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Abstract 
Penalized ordinal outcome models were developed to model high dimension-
al data with ordinal outcomes. One option is the penalized stereotype logit, 
which includes nonlinear combinations of parameter estimates. Optimization 
algorithms assuming linearity and function convexity were applied to fit this 
model. In this study the application of the adaptive moment estimation 
(Adam) optimizer, suited for nonlinear optimization, to the elastic net pena-
lized stereotype logit model is proposed. The proposed model is compared to 
the L1 penalized ordinalgmifs stereotype model. Both methods were applied 
to simulated and real data, with non-Hodgkin lymphoma (NHL) cancer sub-
types as the outcome, with results presented and discussed. 
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1. Introduction 

Many research studies seek to predict related outcomes given a set of indepen-
dent variables or to quantify the relationship between them. In certain instances, 
the outcome of interest is ordinal. Ordinal variables are defined as having dis-
tinct ordered levels; however, the distance between the levels cannot be ascer-
tained. An example of an ordinal variable is cancer stage. Take, for instance, tes-
ticular seminoma, a germ cell tumor in the sperm of the testes [1]. This cancer 
can be classified according to stage. The stages are: 

1) Tumor stage 1, cancer has not spread beyond the testicle. 
2) Tumor stage 2, cancer has spread to the blood or lymphatic vessels. 
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3) Tumor stage 3, cancer has spread beyond the lymphatic and blood vessels 
nodes to the spermatic cord. 

4) Tumor stage 4, cancer has spread beyond previously mentioned areas to 
other parts of the body. 

The ordering of categories is evident. The aim of statistical and machine 
learning models is to quantify the relationship between covariates and associated 
outcome so that one can predict the outcome variable and assess the relationship 
between the two with statistical significance. The range of ordinal outcome 
models includes cumulative logit, proportional odds model, adjacent-category 
logit [2], and stereotype logit [3]. These procedures assume there are more ob-
servations than independent variables, or covariates. Another assumption is the 
resulting parameter estimates follow a normal distribution. 

In addition, we now live in an era of high dimensional data, and massive 
amounts of information are being collected [4]. These data are used to better 
understand and analyze related issues. However, this comes at a cost, and tradi-
tional methods are ill-equipped to utilize these datasets. These data may have 
more variables than observations. The distributions of the parameter estimates 
may not follow a normal distribution. We may collect genetic data, demographic 
data, and clinical data, resulting in an analysis data set containing thousands of 
variables with a few hundred observations when evaluating health conditions 
with associated ordinal outcomes [5]; the distribution of the parameter estimates 
may not follow a normal, or other known, distribution. 

Penalized ordinal outcome models were developed to analyze high dimen-
sional data with ordinal outcomes. Some of these modeling schemes are 
glmnetcr [6], ordinalgmifs [7], and penalized stereotype logit models [8]. Apart 
from the stereotype logit, these models are linear in that the objective cost func-
tions can be represented as a linear combination of parameters estimates; these 
models also assume the cost function is convex. For the stereotype logit, which 
includes nonlinear combinations of parameter estimates, optimization algo-
rithms that assumed linearity, and function convexity, were applied [7] [9]. A 
nonlinear and nonconvex approach to optimize the cost function of the pena-
lized stereotype logit should be explored.  

This study investigates the extension of a previously developed elastic net pe-
nalized stereotype logit [8]. We add an elastic net penalty [10] to the stereotype 
logit model [3]. To optimize the penalized function, we use the Adam optimizer 
[11] which is suited to nonlinear functions. This, in turn, allows us to evaluate 
the prediction accuracy of the model, which we were not able to do previously. 
The updated modeling procedure is presented with first order derivatives, opti-
mization procedure, and a bootstrap resampling scheme to assess variable im-
portance. Said modeling procedure is applied to simulated and real-world data-
sets with reported results. The proposed method is compared with the ordi-
nalgmifs implemented L1 penalized stereotype logit [7], an existing method for 
analyzing high dimensional data with an ordinal outcome.  
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2. Method 

For a given observation i (there are a total of n observations), denote the out-
come vector iy  as ( )1 2, , ,i i iJy y y  where 1ijy =  if for that observation, the 
outcome is in the jth category, and all other entries are set to 0. There are J possi-
ble outcomes. Denote the vector ( )1 2i i i ipx x x ′=x   as the covariate vector con-
sisting of p values. The log of the information entropy, based on a multinomial 
distribution, is represented as 
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The log of the odds ratio, with level J being the reference level, ijθ , is 
represented as { }j j iα φ ′+ x β . Therefore, ( )j iπ x  are now modeled as 
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This representation is known as the stereotype logit [3]. For each ordered level, 
the effect of the independent variables is equal to an overall effect, i′x β , multip-
lied by a value jφ , which is referred to as the intensity parameter. Primarily, as 
we are concerned with modeling the log of the odds ratios, ijθ , the log of the 
information entropy can now be written as 

( ) { }( ) { }1 1

1 1 1

1, , | , log1 e j j i
n J J

ij j j i
i i j

L y
n

α φα φ
− −

′+

= = =

′= + − +∑∑ ∑ xy x x ββ α φ β .    (5) 

2.1. Elastic Net Penalized Stereotype Logit 

We take the log of the information entropy, with a stereotype logit parameteri-
zation, and add an elastic net penalty [10]. A penalty on the sum of the squared 
and absolute values of the parameters is enforced [12] [13]. For a set of parame-
ters, represented in a p length vector β , the elastic net penalty is defined as 

( )( )2

1
1

2

p

k k
kn

λι ςβ ς β
=

= + −∑ ,                  (6) 

where 0 λ< < ∞  can vary and n is the sample size of the dataset. For this study, 
ς  was set to 0.5. The goal of the elastic net is to penalize large values of the pa-
rameter estimates, forcing their magnitude to decrease in proportion to their size. 
During optimization, the system is forced shrink the parameter estimates’ size 
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when finding an optimal solution.  
Based on the log of the information entropy, we are concerned with finding 

estimates for parameters, β̂ , α̂ , and φ̂  such that 

( ) ( )
, ,

ˆ ˆˆ, , arg max , , | ,L= y x
β α φ

β α φ β α φ                  (7) 

where α̂  denotes the vector of length J − 1 containing the intercepts for the J − 
1 logits and φ̂  denotes the vector on length J − 1 containing the intensity pa-
rameters. In addition, minimizing the negative log entropy is equivalent to 
maximizing the log entropy, and we will work with the negative representation. 
Therefore, after imposing the elastic net penalty, we are concerned with finding 
parameter estimates such that: 

( ) ( ) ( )( )2
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In machine learning, for any given model there is usually a hyperparameter 
set, a set of parameters that is not optimized over but whose choice of values af-
fects the final solution. In machine learning, if there are multiple hyperparame-
ters for any optimization procedure, there is still no established method to select 
these to optimize the function with respect to the parameters [14]. For the pur-
poses of this manuscript, the hyperparameters were set to given values (a small 
range of values was considered with the optimal set being selected); λ was set to 
0.001. The partial first derivatives with respect to αj, βk, and ϕj are presented.  
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Denote the full parameter set β, α, and ϕ as ψ. The partial derivatives are vec-
torized (placed into one vector) and are represented by a derivative vector, de-
noted ( )L∇ ψ . 

2.2. Adam Optimization 

The implemented Adam algorithm [11] attempts to find a parameter set that will 
minimize model Equation (8). The approach uses non-linear programs to find 
optimal solutions given a hyperparameter set. The Adam optimizer combines 
the idea of momentum optimization [15] and RMSProp [16]. Adam keeps track 
of an exponentially decaying average of past gradients from previous iterations 
(momentum optimization). Adam also tracks the exponentially decaying average 
of past squared gradients from previous iterations (RMSProp). The applied algo-
rithm is listed below. 
1) Initialize m and s to have all zero entries; these vectors are of length 
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( )2 1p J+ − .  
2) Initialize ψ using He Initialization [17]. 
3) Compute ( )L∇ ψ .  
4) ( ) ( )1 11 Lν ν← + − ∇m m ψ .  
5) ( ) ( )2

2 21 Lτ τ← + − ∇s s ψ .  
6) η ε← − ÷ +m sψ ψ .  
7) Repeat steps 3 through 6 until ( ) ( )| , | ,i i iL L ζ+ − <y x y xψ ψ , where i ref-

erences the iteration number, or until a prespecified number of iterations are 
reached.  

The vectors m  and s  contain the exponentially decaying averages of 
( )L∇ ψ  and ( )2L∇ ψ . For the He initialization [17], the parameter estimate 

vector ψ is initialized using the random normal function of the form 

( )0,1 * 2Norm p ,                     (12) 

where ( )0,1Norm  are randomly generated values from a normal distribution 
with a mean 0 and standard deviation 1 and p is the number of covariates in the 
dataset. The hyperparameter set consists of ν1, τ2, η, ε, ζ, and ς. For this study, 
after considering a small range of candidate values, ν1 was set to 0.5, τ2 was set to 
0.8, η was set to 0.008, ε was set to 1E-7, ζ was set to 1E-5, λ was set to 0.001 and, 
ς was set to 0.5. Steps three through six are repeated until a specified number of 
iterations is reached (800 for this study) or until ( ) ( )| , | ,i i iL L ζ+ − <y x y xψ ψ . 
In applying this algorithm, we need to include an adjustment for the elastic net 
penalty. When taking derivatives with respect to β, we adjust these functions by 
subtracting the derivatives of the elastic net penalty. This is not done for α or ϕ. 
As a result, when computing the derivatives for the βk, where k references the 
iteration, we subtract from that derivative term ( ) ( ) ( )( )1 2k kn signλ ςβ ς β+ −  
which leads to the derivatives for each β subject to the elastic net penalty. For 
each iteration, in addition to modifying β by subtracting a function of its deriva-
tive we also shrink the parameters by a factor of ( ) ( )( )1 2k ksignλ ςβ ς β+ − . 
This method was implemented in the R programming environment [18]. Func-
tions from the MASS [19] and matrixcalc [20] R packages were used to imple-
ment the proposed model. 

2.3. Applied Bootstrap Resampling Procedure 

For the proposed model, the standard errors of our parameter estimates are 
computed using a bootstrapping pairs design [21]. Denote B as the number of 
resamples without replacement. For this study, B is set to 200 [21]. For each 
bootstrap resample, we resample n tuples with replacement, which gives us the 
dataset bX  and by , 1,2, ,b B=  . The proposed model is then fit to each re-
sampled data set. Once the B models are fit, the corresponding parameter esti-
mates are obtained. Denote the bth bootstrap parameter estimates as ( )ˆ ˆˆ , ,

b
α β φ . 

Having these B parameter estimates allows us to estimate their standard errors 
and construct confidence intervals. 

The bootstrap-t confidence interval method is used to construct confidence 
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intervals. The bootstrap-t confidence intervals are of the form 
( ) ( ) ( ) ( )1 1ˆ ˆ ˆ ˆˆ ˆ,k k k kt se t seα αβ β β β− − − × + ×                (13) 

where  
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kβ  from the bth bootstrapped resamples 
dataset. In addition, ( )t̂ α  is chosen from the standard normal distribution such 
that 
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The R programming environment [18] was used to implement this procedure. 

3. Application to Simulated Data 

The simulation procedure used is the same as previously presented [8] with a few 
noted changes. In that study, one dataset was simulated using a compound sym-
metric correlation structure for the covariates with ρ = 0.01. In addition, we si-
mulated three additional dataset types. The second dataset type was simulated 
using a first order autoregressive, AR(1), correlation structure with ρ set to 0.1. 
The third dataset type has a Toeplitz correlation structure with each ρ generated 
randomly using a uniform distribution U (0, 0.4). The fourth dataset type has an 
unstructured correlation structure with each ~U (0, 0.4). For all simulated data-
types, 20 covariates (10 are significant) were generated for 1000 observations. 
Among the 10 significant parameter estimates, 5 were randomly set at 0.5 and 5 at 
−0.5 for all datasets. Each dataset was centered and scaled before the proposed 
model was fit. For each datatype, 100 datasets were simulated. The described 
bootstrap resampling technique was used to provide 95% confidence intervals; B 
= 200 resamples were used. In the model fitting process, the data were split into 
training: test data in the ratio 8:2. The model was developed using the training 
data. The final model was applied to the test dataset (independent data not used 
to build the model). The main criteria examined were the number of significant 
covariates that have non-zero parameter estimates, the number of non-significant 
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coefficients that have estimates close to zero within a threshold, the accuracy of 
predictions when the model is applied to the test data set, and execution times. 
Functions from the R packages MASS [19], mvtnorm [22] [23], futility [24], 
MBESS [25], Matrix [26], and corpcor [27] were employed to implement this 
procedure. 

Results 

The proposed methodology, and ordinalgmifs method with the option proba-
bility, model = “Stereotype”, was applied to the simulated data. The goal was 
to compare two implementations of penalized stereotype logit models. Table 
1 presents the mean, and standard deviations, for prediction accuracy (de-
termined by the test data) and execution times for both methods. Two-sided, 
two sample Welch’s t tests, with significance level of 0.05, were used to com-
pare mean accuracy and execution times for both methods. For the proposed 
method, the average prediction accuracy for the compound symmetric simu-
lated data is 96.1%; for AR(1) correlated data, 96.52% of the observations 
were correctly classified. This rate was 96.24% for the Toeplitz correlated data 
and 96.49% for the unstructured correlated data. Regarding classification, the 
proposed method outperformed the ordinalgmifs method on all datasets as 
determined by the t tests (all p values < 0.001). Regarding execution times, the 
proposed method executed faster for all datasets considered (all p values < 
0.001). The average execution times for the proposed method range from 
17.21 to 23.63 seconds, for the ordinalgmifs method the range is 166.98 to 
200.06 seconds. The proposed method executed ~10-fold faster on average.  

Tables 2-5 present the parameter estimates for the 10 significant parame-
ters based on the proposed method. For all simulated datasets, the 10 
non-significant parameters (not shown in the tables) had a maximum abso-
lute value of 0.04; these values were close to 0. For the ordinalgmifs method, 
all non-significant parameters had estimates of 0. The proposed method se-
lects the significant parameters that are truly related to the outcome while 
setting estimates of the non-significant parameters close to 0. In comparison, 
the ordinalgmifs methods set these values to 0. The confidence intervals are 
somewhat narrow (~0.5) for parameter estimates of significant covariates. 

Figure 1 presents the percent of observations correctly classified per itera-
tion for the training data of the simulated datasets. The method performance 
never decreases for all simulated datasets. Once the method maximizes the 
proportion that it can correctly estimate, it oscillates around that value. This 
could be due in part to the use of the Adam optimization algorithm [11]. The 
results indicate that the proposed model framework is adept at variable selec-
tion and classification capabilities when applied to independent datasets. The 
proposed model outperforms the ordinalgmifs implementation with regards 
to prediction accuracy and execution times. Computationally, the proposed 
model executes faster than the ordinalgmifs implementation by ~10-fold. The 
analysis was performed in the R programming environment [18].  
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Figure 1. Plots presenting the percent correctly classified per itera-
tion for the four simulated datasets. “The black line demonstrates the 
progress (% correctly classified) for the training data”. 

 
Table 1. Average accuracy (% correctly classified) and execution times for proposed and 
ordinalgmifs methods, along with standard deviations. 

 Proposed Method Ordinalgmifs 

Dataset  
(Correlation Type) 

Accuracy (%) 
Execution Time 

(Seconds) 
Accuracy (%) 

Execution Time 
(Seconds) 

Compound Symmetric 96.1 (1.37)* 23.63 (17.50)* 93.51 (2.1)* 187.38 (50.28)* 

First Order  
Autoregressive 

96.52 (1.46)* 17.90 (3.23)* 94.13 (2.19)* 183.59 (39.30)* 

Toeplitz 96.24 (1.33)* 18.21 (3.89)* 93.01 (2.46)* 200.06 (55.93)* 

Unstructured 96.49 (1.32)* 17.21 (0.13)* 93.95 (2.1)* 166.98 (41.73)* 

For the two methods, accuracy and executions times were compared using a two-sided Welch’s two sample 
t test, with significance level of 0.05. “*” indicates a statistically significant difference.  
 
Table 2. Parameter estimates and 95% confidence intervals for truly important variables 
included in the final model of the compound symmetric correlated data. 

Truly Important Variable Parameter Estimate 95% Confidence Interval 

V1 −1.548 (−1.725, −1.372) 

V2 −1.574 (−1.754, −1.394) 

V3 −1.62 (−1.805, −1.434) 

V4 −1.629 (−1.816, −1443) 

V5 −1.55 (−1.727, −1.373) 

V6 1.625 (1.44, 1.81) 

V7 1.618 (1.433, 1.803) 

V8 1.639 (1.452, 1.826) 

V9 1.701 (1.506, 1.896) 

V10 1.691 (1.497, 1.884) 
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Table 3. Parameter estimates and 95% confidence intervals for truly important variables 
included in the final model of the AR(1) correlated data. 

Truly Important Variable Parameter Estimate 95% Confidence Interval 

V1 1.497 (1.317, 1.676) 

V2 1.466 (1.29, 1.642) 

V3 1.416 (1.246, 1.585) 

V4 1.531 (1.347, 1.715) 

V5 1.446 (1.273, 1.62) 

V6 −1.525 (−1.709, −1.341) 

V7 −1.533 (−1.716, −1.349) 

V8 −1.537 (−1.723, −1.352) 

V9 −1.587 (−1.778, −1.397) 

V10 −1.533 (−1.717, −1.35) 

 
Table 4. Parameter estimates and 95% confidence intervals for truly important variables 
included in the final model of the Toeplitz correlated data. 

Truly Important Variable Parameter Estimate 95% Confidence Interval 

V1 1.466 (1.296, 1.636) 

V2 1.522 (1.347, 1.698) 

V3 1.485 (1.313, 1.657) 

V4 1.521 (1.346, 1.697) 

V5 1.507 (1.334, 1.681) 

V6 −1.579 (−1.761, −1.396) 

V7 −1.547 (−1.726, −1.368) 

V8 −1.569 (−1.75, −1.388) 

V9 −1.582 (−1.765, −1.399) 

V10 −1.588 (−1.771, −1.405) 

 
Table 5. Parameter estimates and 95% confidence intervals for truly important variables 
included in the final model of the unstructured correlated data. 

Truly Important Variable Parameter Estimate 95% Confidence Interval 

V1 −1.479 (−1.653, −1.305) 

V2 −1.602 (−1.774 −1.43) 

V3 −1.63 (−1.808, −1.453) 

V4 −1.708 (−1.895, −1521) 

V5 −1.7 (−1.887, −1.514) 

V6 1.729 (1.539, 1.919) 

V7 1.703 (1.516, 1.889) 

V8 1.654 (1.468, 1.84) 

V9 1.806 (1.607, 2.005) 

V10 1.623 (1.442, 1.804) 
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4. Application to NHL Data 

The data came from a study titled “Subclass Mapping: Identifying Common 
Subtypes in Independent Disease Data Sets” [28]. The primary aim of this ma-
nuscript was to find gene expression profiles that could predict, with some de-
gree of error, molecular subtypes of diseases. The cancer types evaluated by this 
manuscript were lymphoma and breast cancer. Lymphoma is defined as a cancer 
of the lymphatic system. The following review is taken from Cancer Stat Facts 
[29]. NHL make up approximately 90% of all malignant lymphomas, with the 
Hodgkin lymphomas accounting for the remaining 10%. NHL “is a heterogene-
ous disease resulting from the malignant transformation of lymphocytes and in-
cludes multiple subtypes each with specific molecular and clinical characteristics” 
[29]. NHL can either start in the B-lymphocytes or the T-lymphocytes. Among 
B-cell lymphomas, diffuse large B-cell lymphomas are the most common. T-cell 
lymphomas account for 15% of NHL in the United States. NHL account for 4.3% 
of all new cancer cases. There were 72,240 estimated cases for 2017 and 20,140 
estimated deaths. The median age of diagnosis was 67, with the highest propor-
tion of new cases occurring in the 65 - 74 age group. The estimated 5-year sur-
vival rate was 71.0%. The issue of stage prediction with NHL, using a set of co-
variates, provides an opportunity to evaluate the performance of the proposed 
model framework.  

The raw data, DLBCL-A: data set and DLBCL-A: class labels, were down-
loaded from http://portals.broadinstitute.org/cgi-bin/cancer/datasets.cgi [28]. 
The data were generated using one-channel oligonucleotide microarrays. The 
data have three subtypes, designated as oxidative phosphorylation (OxPhos), 
B-cell response (BCR), and host response (HR) [28]. The independent variables 
are gene expression values. The R package CePa [30] was used to read in the da-
tasets. All variables were input into the model. The gene expression values were 
standardized (centered and scaled) prior to model fitting. There were 661 genes 
in the dataset. Among the 141 samples, 49 were OxPhos, 50 were BCR, and 42 
were HR. The proposed model, along with the ordinalgmifs implementation of 
the stereotype logit, was applied to the gene expression dataset, with associated 
outcome vectors, to select genes associated with NHL subtypes. The described 
bootstrap resampling procedure was applied, yielding estimates of standard er-
rors that were used to compute 95% confidence intervals. B = 200 resamples 
were used. Due to the small sample size, leave-one-out cross validation was used 
to estimate the predictive capabilities of the model. The analysis was performed 
in the R programming environment [18].  

Results 

Table 6 shows selected genes along with parameter estimates and confidence 
intervals. The displayed genes are those with the largest absolute value of the 
coefficient of variation, with standard deviations provided by the bootstrap re-
sampling scheme. Only the top 20 were displayed. The corresponding gene 
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names are also presented. The names of the genes are provided by the HUGO 
Gene Nomenclature Committee (https://www.genenames.org/) [31]. As with the 
results in the simulation section, the 95% confidence intervals are narrow, and 
prediction accuracy was 73%. When applying the stereotype logit-based ordi-
nalgmifs function to the NHL data, parameter estimates could not be obtained 
due to optimization issues with that implementation. The following error was 
reported by the R programming environment “Error in optim(c(alpha, phi), 
fn.stereo, w = w, x = x, beta = beta, y = y: L-BFGS-B needs finite values of ‘fn’”. 
The above error relates to the optimization function being passed infinite values 
during the optimization process. All covariate values were centered and scaled 
prior to analysis. To correct the error, multiple values of the hyperparameters 
were passed to the ordinalgmifs function in R with no success. The data was 
checked for missing values; there were none. In addition, all the data were nu-
meric. As a result, no comparison could be made with the ordinalgmifs imple-
mentation of the L1 penalized stereotype logit. 
 
Table 6. Variable importance based on the application of the proposed model to the NHL 
dataset. The topmost 20 genes, in terms of variable importance, are presented. The model 
achieved a prediction accuracy of 73%. 

Gene Name Definition 
Parameter 
Estimate 

95% Confidence 
Interval 

TCF7 transcription factor 7 −2.666 (−2.845, −2.486) 

GSTM2 glutathione S-transferase mu 2 −2.629 (−2.813, −2.444) 

ITGB7 integrin subunit beta 7 −2.598 (−2.756, −2.439) 

EEF1A1 eukaryotic translation elongation factor 1 alpha 1 −2.59 (−2.839, −2.342) 

LOC220594 NA −2.572 (−2.736, −2.408) 

DEK DEK proto-oncogene 2.57 (2.446, 2.694) 

ITGAL integrin subunit alpha L −2.561 (−2.717, −2.405) 

BIN1 bridging integrator 1 −2.556 (−2.704, −2.409) 

RPL21 ribosomal protein L21 −2.503 (−2.671, −2.335) 

RBPSUH 
recombination signal binding protein  
for immunoglobulin kappa J region 

−2.503 (−2.65, −2.356) 

NCOA1 nuclear receptor coactivator 1 −2.494 (−2.648, −2.34) 

MYCBP2 MYC binding protein 2, E3 ubiquitin protein ligase −2.47 (−2.614, −2.326) 

A2M alpha-2-macroglobulin −2.416 (−2.595, −2.238) 

IL10RA interleukin 10 receptor subunit alpha −2.413 (−2.564, −2.262) 

SLC25A5 solute carrier family 25 member 5 −2.383 (−2.539, −2.227) 

CCL21 C−C motif chemokine ligand 21 −2.378 (−2.53, −2.227) 

KPNB1 karyopherin subunit beta 1 −2.377 (−2.536, −2.217) 

COL9A2 collagen type IX alpha 2 chain −2.374 (−2.552, −2.196) 

RPS21 ribosomal protein S21 −2.363 (−2.524, −2.202) 

ACP1 acid phosphatase 1 −2.361 (−2.501, −2.221) 
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5. Discussion  

There are multiple hyperparameters in the elastic net constrained stereotype lo-
git, optimal values for these must be explored as this has the potential to increase 
variable selection and classification capabilities. This is usually accomplished 
with a grid search and is an open problem in machine learning for multiple 
hyperparameters [14]. For this study, a small selection of values was considered 
for each hyperparameter. The hyperparameter of interest is λ but the choice for 
the remaining hyperparameters is also very important in determining the op-
timal solution. 

A bootstrap resampling procedure was used to estimate the 95% confidence 
intervals. The main drawback is the computational time required to produce the 
confidence intervals with 200 additional models being fit. It may be advisable to 
perform a closed form estimate of the parameter variance matrix [2]. 

Although the stereotype logit is considered by many a generalized linear mod-
el, it is not. As such, an optimal solution may not exist, or there may be inflexion 
points. As a result, different starting values may yield different solutions. In this 
study, applying the method to a given dataset does not exhibit a great deal of 
variation in results, and the results of the applied bootstrap procedure confirm 
this. To address this, we applied a variable initialization scheme proposed by He 
[17]. In addition, the Adam optimization function is well suited to dealing with 
non-convex functions [11]. The combination of these two factors addresses this 
issue. 

6. Conclusion  

A proposed model for the elastic net penalized stereotype logit model, with op-
timization provided by the Adam optimizer, to analyze ordinal outcome data 
was presented. The proposed method was applied to simulated and NHL data 
with reported results. For the simulated data, variable selection was perfect, and 
only significant variables had parameter estimates not close to 0. The classifica-
tions ranged from 96.1% to 96.52% on the test datasets. For the NHL data, 73% 
were correctly classified. The 20 topmost genes in terms of absolute value of the 
coefficient of variation were presented. Our evaluation study shows that the 
proposed method outperforms the ordinalgmifs penalized stereotype logit model; 
no comparison could be made with the NHL data analysis as the ordinalgmifs 
implemented stereotype logit was not able to produce parameter estimates. This 
manuscript is an extension of previous work [8]. In the previous study, variable 
selection was adequate, but the classification capabilities were lacking. This work 
improves the prediction accuracy when applied to simulated and NHL data 
(ranging from 73% to 96.52%). In addition, the variable importance also im-
proved with only the significant parameters having non-zero estimates. This 
study demonstrates, with success, the application of the Adam optimizer to the 
elastic net penalized stereotype logit model to analyze ordinal outcome data with 
promising results, as demonstrated on the simulated and NHL datasets. 

https://doi.org/10.4236/jdaip.2019.71002


A. A. A. Williams 
 

 

DOI: 10.4236/jdaip.2019.71002 26 Journal of Data Analysis and Information Processing 
 

Acknowledgements 

First and foremost, I would like to thank God from whom all blessings flow. I 
would also like to express special thanks to Timothy Wysocki, the Co-director of 
the Center for Healthcare Delivery Science, at Nemours Children’s Specialty 
Care for allowing me to work on this project. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Williams, M. and Schnellhammer, P. (2016) Testicular Seminoma.  

http://emedicine.medscape.com/article/437966-overview  

[2] Agresti, A. (2014) Categorical Data Analysis. John Wiley & Sons, New York. 

[3] Anderson, J.A. (1984) Regression and Ordered Categorical Variables. Journal of the 
Royal Statistical Society: Series B (Methodological), 46, 1-30.  
http://www.jstor.org/stable/2345457  
https://doi.org/10.1111/j.2517-6161.1984.tb01270.x 

[4] Bellazzi, R. (2014) Big Data and Biomedical Informatics: A Challenging Opportuni-
ty. Yearbook of Medical Informatics, 9, 8-13. https://doi.org/10.15265/IY-2014-0024 

[5] Murdoch, T.B. and Detsky, A.S. (2013) The Inevitable Application of Big Data to 
Health Care. JAMA, 309, 1351-1352. https://doi.org/10.1001/jama.2013.393 

[6] Archer, K.J. and Williams, A.A.A. (2012) L1 Penalized Continuation Ratio Models 
for Ordinal Response Prediction Using High-Dimensional Datasets. Statistics in 
Medicine, 31, 1464-1474. https://doi.org/10.1002/sim.4484 

[7] Archer, K.J., Hou, J., Zhou, Q., Ferber, K., Layne, J.G. and Gentry, A.E. (2014) Or-
dinalgmifs: An R Package for Ordinal Regression in High-Dimensional Data Set-
tings. Cancer Informatics, 13, CIN.S20806. https://doi.org/10.4137/CIN.S20806 

[8] Williams, A.A. and Archer, K.J. (2015) Elastic Net Constrained Stereotype Logit 
Model for Ordered Categorical Data. Biometrics & Biostatistics International Jour-
nal, 2, Article ID: 00049. https://doi.org/10.15406/bbij.2015.02.00049 

[9] Hastie, T., Taylor, J., Tibshirani, R., Walther, G., Boyd, S., Friedman, J., et al. (2007) 
Forward Stagewise Regression and the Monotone Lasso. Electronic Journal of Sta-
tistics, 1, 1-29. https://doi.org/10.1214/07-EJS004 

[10] Zou, H. and Hastie, T. (2005) Regularization and Variable Selection via the Elastic 
Net. Journal of the Royal Statistical Society: Series B (Methodological), 67, 301-320.  
https://web.stanford.edu/~hastie/Papers/B67.2%20%282005%29%20301-320%20Zo
u%20&%20Hastie.pdf   
https://doi.org/10.1111/j.1467-9868.2005.00503.x 

[11] Kingma, D.P. and Ba, J. (2014) Adam: A Method for Stochastic Optimization. 1-15.  

[12] Hoerl, A.E. and Kennard, R.W. (1970) Ridge Regression: Biased Estimation for 
Nonorthogonal Problems. Technometrics, 12, 55-67.  
https://doi.org/10.1080/00401706.1970.10488634 

[13] Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso. Journal of 
the Royal Statistical Society: Series B (Methodological), 58, 267-288.  
http://www.jstor.org/stable/2346178 

https://doi.org/10.4236/jdaip.2019.71002
http://emedicine.medscape.com/article/437966-overview
http://www.jstor.org/stable/2345457
https://doi.org/10.1111/j.2517-6161.1984.tb01270.x
https://doi.org/10.15265/IY-2014-0024
https://doi.org/10.1001/jama.2013.393
https://doi.org/10.1002/sim.4484
https://doi.org/10.4137/CIN.S20806
https://doi.org/10.15406/bbij.2015.02.00049
https://doi.org/10.1214/07-EJS004
https://web.stanford.edu/%7Ehastie/Papers/B67.2%20%282005%29%20301-320%20Zou%20&%20Hastie.pdf
https://web.stanford.edu/%7Ehastie/Papers/B67.2%20%282005%29%20301-320%20Zou%20&%20Hastie.pdf
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1080/00401706.1970.10488634
http://www.jstor.org/stable/2346178


A. A. A. Williams 
 

 

DOI: 10.4236/jdaip.2019.71002 27 Journal of Data Analysis and Information Processing 
 

https://doi.org/10.1111/j.2517-6161.1996.tb02080.x 

[14] Kaiser, L., Gomez, A.N., Shazeer, N., Vaswani, A., Parmar, N., Jones, L. and Uszko-
reit, J. (2017) One Model To Learn Them All. https://arxiv.org/pdf/1706.05137.pdf  

[15] Polyak, B.T. (1964). Some Methods of Speeding up the Convergence of Iteration 
Methods. USSR Computational Mathematics and Mathematical Physics, 4, 1-17.  
http://www.sciencedirect.com/science/article/pii/0041555364901375  
https://doi.org/10.1016/0041-5553(64)90137-5 

[16] Hinton, G., Srivastava, N. and Swersky, K. (n.d.) Neural Networks for Machine 
Learning. http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf  

[17] He, K., Zhang, X., Ren, S. and Sun, J. (2014) Delving Deep into Rectifiers: Surpass-
ing Human-Level Performance on ImageNet Classification. 1026-1034. 

[18] R Core Team (2017) R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing, Vienna. https://www.r-project.org/  

[19] Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S. Fourth 
Edition, Springer, New York. https://doi.org/10.1007/978-0-387-21706-2 

[20] Novomestky, F. (2012) Matrixcalc: Collection of Functions for Matrix Calculations.  
https://cran.r-project.org/package=matrixcalc  

[21] Efron, B. and Tibshirani, R. (1986) Bootstrap Methods for Standard Errors, Confi-
dence Intervals, and Other Methods of Statistical Accuracy. Statistical Science, 1, 
54-75. https://doi.org/10.1214/ss/1177013815 

[22] Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F. and Hothorn, T. (2017) 
Mvtnorm: Multivariate Normal and t Distributions.  
http://cran.r-project.org/package=mvtnorm  

[23] Genz, A. and Bretz, F. (2009) Computation of Multivariate Normal and t Probabili-
ties. Lecture Notes in Statistics Vol. 195, Springer-Verlag, Heidelberg.  
https://doi.org/10.1007/978-3-642-01689-9 

[24] Zhuang, Y., Juraska, M., Grove, D., Gilbert, P. and Luedtke, A. (2017) Futility: Inte-
rim Analysis of Operational Futility in Randomized Trials with Time-to-Event 
Endpoints and Fixed Follow-Up. https://cran.r-project.org/package=futility  

[25] Kelley, K. (2017) MBESS: The MBESS R Package.  
https://cran.r-project.org/package=MBESS  

[26] Bates, D. and Maechler, M. (2017) Matrix: Sparse and Dense Matrix Classes and 
Methods. https://cran.r-project.org/package=Matrix  

[27] Schafer, J., Opgen-Rhein, R., Zuber, V., Ahdesmaki, M., Silva, A.P.D. and Strimmer, 
K. (2017) Corpcor: Efficient Estimation of Covariance and (Partial) Correlation.  
https://cran.r-project.org/package=corpcor  

[28] Hoshida, Y., Brunet, J.P., Tamayo, P., Golub, T.R. and Mesirov, J.P. (2007) Subclass 
Mapping: Identifying Common Subtypes in Independent Disease Data Sets. PLoS 
ONE, 2, e1195. https://doi.org/10.1371/journal.pone.0001195 

[29] National Cancer Institute (2017) Cancer Stat Fact: Non-Hodgkin Lymphoma.  
https://seer.cancer.gov/statfacts/html/nhl.html  

[30] Gu, Z. (2012) CePa: Centrality-Based Pathway Enrichment.  
https://cran.r-project.org/package=CePa  

[31] HUGO Gene Nomenclature Committee (n.d.) HGNC Database of Human Genes.  
https://www.genenames.org/ 

 

https://doi.org/10.4236/jdaip.2019.71002
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://arxiv.org/pdf/1706.05137.pdf
http://www.sciencedirect.com/science/article/pii/0041555364901375
https://doi.org/10.1016/0041-5553(64)90137-5
http://www.cs.toronto.edu/%7Etijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.r-project.org/
https://doi.org/10.1007/978-0-387-21706-2
https://cran.r-project.org/package=matrixcalc
https://doi.org/10.1214/ss/1177013815
http://cran.r-project.org/package=mvtnorm
https://doi.org/10.1007/978-3-642-01689-9
https://cran.r-project.org/package=futility
https://cran.r-project.org/package=MBESS
https://cran.r-project.org/package=Matrix
https://cran.r-project.org/package=corpcor
https://doi.org/10.1371/journal.pone.0001195
https://seer.cancer.gov/statfacts/html/nhl.html
https://cran.r-project.org/package=CePa
https://www.genenames.org/

	Ordinal Outcome Modeling: The Application of the Adaptive Moment Estimation Optimizer to the Elastic Net Penalized Stereotype Logit
	Abstract
	Keywords
	1. Introduction
	2. Method
	2.1. Elastic Net Penalized Stereotype Logit
	2.2. Adam Optimization
	2.3. Applied Bootstrap Resampling Procedure

	3. Application to Simulated Data
	Results

	4. Application to NHL Data
	Results

	5. Discussion 
	6. Conclusion 
	Acknowledgements
	Conflicts of Interest
	References

