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Abstract 
Quantifying and mapping heavy metals’ concentrations in the soil are impor-
tant in monitoring and managing heavy metal pollution in the mining areas. 
However, the cover on the soil acts as a balk when retrieving information 
from soil. In order to retrieve heavy metal pollution precisely and quickly 
from hyperspectral images, this study presents a new method to remove 
non-soil information based NDVI from hyper-spectral and multi-spectral 
images. The method assumed that the mixed objects in each pixel of remote 
sensing images are composed only of soil and vegetation-based non-soil 
end-generational endmembers, then, the soil information of each pixel can be 
compensated with the non-soil information removed based on its NDVI. 
Thus, the soil DN value can be corrected to retrieve soil information more 
precisely. The method has been used on the Hyperion image in June 8, 2002 
and the Gaofen-2 (GF-2) image in February 14, 2016 to retrieve the heavy 
metals’ contents in Bai-ma and De-sheng mining areas, Miyi County, Sichuan 
Province. From the non-soil information removed images, the R2 and RMSE 
of the models of estimating Cr, Ag, Cu and Ba in soil are 0.68, 0.724, 0.71, 
0.695 and 75.96, 0.03, 52.88, 284.70 respectively. From the original images, the 
R2 and RMSE of the models of estimating Cr, Ag, Cu and Ba in soil are 0.67, 
0.385, 0.425, 0.406 and 80.11, 0.18, 53.43, 396.49 respectively. The retrieval 
results show that the non-soil information removed images are superior to 
original images in soil heavy metals’ contents retrieval. This indicates that this 
method is feasible, and it can be used in soil information retrieval. 
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1. Introduction 

The pollution of heavy metal in soil has aroused extensive attention in the min-
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ing area. The main reason is that the soil contaminated by heavy metals make a 
great influence on the local citizens and a great threat to the ecological system 
[1] [2] [3]. However, the traditional method of estimating the heavy metals by 
collecting sampling points and analyzing in the laboratory is time-consuming 
and expensive. Therefore, new methods are needed for monitoring and manag-
ing heavy metal pollution in the mining areas. With the improvement in remote 
sensing technology, the new method of establishing inversion models with the 
heavy metals’ concentrations and the feature spectra from hyperspectral and 
high spatial resolution images are popular to monitor heavy metal in soil [4] [5] 
[6] [7]. Many studies have shown that the Visible and Near-infrared spectra of 
soil obtained from remote sensing images were effectively used for retrieving 
real-time heavy metals’ concentrations in large mining areas [3] [8] [9]. 

However, the spectral mix of the pixel is present on both high spatial resolu-
tion image and hyperspectral image. This will make a great influence on the re-
sults [10] [11]. The reasons are mainly: 1) the pixels usually contain a variety of 
ground information for the limited spatial resolution of the sensor; and 2) the 
pixels are of complexity in composition, organization and structure. Even 
though an image pixel size is smaller than the objects under study, the spectral 
features could still be mixed with those of adjacent objects when the pixels are 
on the edge of the objects [12] [13]. Therefore, the spectral unmixing methods 
are widely studied in the past decade. Broadly, the spectral unmixing methods 
can be categorized as linear mixture model (LMM) and nonlinear mixture model 
(NLMM) according to the mathematical formulation. However, NLMM is used 
not as widely as the LMM for its complexity and difficulty in obtaining parame-
ters [10] [14]. The LMM is often used to map the urban impervious surface and 
the target materials with the high spatial resolution images, identify the exposed 
soil, and map the heavy metals’ contents from remote sensing images [15] [16] 
[17] [18] [19]. And, most of the existing unmixing algorithms are based on the 
LMM, which assumes that the spectrum as a linear combination of pure spectra 
of all elements within a pixel and assumes that no significant multiple scattering 
exists among different elements [20], such as non-local sparse unmixing 
(NLSU), blind spectral unmixing method based on sparse component analysis 
(BSUSCA), Structured Sparse regularized Nonnegative Matrix Factorization 
(SS-NMF) and so on [21] [22] [23]. However, these studies are of low accuracy, 
the primary reason is that the non-soil information has not been removed effec-
tively for that the vegetation and the soil have strong correlations when 
processing. 

In this paper, a new method for removing non-soil information based on 
NDVI is proposed. The method tends to obtain a non-soil information removed 
image from original image by compensating the missed soil information. Then, 
the compensated soil information can be used to retrieve and map the heavy 
metals’ concentrations more precisely. The highlights of this paper are as fol-
lows: 
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1) The non-soil information removal method supposes that there are only two 
endmembers: soil and non-soil in original images. This can avoid the influence 
of the correlation between the non-soils and lower the influence of non-soil in-
formation on the soil information extracting. 

2) The non-soil information can be maximum remove by calculating the 
maximum value of the product of DN and the non-soil abundance. 

3) The missed soil information caused by atmospheric and NDVI can be 
compensated to make sure the precision of the soil information be better.  

2. Methodology  
2.1. Study Area and Data 

The mining areas of Bai-ma and De-sheng located in the northeast of Miyi 
County are selected as the study area (Figure 1). Miyi is located in the north of 
the Panzhihua city, the southwest of Sichuan Province. Bai-ma and De-sheng are 
the most important mining areas in Miyi Country. The study area is rich in dif-
ferent kinds of mineral resources, such as vanadium-titanium magnetite ore, 
coal, limestone, dolomite, refractory clay and so on. The waste water containing 
heavy metals such as Ag and Cu from the mining areas can pollute the local soil. 

The spectra of 16 soil samples were collected at about 5 cm below the soil sur-
face in June 2015; the locations of the sample points are shown in Figure 1. The 
contents of Cr, Ag, Ba and Cu of the 16 soil samples had been chemically ana-
lyzed by conventional digestion methods using Inductively Coupled Plasma 
Mass Spectrometer (ICP-MS) (Table 1). The ICP-MS is the most popular ion 
source in analytical chemistry for elemental mass spectrometry. In ICP-MS a 
mass spectrometer is coupled to an ICP torch by an interface including sampler 
and skimmer cones so that representative samples of the plasma can be trans-
mitted through its orifices to the mass analyzer through its orifices to effectively 
eliminate atomic ions Interference, reduce the detection limit of susceptible ele-
ments [24]. 

The spectra of soil samples were obtained from a high spectral resolution ASD 
Fieldspec III spectroradiometer. Before taking any observation, the spectrora-
diometer was calibrated with white spectrum in order to minimize the effect of 
change in sun illumination. The spectral range of this instrument is from 350 
nm to 2500 nm. In the range of 350 - 1000 nm, the spectral resolution is 3 nm 
with 1.4 nm of sampling interval, and in the range of 1000 - 2500 nm, the spatial 
resolution is 10 nm with 2 nm of sampling interval. Each sample was measured 
three times and the average value was calculated afterwards for the feature spec-
tra selection. 

Hyperion image in June 8, 2002 and GF-2 image in February 14, 2016 are col-
Slected as the remote sensing data source. The spectral range of Hyperion image 
is from 400 nm to 2500 nm, which is divided into 242 bands. The spectral range 
of GF-2 image is from 450 nm to 890 nm, which is divided into 4 bands. Soil 
sample’s spectrum of images was obtained by using the position of sample’s row  
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Figure 1. Study area and soil samples (Hyperion (R: band30, G: band21, B: band13) and GF-2 (R: band4, G: band3, B: band2)). 

 
Table 1. Chemical analysis results of Cr, Ag, Cu and Ba (unit: mg/kg). 

 Cr Ag Cu Ba 

Max 520.842 0.276 233.238 1757.989 

Min 65.147 0.101 39.84 173.551 

Mean 192.235 0.18 112.765 837.43 

SD 135.36 0.0507 70.55 473.26 
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and column at the images. 

2.2. Data Pre-Processing 

In general, most heavy metals would not be expected to produce spectral absorp-
tion in the visible and near-infrared regions. However, heavy metal ions can be 
adsorbed by inorganic and organic matter, therefore, the prediction of heavy 
metals’ content can be performed indirectly by visible and near infrared [3] [25]. 
The field soil spectral measurements were pre-processed using the View SpecPro 
to enhance the spectral features in the mining area. The pre-processing of field 
spectra includes smoothing and averaging. 

The digital remotely sensed image may contain noise or error that was intro-
duced by the sensor system (e.g., electronic noise) or the environment (e.g., at-
mospheric scattering of light into the sensor’s field of view) [26]. This can result 
in radiation and geometric distortion to the image [27]. Therefore, image 
pre-processing is required to correct the geometric and radiometric distortion in 
the original image of the study area. In this paper, five main pre-processing steps 
have been taken to correct Hyperion image including bad lines removal, uncali-
brated and water vapor absorption bands removal, streaks removal, smile effect 
correction and atmospheric correction, two main pre-processing steps have been 
taken to correct the GF-2 image including radiation correction and atmospheric 
correction. 

2.3. Non-Soil Information Removal Method Based on NDVI 

NDVI is an effective index for detecting above-ground vegetation conditions, for 
that seasonal and inter-annual changes in vegetation growth and activity can be 
monitored, and the ratio reduces many forms of multiplicative noise (Sun illu-
mination differences, cloud shadows, some atmospheric attenuation, some to-
pographic variations) present in multiple bands of multiple-data image [26] 
[28]. NDVI is defined as: 

NIR RNDVI
NIR R

−
=

+
                         (1) 

where NIR and R are the DN values of the near-infrared and red region respec-
tively. In this paper, band53, band30 and band4, band3 are selected as the 
near-infrared and red bands to calculate the NDVI of Hyperion and GF-2 im-
ages respectively.  

Generally, the greater the amount of healthy green vegetation, the greater the 
NDVI value. However, the NDVI has a negative value when the land covered 
with clouds, snow or water, and the vegetation and soil are the main elements of 
the pixels. Thus, it is assumed that the mixed objects in each pixel are composed 
of only soil and vegetation-based non-soil end-generational endmembers (e.g. 
vegetation, water, cloud and snow. The influence of the terrain and the soil tex-
ture are not taken into account.). Then, the absolute value of NDVI can be used 
to calculate the non-soil “pure” pixel radiation and soil abundance quickly and 
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efficiently, which can be seen as the non-soil abundance. And the non-soil DN 
value can be calculated. Then, the soil DN value can be calculated by removing 
non-soil information according to the principle of physics to reduce the influ-
ence caused by the strong correlation of vegetation and soil. Finally, the soil DN 
value will be corrected by using the probability principle to compensate the 
missed soil information during non-soil removal.  

Thus, the total abundance of a pixel is considered to be 1, and the abundance 
calculation of a pixel is: 

soil non-soil 1f f+ =                            (2) 

where fnon-soil and fsoil are the abundance of non-soil and soil respectively, and the 
absolute value of NDVI of the pixel is taken as the value of fnon-soil. 

Next, the value of the non-soil “pure” pixel in a band (Pi) can be calculated as 
Equation (3): 

( )non-soilmaxi iP D f= ∗                         (3) 

where the Di and fnon-soil are the DN value and the abundance value of non-soil of 
a pixel at i band, Pi is the maximum value of the product of fnon-soil (i.e. the value 
can be used to maximize the removal of non-soil after testing.), and Di which is 
taken as the value of the non-soil “pure” pixel for i band. 

Then, the missed soil information can be compensated with Pi as Equation (4): 

non-soil
soil

1 soil

n
i i

i

D f PD
f=

− ∗
=∑                        (4) 

where n is the number of feature bands, Di is the DN value of a pixel at i band, 
Dsoil represents the total soil information of the pixel from all feature bands. 

The flowchart of the method is shown as follows Figure 2. 

2.4. Accuracy Assessment 

Original and non-soil information removed images obtained by the above me-
thod are used to establish heavy metal retrieval regression models with the heavy 
metals contents in soil. Thus, the feasibility of the method of non-soil informa-
tion removal can be verified by comparing the model accuracy from Original 
and non-soil information removed images.  

Generally, the coefficient of determination (R2) is interpreted as the propor-
tion of the variance in the dependent variable that is predictable from the inde-
pendent variable; the Root mean square error (RMSE) is usually used to measure 
the deviation between the observed and predicted; and the model significance 
index is used to check if the linear statistical relationship exists between the  
 

 
Figure 2. Non-soil information removal model based on NDVI. 
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response variable. Thus, according to relevant references, the R2, RMSE and sig-
nificant index are usually selected to verify the model accuracy and the feasibility 
of the method [3] [5]. In this paper, two methods are used to validate the per-
formance of the non-soil information removal based on the NDVI: 

1) Comparing the R2, the RMSE and the significance index of models from 
original and non-soil information removed images, the greater the R2, the higher 
correlation between the soil information and the heavy metal concentration. In 
the case of significant models, the larger the R2 or the smaller the RMSE, the 
higher the accuracy of the model. The RMSE is defined as: 

( )2

1RMSE

n

i i
i

P O

n
=

−
=
∑

                       (5) 

where the Pi and Oi are the predicted and observed value of the heavy metals at 
the i band, and the n is the number of the soil samples. 

2) The distribution of the retrieved heavy metals’ concentration from non-soil 
information removed images is compared with the field data. A more similar 
distribution trends to the distributions of field data will lead a higher accuracy of 
the models and the extracted soil information. 

The total flowchart to access the accuracy is shown as Figure 3. 

3. Results 
3.1. Non-Soil Information Removed Results 

After a detailed examination on the crest and trough of the spectrum curves of 
the samples for retrieving heavy metals, band11, band13, band44, band120, 
band198, band202, band203, band205, band208, band209, band210, band217,  

 

 
Figure 3. Verification of non-soil information removal model. 
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band218, band222 and band223 are selected as the feature bands for Hyperion, 
and band1, band2 and band4 of GF-2 are selected as feature bands. The non-soil 
“pure” pixel DN value (Pi) of each feature band is calculated with Equations (1), 
(2) and (3), as listed in Table 2. 

Then, with non-soil information removal method presented above, the soil 
information of Hyperion and GF-2 images can be calculated based on corres-
ponding soil and non-soil abundances with Equation (4), as following Equa-
tions: 

soil
11 non-soil 13 non-soil 44 non-soil

Hyper
soil soil soil

120 non-soil 198 non-soil 202 non-soil

soil soil soil

203 non-soil 205 non-so

soil

2816 2172 4332

1394 1245 1225

1140 1173

D f D f D fD
f f f

D f D f D f
f f f

D f D f
f

− ∗ − ∗ − ∗
= + +

− ∗ − ∗ − ∗
+ + +

− ∗ − ∗
+ + il 208 non-soil

soil soil

209 non-soil 210 non-soil 217 non-soil

soil soil soil

218 non-soil 222 non-soil 223 non-soil

soil soil soil

1126

1145 1115 941

844 2216 992

D f
f f

D f D f D f
f f f

D f D f D f
f f f

− ∗
+

− ∗ − ∗ − ∗
+ + +

− ∗ − ∗ − ∗
+ + +

 (6) 

soil
1 non-soil 2 non-soil 4 non-soil

GF-2
soil soil soil

1423 1259 4199D f D f D fG
f f f

− ∗ − ∗ − ∗
= + +    (7) 

where the D11, D13, D44 and so on are the DN value of a pixel at 11, 13, 44 band 
and so on, respectively. 

The pseudo color images from the results and the original data of Hyperion 
and GF-2 are shown in Figure 4 and Figure 5 respectively. From Figure 4, we 
can see that the non-soil information almost covered the entire study area 
(Figure 4(a)), while little non-soil information appeared in Figure 4(b). And 
Figure 5(a) and Figure 5(b) has a similar pattern. That is to say, most non-soil 
information of the images had been removed after this process. 

 
Table 2. The non-soil “pure” pixel DN value (Pi) of each feature band. 

Hyperion GF-2 

feature bands Pi feature bands Pi feature bands Pi 

Band11 2816 Band208 1126 Band1 1423 

Band13 2712 Band209 1145 Band2 1259 

Band44 4332 Band210 1115 Band4 4199 

Band120 1394 Band217 941 - - 

Band198 1245 Band218 844 - - 

Band202 1225 Band222 2216 - - 

Band203 1140 Band223 992 - - 

Band205 1173   - - 
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Figure 4. Hyperion images ((a) original image, (b) non-soil information removed image. 
R: Band53, G: band30 and B: band21 are corresponding to the red, green, and blue chan-
nels respectively). 

 

 
Figure 5. GF-2 images ((a) original image, (b) non-soil information removed image. R: 
Band4, G: band3 and B: band2 are corresponding to the red, green, and blue channels re-
spectively). 

3.2. Geochemical Analysis 

11 soil samples were selected to establish the inversion models randomly, and 
the remaining samples were used to verify these models. The heavy metals con-
centration (Cr, Ag, Cu and Ba) of the 11 soil samples are presented in Table 1. 
From Table 1, we can see that the standard deviation (SD) of Cr, Cu and Ba in 
the soil were relatively high (135.36, 70.55 and 473.26 respectively) except Ag, 
this indicates that their concentrations are of a little great difference in study 
area. 

3.3. Heavy Metal Retrieval from Hyperion Images 

The method of model building was described in another article. The parameters 
of inversion models of Cr and Ag from Hyperion are presented in Table 3. The 
DHyper-soil and RMSE are calculated with Equations (5) and (6). Figure 6 and  
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Table 3. Regression models of Cr and Ag. 

Hyperion Original image Non-soil information removed image 

Element Cr Ag Cr Ag 

Modeling 
bands 

b44, b120 b11 b44, b120 b11, b120 

R2 0.667 0.385 0.68 0.724 

RMSE 80.11 0.18 75.96 0.03 

Significance 0.012 0.042 0.01 0.006 

Equation 
Y = 505.774  
− 0.134*b44  
+ 0.131*b120 

Y = 0.239  
− 8.482E − 6*b11 

Y = 604.116  
− 0.158*b44  
+ 0.15*b120 

Y = 0.21  
− 4.912E − 5*b11  
+ 7.83E − 5*b120 

 

 
Figure 6. Cr’s concentrations in the study area ((a) Retrieved from original image, (b) 
Retrieved from non-soil information removed image). 
 
Figure 7 are the retrieved concentration gradient maps of Cr and Ag. From Ta-
ble 3, we can see that the significance of Cr and Ag are less than 0.05. This indi-
cates that the models of Cr and Ag established from the original and non-soil 
information removed Hyperion image are significant. 

Then, the other soil samples are used to verify the models by indepen-
dent-samples T test. From Table 4, we can see that the P value are all less than 
0.05. This indicates that the all models of Cr and Ag can be used to estimate the 
heavy metals concentration in the mining area. 

3.4. Heavy Metal Retrieval from GF-2 Images 

The parameters of inversion retrieval models of Cu and Ba from GF-2 are pre-
sented in Table 5. The DGF-2soil are calculate with Equation (7). Figure 8 and 
Figure 9 are the gradient maps of Cu and Ba from the calculated results. 

Then, the other soil samples are used to verify the models by indepen-
dent-samples T test. From Table 6, we can see that the P value are all less than  
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Figure 7. Ag’s concentrations in the study area ((a) Retrieved from original image, (b) 
Retrieved from non-soil information removed image). 
 

 
Figure 8. Cu’s concentrations in the study area ((a) Retrieved from original image, (b) 
Retrieved from non-soil information removed image). 
 
0.05. This indicates that the all models of Cu and Ba can be used to estimate the 
heavy metals concentration in the mining area. 

3.5. Validation of Non-Soil Information Removal Results 

From Figure 4 and Figure 5, we can see that the original images have more ve-
getation-based non-soil information than the non-soil information removed 
images. This indicates that most of the vegetation-based non-soil information 
has been removed by the calculation of non-soil “pure” pixel and abundance. 

From Table 3 and Table 5, we can see that the R2 (Cr: 0.68, Ag: 0.724, Cu: 
0.71 and Ba: 0.695) of inversion models (Cr, Ag, Cu and Ba) from non-soil in-
formation removed images are higher than that from original images (Cr: 0.667, 
Ag: 0.385, Cu: 0.425). The RMSE (Cr: 75.96, Ag: 0.03, Cu: 52.88 and Ba: 284.70) 
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Figure 9. Ba’s concentrations in the study area ((a) Retrieved from original image, (b) 
Retrieved from non-soil information removed image). 
 
Table 4. The reference of the T test of the Cr and Ag. 

Hyperion Original image Non-soil information removed image 

Element Cr Ag Cr Ag 

P value 0.039 0.011 0.039 0.007 

 
Table 5. Regression models of Cu and Ba. 

GF-2 Original image Non-soil information removed image 

Element Cu Ba Cu Ba 

Modeling 
bands 

Band1, 2, 4 Band1, 2, 4 

R2 0.425 0.406 0.71 0.695 

RESE 53.43 396.49 52.88 284.70 

Significance 0.249 0.274 0.027 0.032 

Equation 
Y = 10.18 − 0.34*b1 
+ 0.49*b2 − 0.05*b4 

Y = 2212.2 − 2.92*b1 
+ 1.741*b2 − 0.54*b4 

Y = 142.9 + 0.46*b1  
− 1*b2 + 0.26*b4 

Y = 2634 + 3.6*b1  
− 7*b2 + 1.8*b4 

 
Table 6. The reference of the T test of the Cu and Ba. 

GF-2 Original image Non-soil information removed image 

Element Cu Ba Cu Ba 

P value 0.014 0.0003 0.015 0.0004 

 
from non-soil information removed images are lower than that from original 
images (Cr: 80.11, Ag: 0.18, Cu: 53.43 and Ba: 396.49). The model significance 
indexes of Ag, Cu and Ba from original images are greater than 0.04 and the 
models are not significant. While, the inversion models for Cr, Ag, Cu and Ba 
from non-soil information removed images are less than 0.032 and the models 
are significant. From Figures 6-9, we can see that the retrieved heavy metal 
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concentrate (Cr, Ag, Cu and Ba) from non-soil information removed images are 
closer to the field measurements than that from original images. These indicate 
that the soil information is more accurate by the methods of non-soil removing 
based on NDVI and missing soil compensation, and it has a stronger correlation 
with the heavy metals of the soil in the mining area. Thus, the method of 
non-soil information removal based on NDVI for obtaining soil is feasible.  

4. Discussions  

Many spectral unmixing methods have been applied to estimate heavy metals 
contents from hyperspectral and high spatial resolution images. However, these 
methods require complex endmembers selection and abundance calculation, 
which are time-consuming and do not consider the effect of vegetation on soil. 
This paper presented a fast and convenient method based on NDVI to remove 
the vegetation-based non-soil information from the soil surface of the Hyperion 
and GF-2 images in the mining area.  

Comparing the model parameters and the retrieved heavy metals concentra-
tion from the non-soil information and original images, from the non-soil in-
formation removed images, the relationship between the soil information and 
the heavy metals concentration are stronger and the deviation between the 
predicted and the observed value of the heavy metals are less than that from 
original images. Thus, compared with other unmixing methods, in this me-
thod, the multiple linear relationship between non-soil components can be 
reduced based on the NDVI, and the non-soil information can be maximum 
removed by the Pi. Then the missed soil information can be compensation by 
the probability theory. This step makes the obtained soil more accuracy and 
the relationship between the soil information and the heavy metal concentra-
tion stronger. 

However, the retrieved heavy metals in soil with non-soil removed method 
based on NDVI may be influenced by the additive noise effects such as atmos-
pheric path radiance, the scaling problems with saturated signals often encoun-
tered in high-biomass conditions and the canopy background variations. Thus, 
the method has some shortness need to be improved, such as the impact of cloud 
and snow, the selection of the optimal NDVI value and non-soil “pure” DN val-
ue, etc. Then, the non-soil information cannot be removed completely. We will 
try to address these shortcomings and make the non-soil information removed 
method can be used widely. 

5. Conclusion 

A non-soil information removed method based on NDVI from hyper-spectral 
and multi-spectral images was developed for retrieving heavy metal method in 
mining soil. The proposed approach assumes that the mixed objects in each pix-
el of remote sensing images are composed only of soil and vegetation-based 
non-soil end-generational endmembers, then, the soil information of each pixel 
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can be compensated with the non-soil information removed based on its NDVI. 
It makes the non-soil information can be maximum removed and the mission 
soil information can be compensation. Thus, a new non-soil information re-
moved method was developed to retrieve heavy metal concentration in mining 
area more precisely. 
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