318 8.84 × 10−5 0.0227 0.0127 1.7858 

Kant 5715 1.75 × 10−4 0.0326 0.0212 1.5394 

Plato 4468 2.24 × 10−4 0.0346 0.0233 1.4858 

 
exception, and thus they become useless for getting information about the un-
derlying homogeneous Poisson point process. 

5.6. Measure of Dynamic Correlation 

We have seen that frequent words can be classified as Type-I or Type-II words. 
Obviously, Type-I words, having dynamic correlations, are more important for a 
text because each of them appears multiple times in a bursty manner to describe 
a certain idea or a topic, which can be important for the text. In contrast, each of 
the Type-II words without dynamic correlations appears at an approximately 
constant rate in accordance with the homogeneous Poisson point process and 
therefore they cannot be related to any context in the text. The natural question 
arising from the discussion above is how we measure the importance of each 
word in terms of dynamic correlations. 

As described earlier, we judged whether a word is Type-I or Type-II by using 
criteria (C1), (C2), and (C3) in which comparing BIC (KWW) and BIC (Poisson) 
plays a central role for the judgment. We introduce here a new quantity, ΔBIC, 
for Type-I words with the hope of quantifying the importance of each word. 
ΔBIC is defined as the difference between BIC KWW) and BIC (Poisson) for 
each Type-I word; 

( ) ( )BIC BIC Poisson BIC KWW .∆ = −               (26) 

This value expresses the extent to which the best fitted ( )KWW tΦ  is different 
from the best fitted ( )Poisson tΦ  in terms of their overall functional behaviors. 
Since we have already seen that ( )Poisson tΦ  is the ACF of the homogeneous 
Poisson point process, which does not have any dynamic correlations, the dif-
ference between ( )KWW tΦ  and ( )Poisson tΦ  given by ΔBIC is considered to be 
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an intuitive measure expressing the degree of dynamic correlation for Type-I 
words. In other words, ΔBIC describes the extent to which the stochastic process 
that governs the occurrences of the considered word deviates from a homoge-
neous Poisson point process. Note that ΔBIC always takes positive values be-
cause we define it only for Type-I words. Thus, a larger ΔBIC indicates that a 
word has a stronger dynamical correlation. The authors have already developed 
a measure of deviation from a Poisson distribution for static word-frequency 
distributions in written texts and have used that measure for text-classification 
tasks [35] [36] [37]. Although ΔBIC is very different from the definition of the 
static measure that was developed, the basic idea behind them is similar because 
ΔBIC can be regarded as a dynamical version of a measure of deviation from a 
Poisson distribution. 

Table 5 summarizes the top 20 Type-I words in terms of ΔBIC for our text set. 
Each of these words seems to be plausible in the sense that it is a keyword that 
plays a central role in describing a certain idea or topic, and so it should appear 
multiple times when the author explains the idea or the topic in the text, and this 
appearance should be over, typically, several to several tens of sentences. The 
plausibility is more pronounced in academic books (Darwin, Einstein, Lavoisier,  

 
Table 5. Top 20 Type-I words in terms of ΔBIC. The values of ΔBIC are shown in parentheses. 

Carroll Twain Austen Tolstoy 

hatter (103.63) sid (95.57) sir (132.02) army (298.40) 

turtle (96.41) aunt (86.33) Letter (111.74) prince (251.69) 

queen (92.95) polly (53.35) kitty (90.41) moscow (240.09) 

mock (86.75) heart (35.84) dance (71.31) french (236.77) 

gryphon (56.34) great (24.22) write (62.84) horse (235.26) 

  good (18.09) charlotte (49.88) pierre (234.66) 

  time (11.25) stay (22.46) emperor (223.26) 

  hand (8.61) carriage (16.57) princess (208.62) 

  reckon (7.39) morning (8.55) battle (205.19) 

  make (5.56) speak (8.49) pray (204.97) 

  give (5.52) uncle (4.19) remember (203.83) 

    Great (2.58) russian (201.50) 

    hour (0.02) doctor (201.05) 

 

letter (198.53) 

napoleon (198.00) 

officer (191.16) 

soldier (189.32) 

event (186.64) 

dolokhov (185.77) 

king (184.92) 
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Melville Darwin Einstein Lavoisier 

whale (238.84) intermediate (237.47) theory (107.63) acid (265.54) 

boat (176.84) variety (197.75) gravitational (89.66) ord (248.30) 

captain (167.21) specie (189.99) velocity (85.01) caloric (245.81) 

thou (149.44) plant (185.22) field (82.42) metal (217.58) 

ahab (148.56) seed (184.80) motion (79.29) mercury (205.74) 

pip (142.50) area (179.06) point (73.41) gas (193.47) 

spout (139.54) organ (174.80) coordinate (72.91) water (187.70) 

line (124.37) bird (174.07) principle (71.27) combustion (183.23) 

jonah (113.52) flower (167.41) body (67.05) body (176.02) 

masthead (112.86) form (162.20) law (61.30) sulphur (168.42) 

sperm (111.84) instinct (160.27) time (59.83) tube (165.41) 

bildad (110.36) character (158.87) relativity (56.62) air (164.38) 

flask (110.09) nest (158.22) system (54.48) temperature (152.40) 

oil (108.19) rudimentary (154.39) light (45.90) muriatic (147.60) 

tail (101.13) bee (147.35) general (33.84) ice (144.32) 

queequeg (98.87) variability (146.35) relative (27.94) pound (141.17) 

harpooner (96.33) tree (142.90) space (14.51) oxygen (138.28) 

fish (93.78) island (142.13)   distillation (126.75) 

carpenter (90.69) rank (136.06)   charcoal (125.45) 

dick (90.48) selection (132.83)   nitric (124.40) 

 
Freud Smith Kant Plato 

dream (243.18) price (350.17) judgement (299.96) opinion (138.90) 

thought (130.91) labour (296.21) conception (259.94) knowledge (127.24) 

sleep (128.58) profit (286.68) reason (253.09) evil (119.59) 

sexual (112.75) trade (270.55) object (241.06) state (112.76) 

unconscious (83.93) country (269.82) experience (229.76) justice (107.34) 

system (76.47) revenue (265.82) time (225.28) class (95.16) 

child (69.36) expense (264.33) intuition (217.05) god (79.46) 

idea (58.90) produce (262.84) internal (208.99) ruler (78.21) 

psychic (51.56) silver (258.60) proposition (203.65) love (77.44) 

process (44.90) town (257.47) quantity (202.91) soul (76.82) 

life (13.51) society (257.46) sensation (201.85) son (74.23) 

work (3.76) manufacture (247.11) cognition (199.72) end (73.81) 

find (2.59) industry (246.25) space (198.54) understand (72.28) 

place (0.93) capital (240.01) question (196.14) injustice (71.82) 

  money (238.05) rule (194.18) enemy (67.21) 

  stock (235.11) unity (193.55) pleasure (66.70) 

  slave (234.57) deduction (192.32) answer (66.43) 

  coin (229.77) condition (185.50) unjust (63.41) 

  pound (229.64) principle (183.47) art (62.49) 

  corn (228.44) change (180.06) great (49.51) 
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Freud, Smith, Kant, and Plato) than in novels (Carroll, Twain, Austen, Tolstoy, 
and Melville). This is probably because the word to characterize a certain topic is 
more context-specific in academic books than in novels. 

To confirm the validity of using ΔBIC to measure the deviation from a ho-
mogeneous Poisson point process, we have attempted to apply another measure 
of the deviation to our text set, and have examined whether the relation between 
ΔBIC and this other measure can be interpreted in a uniform and consistent 
manner. We chose Kleinberg’s burst detection algorithm [38] for this purpose 
because this algorithm can clearly describe the extent to which a process go-
verning the occurrences of a considered word deviates from a homogeneous 
Poisson point process, and so the results of the algorithm can be easily compared 
to ΔBIC, as will be described below. Furthermore, since the mathematical foun-
dation of Kleinburg’s algorithm is completely different from ours, the validity of 
using ΔBIC will be strongly supported if the results of the algorithm are closely 
and consistently related to those of ΔBIC. 

The Kleinburg’s algorithm analyzes the rate of increase of word frequencies 
and identifies rapidly growing words by using a probabilistic automaton. That is, 
it assumes an infinite number of hidden states (various degrees of burstiness), 
each of which corresponds to a homogeneous Poisson point process having its 
own rate parameter, and the change of occurrence rate in a unit time interval is 
modeled as a transition between these hidden states. The trajectory of state tran-
sition is determined by minimizing a cost function, where it is expensive (costly) 
to go up a level and cheap (zero-cost) to go down a level. 

Typical results of Kleinburg’s algorithm are shown in Figure 8. We used the 
package “burst”, which is an implementation of Kleinberg’s burst detection al-
gorithm for the R environment. As seen in Figure 8(a) and Figure 8(b), if the 
rate of word occurrences increases, then the change is detected as a transition 
from a lower burst level to a higher one. In contrast, when the rate of a word’s 
occurrence is almost constant throughout the text, as seen in Figure 8(d), then 
the corresponding burst level does not change and is fixed to the lowest 
non-bursting level, as depicted in Figure 8(e). Figure 8(e) indicates that word 
emission is governed by a homogeneous Poisson point process with a single rate 
parameter; while Figure 8(b) suggests that the corresponding process cannot be 
described by a homogeneous Poisson process and so a combination of Poisson 
processes with various rate parameters is appropriate in the framework of 
Kleinburg’s algorithm. Figure 8(c) and Figure 8(f) show the ACFs of consi-
dered words, indicating their non-Poisson and homogeneous Poisson natures, 
respectively. Therefore, we can intuitively recognize from these figures that if the 
process of word emission is modeled by various burstiness levels in Kleinburg’s 
algorithm, then the process deviates from the homogeneous Poisson, and hence 
the ACF is best described by the KWW function. Another intuition obtained 
from the figures is that we can measure the degree of deviation from a homoge-
neous Poisson process by counting how many transitions between burst levels  
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Figure 8. Results of Kleinburg’s burst detection algorithm. The left and right columns show 
results for the word “organ” and those for the word “reason”, respectively, which are taken 
from Darwin text. (a) and (d): Cumulative counts of word occurrences through text; (b) and (e): 
Burst-level variations predicted by the Kleinburg’s algorithm; (c) and (f): ACFs for “organ” and 
“reason”. Making their non-Poisson and Poisson natures apparent. 

 
were detected by Kleinburg’s algorithm. For Figure 8(b) and Figure 8(e), these 
cumulative counts of transitions are 30 and 0, respectively. Note that if the level 
changes from 1 to 2 and then goes down from 2 to 1, the number of level transi-
tions is two. 

Figure 9 shows scatter plots of the cumulative counts of transitions (abbre-
viated as CCT) in the results of Kleinberg’s algorithm versus ΔBIC for our entire 
text set, where we used all Type-I words in each text. The scatter plots show an 
obvious positive correlation between ΔBIC and CCT for all texts, though the de-
gree of correlation depends on the text. For further quantitative analysis, we 
calculated correlation coefficients between ΔBIC and CCT and performed a sta-
tistical test of the null hypothesis “the true correlation coefficient is equal to ze-
ro”. Table 6 summarizes the results, showing that, except for the text of Carroll, 
all the texts have a statistically significant positive correlation between ΔBIC and 
CCT, with correlation coefficients ranging from about 0.7 to about 0.9. The null 
hypothesis cannot be rejected for the Carroll text when we set the significance 
level to 5%α = . Obviously, the sample size, 5n = , is too small to obtain statis-
tical significance for this case, as can be seen intuitively from the relevant scatter 
plot in Figure 9(a). The results shown in Figure 9 and Table 6 convince us that 
ΔBIC and CCT are consistent with each other. Therefore, we conclude that 
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ΔBIC serves as a measure of deviation from a Poisson point process. In addition, 
ΔBIC can be a more precise measure than CCT in the sense that it takes conti-
nuous real values while the CCT takes only discrete integer values. For example, 9 
words have CCT = 4 in the Einstein text, and we can easily assign ranks to  

 

 
Figure 9. Scatter plots of CCT versus ∆BIC for all texts. 
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Table 6. Correlation coefficients between ΔBIC and CCT and the results of “no correla-
tion” tests. The data used in the computations are the same as those used in Figure 9. 

Text Correlation coefficient p-value 

Carroll 0.619 2.65 × 10−1 

Twain 0.966 1.46 × 10−6 

Austen 0.804 9.14 × 10−4 

Tolstoy 0.746 2.20 × 10−16 

Melville 0.810 4.09 × 10−13 

Darwin 0.864 2.20 × 10−16 

Einstein 0.727 9.49 × 10−4 

Lavoisier 0.874 2.20 × 10−16 

Freud 0.625 1.69 × 10−2 

Smith 0.781 2.20 × 10−16 

Kant 0.831 2.20 × 10−16 

Plato 0.735 6.85 × 10−8 

 
these 9 words by use of ΔBIC, as seen in the scatter plot for the Einstein text in 
Figure 9(g). 

Furthermore, we consider that ΔBIC can be used to measure the importance 
of a considered word in a given text because it expresses the extent to which the 
word occurrences are correlated with each other among successive sentences, 
and a large ΔBIC means that the word occurs multiple times in a bursty and 
context-specific manner. Of course, there can be various viewpoints to judge 
word importance; but at least ΔBIC offers well-defined procedures for calcula-
tion, with a clear meaning in terms of the stochastic properties of word occur-
rence. In this sense, ΔBIC has a wide range of real applications in which the de-
gree of importance of each word is required. 

6. Conclusions 

In this study, we have regarded real written texts as time-series data and have 
tried to clarify the dynamic correlations of words by using ACFs. The set of seri-
al sentence numbers assigned from the first to the last sentence along a consi-
dered text is used as a discretized time in order to define appropriate ACFs. 
Starting from the standard definition of an ACF in the signal processing area, we 
derived a normalized expression for an ACF that is suitable to express the dy-
namic correlation of word occurrences. We have calculated the ACFs for all the 
frequent words (words occurring in at least 50 sentences in a considered text) for 
12 books chosen from various areas. It was found that the ACFs obtained can be 
classified into two groups: One is for words showing dynamic correlations and 
the other is for words with no type of correlation. Words showing dynamic cor-
relations are called Type-I words, and their ACFs turn out to be well described 
by a modified KWW function. Words showing no correlations are called Type-II 
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words, and their ACFs are modeled by a simple stepdown function. For the 
model function of Type-II words, we have shown that the functional form of the 
simple stepdown function can be theoretically derived from the assumption that 
the stochastic process governing word occurrence is a homogeneous Poisson 
point process. To select the appropriate type for a word, we have used the Baye-
sian information criterion (BIC). 

We further proposed a measure of word importance, ΔBIC, which was de-
fined as the difference between the BIC using the KWW function and that using 
the stepdown function. If ΔBIC takes a large value, then the stochastic process 
governing word occurrence is considered to deviate greatly from the homoge-
neous Poisson point process (which does not produce any correlations between 
two arbitrary separated time intervals). This indicates that a word with large 
ΔBIC has strong dynamic correlations with some range of duration along the 
text and is, therefore, important for a considered text. We have picked the top 20 
Type-I words in terms of ΔBIC for each of the 12 texts, and found that the re-
sultant word list seems to be plausible, especially for academic books. The valid-
ity of using ΔBIC to measure word importance was confirmed by comparing the 
value of ΔBIC with another measure of word importance. We chose the CCT as 
the other measure. This was obtained by applying the Kleinburg’s burst detec-
tion algorithm. We found that CCT and ΔBIC show a strong positive correlation. 
Since the backgrounds of CCT and that of ΔBIC are completely different from 
each other, the strong positive correlation between them means that both the 
CCT and ΔBIC are useful ways to measure the importance of a word. 

At present, the stochastic process that governs dynamic correlations of Type-I 
words with long-range duration time is not clear. A detailed study along this line, 
through which we will try to identify the process suitable to describe word oc-
currences in real texts, is reserved for future work. 
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