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Abstract 
Double Q-learning has been shown to be effective in reinforcement learning scena-
rios when the reward system is stochastic. We apply the idea of double learning that 
this algorithm uses to Sarsa and Expected Sarsa, producing two new algorithms 
called Double Sarsa and Double Expected Sarsa that are shown to be more robust 
than their single counterparts when rewards are stochastic. We find that these algo-
rithms add a significant amount of stability in the learning process at only a minor 
computational cost, which leads to higher returns when using an on-policy algo-
rithm. We then use shallow and deep neural networks to approximate the action- 
value, and show that Double Sarsa and Double Expected Sarsa are much more stable 
after convergence and can collect larger rewards than the single versions. 
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1. Introduction 

Reinforcement learning is concerned with finding optimal solutions to the class of 
problems that can be described as agent-environment interactions. The agent explores 
and takes actions in an environment, which gives the agent a reward, r, for each state, 
s′ , into which the agent transitions as a result of taking action a from the initial state s. 
The goal is to find an optimal policy ( )* |a sπ  that maximizes the expected reward 
collected by the agent [1]. Often, this is described as a Markov Decision Process (MDP), 
which groups this sequence into an experience: ( ), , ,s a r s′ . In an MDP, the state s fully 
describes the environment, meaning that no other information is required to choose 
the next action; in other words, information from all previous states that can affect all 
future states is expressed in s. 
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There are multiple approaches to finding the optimal policy ( )* |a sπ , which gives 
the probability of taking an action a given a state s. One set of techniques, known as 
Policy Gradient methods, directly search the space of available policies for one that  
maximizes the accumulated discounted reward per episode, 

0

T T t
tt

g rγ −
=

= ∑ , where γ   

is the discount rate [2]. Another set of approaches, called Temporal Difference (TD) 
methods [3], estimate the value of a particular state, ( )V s , or state-action pair, 
( ),Q s a , and use these values to derive a policy ( )|a sπ  that maximizes these value 

functions at each step instead of maximizing g. There are other techniques that com-
bine the ideas of Policy Gradient and Temporal Difference methods, most notably a 
class of algorithms called Actor Critic [4] [5], but in this paper we only consider algo-
rithms that fall under the Temporal Difference category. Within this category, there are 
two main types of algorithms: on-policy and off-policy [4]. With off-policy algorithms, 
the target policy being learned is different from the behavior policy, which is the policy 
that the agent uses to explore the environment. For example, the behavior policy might 
be to choose completely random actions, while the target policy might be to always take 
the action with the largest expected return. In contrast to off-policy algorithms, the 
target and behavior policies are the same with on-policy algorithms. 

One of the most popular Temporal Difference algorithms is Q-learning, first pro-
posed in [6]. Q-learning is an off-policy algorithm that learns the greedy action-value 

( )* ,Q s a  by updating the estimate ( ),Q s a  at every step. Although it is guaranteed to 
converge when the environment and rewards are deterministic, it is less robust in sce-
narios where these are stochastic. An extension of the Q-learning algorithm, called 
Double Q-learning [7], uses two action-value estimates ( ),AQ s a  and ( ),BQ s a , im-
proving the performance of Q-learning in these stochastic scenarios. Generally, the av-
erage of ( ),AQ s a  and ( ),BQ s a  tends to be below the estimate that Q-learning 
makes, and is sometimes below ( )* ,Q s a . 

However, in many scenarios an off-policy algorithm is not realistic as it does not ac-
count for possible rewards and penalties that might result from an exploratory behavior 
policy. For example, receiving immediate returns might be more important than a true 
optimal policy, and while an on-policy algorithm may not converge to the optimal pol-
icy, it may still converge in fewer time steps than an off-policy algorithm to a policy 
which may be considered “sufficient” according to the problem domain. Often, these 
on-policy algorithms have stochastic policies that encourage exploration of the envi-
ronment, which can also be a beneficial quality when the environment is subject to 
change. One such policy is called  -greedy [6], which uses the parameter   to con-
trol the probability that the optimal action will be taken over a random one. 

A simple on-policy algorithm that is similar to Q-learning is called Sarsa [8]. Like 
Q-learning, it learns the action-values at each step, but unlike Q-learning, it depends 
solely on the states visited and actions taken. Because of this, Sarsa’s action-value esti-
mate ( ),Q s a  never converges when the learning rate α  is constant, although for a 
sufficiently small α , the policy can converge to one that balances exploration and ex-
ploitation. For example, if an  -greedy policy is used, the policy that Sarsa converges 
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to will avoid states that are adjacent to other states with a large negative reward. In oth-
er words, the policy will account for the possibility of random actions and take a path 
which figuratively does not come “too close to the edge”. A similar on-policy algorithm 
is called Expected Sarsa [9]; like Sarsa, this algorithm converges to a policy that bal-
ances exploration and exploitation. However, unlike Sarsa, the action-value estimate 
also converges, which allowing for much higher learning rates to be utilized. Notably, 
the policies of both of these algorithms can only converge if the reward is deterministic; 
if it is stochastic, the policies are much less likely to converge (unless a sufficiently small 
learning rate is used). 

The algorithms presented above use a tabular format to store the action-values, i.e. 
there is a single entry in the table for every s, a pair; as such, they are limited to simple 
problems where the state-action space is small. For many real problems, this is not the 
case, especially when the state-space is continuous; function approximation must be 
used instead. In application to Temporal Difference algorithms, it is the value functions 
that are approximated [10], and a variety of techniques from supervised learning are 
used. A more recent development is the application of deep learning [11] to Q-learning, 
termed a Deep Q-Network [12]. Deep learning function approximation is the term 
given to neural networks with many layers, and has been shown to be effective in rein-
forcement learning problems with large state-action spaces, such as those encountered 
in Atari games. Double learning has also been applied to Deep Q-Networks, which is 
referred to as Deep Double Q-learning [13], and has shown success in the same do-
main. However, recent work has shown that shallow networks can achieve similar re-
sults [14], so the advantage of deep learning over shallow learning appears to be highly 
domain-dependent. Additionally, deep learning has been applied to Actor Critic me-
thods, combining Deep Q-networks with recent development in deterministic policy 
gradients [15] to produce a robust learning algorithm [16]. 

The current state-of-the-art in reinforcement learning can be seen in [17], which 
combined many techniques in order to learn the game of Go. This study used super-
vised learning to initialize a policy network, and then improved this network through 
self-play and generated new data. This data was then used to train a value network. 
During game play, a Monte Carlo Tree Search algorithm was used to simulate future 
moves and choose the best action. This efficient use of data to solve a problem with 
about 2.08 × 10170 states [18] represents a significant achievement in the field of rein-
forcement learning, and shows the power of combining multiple different techniques. 
The study used a combination of supervised learning and reinforcement learning to 
train both a policy and a value network, and combined real data with simulated data to 
improve their training. Additionally, although during training many CPUs and GPUs 
were used, the final rollout action selection was very efficient and ran on a single ma-
chine in a short period of time. 

2. Algorithms 

In this paper, we present two new algorithms that extend from the Sarsa and Expected 
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Sarsa algorithms, which we refer to as Double Sarsa and Double Expected Sarsa. The 
concept of doubling the algorithms comes from Double Q-learning, where two esti-
mates of the action-value ( ),Q s a  are decoupled and updated against each other in 
order to improve the rate of learning in an environment with a stochastic reward sys-
tem. Although Q-learning and Double Q-learning are off-policy, this concept extends 
naturally to the on-policy algorithms of Sarsa and Expected Sarsa, producing a varia-
tion of each algorithm that is less susceptible to variations in the reward system. In ad-
dition, the ideas of Double Sarsa and Double Expected Sarsa can be extended with 
function approximation of the action-values, in the same way that Q-learning can be 
extended to Deep Q-networks through function approximation. 

2.1. Double Sarsa 

The update rule for Double Q-learning is what makes it unique from standard Q- 
learning. In Q-learning, the action-value is updated according to 

( ) ( ) ( ) ( )1 , , max , , ,t t t ta
Q s a Q s a r Q s a Q s aα γ+ ′

 ′ ′= + + −  
            (1) 

where s is the initial state, a is the action taken from that state, r is the reward observed 
from taking action a, and s′  is the next state the agent reaches resulting from s, a. In 
Double Q-learning, the update is decoupled using two tables, AQ  and BQ : 

( ) ( ) ( ) ( )1 , , , argmax , , .A A B A A
t t t t t

a
Q s a Q s a r Q s Q s a Q s aα γ+

′

  ′ ′ ′= + + −    
      (2) 

The key idea is the replacement of the maximum action-value,  
( ) ( )( )max , , arg max ,a aQ s a Q s Q s a′ ′′ ′ ′ ′ ′= , with the value in a second table. This serves 

to decouple the two tables, tending to reduce susceptibility to random variation in r and 
stabilize the action-values. Additionally, the roles of the two tables AQ  and BQ  are 
periodically switched, meaning that each table is only updated using half of all the ex-
periences and that there is only a marginal increase in computational cost over having a 
single table. 

The update rule for Double Sarsa is very similar to that used for Double Q-learning. 
However, because it is on-policy, a few modifications are necessary. First, we use an  - 
greedy policy that uses the average of the two tables to determine the greedy action, 

( )
( ) ( )( )1 , if arg max , ,

| ,
, otherwise

1

A B

a

a

a Q s a Q s a
a s

N

π
′

 ′ ′− = +
= 


−



            (3) 

where ( )|a sπ  is the probability of taking action a from state s, and aN  is the num-
ber of actions that can be taken from state s. In general, any policy derived from the av-
erage of AQ  and BQ  can be used, such as  -greedy or softmax [19]. The update rule 
then becomes 

( ) ( ) ( ) ( )1 , , , ,A A B A
t t t tQ s a Q s a r Q s a Q s aα γ+  ′ ′= + + −              (4) 

Because Sarsa does not take the maximum action value during the update rule, but 
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does so instead during the computation of the greedy policy, there is a weaker de-
coupling of the two tables. However, AQ  is still updated using the value from BQ  for 
the state-action pair ,s a′ ′ , which helps to reduce the variation in the action-value. 

Figure 1 shows the Algorithm for Double Sarsa, using a generic policy π  that bal-
ances exploration and exploitation. Unlike Double Q-learning, where the algorithm 
updates AQ  or BQ  with equal probability, in Double Sarsa AQ  and BQ  are in-
stead swapped with equal probability to simplify implementation. This algorithm is 
very similar to the original Sarsa algorithm [4], except for the addition of the second 
action-value table and the swapping of the two tables. 

2.2. Double Expected Sarsa 

Expected Sarsa is a more recently developed algorithm that improves on the on-policy 
nature of Sarsa. Because Sarsa has an update rule that requires the next action a′ , it 
cannot converge unless the learning rate is reduced ( 0α → ) or exploration is annealed 
( 0→ ), as a′  always has a degree of randomness. Expected Sarsa changes this with 
an update rule that takes the expected action-value instead of the action-value of ,s a′ ′ : 

( ) ( ) ( ) ( ) ( )1 , , | , , .t t t t
a

Q s a Q s a r a s Q s a Q s aα γ π+
′

 ′ ′ ′ ′= + + − 
 

∑         (5) 

Because the update no longer depends on the next action taken, but instead depends 
on the expected action-value, Expected Sarsa can indeed converge; [9] notes that for the 
case of a greedy policy π , Expected Sarsa is the same as Q-learning. In order adapt this 
to Double Expected Sarsa, we change the summation to be over BQ  instead of AQ : 

( ) ( ) ( ) ( ) ( )1 , , | , , .A A B
t t t t

a
Q s a Q s a r a s Q s a Q s aα γ π+

′

 ′ ′ ′ ′= + + − 
 

∑        (6) 

Although Expected Sarsa can be both on-policy and off-policy, here we discuss only  
 

 
Figure 1. Double Sarsa algorithm, with tabular representation of the action-values. Lines 10 and 
11 swap the references to AQ  and BQ , meaning each table is updated using half of the expe-
riences each. Note that 0γ =  if the next state s′  is terminal, otherwise it is the discount rate. 
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the on-policy version as it often has more utility; in Expected Sarsa, ( ),Q s a  re- 
presents the estimated action-value under target policy π , which is the same as the 
behavior policy when it is on-policy. If the behavior policy and target policy are differ-
ent (i.e. it is off-policy), it is usually more desirable for the target policy to be greedy, 
and not stochastic, in which case Expected Sarsa degenerates to Q-learning. The 
on-policy Double Expected Sarsa algorithm is shown in Figure 2, with lines 8 and 9 
being the only differences from Double Sarsa. The two tables are again decoupled, this 
time in calculating the expected value B

sV ′  under the current policy. Although the ac-
tion a′  is chosen in line 7, it is not needed until the next iteration (it is shown as such 
in order to be consistent with the Double Sarsa algorithm in Figure 1). 

2.3. Neural Network Approximation of Q(s, a) 

Often, it is advantageous to represent the action-value function ( ),Q s a  with a form of 
function approximation, especially when the state space is large or continuous. The 
simplest representation is a linear combination of the state-action features, ( ),s aφ , 
using a vector of weights, θ . In other words, 

( ) ( ), ; , .i i
i

Q s a s aθ θ φ= ∑                         (7) 

If ( ),s aφ  is a one-hot encoding for each ,s a  pair, this degenerates to the tabular 
form discussed above. However, it is often beneficial to introduce non-linearities into 
the function approximator; one set of functions that do so are known as neural net-
works. The action-value function can be written more generally to accommodate this 
change of form: 

( ) ( )( ), ; , ,aQ s a f sθ φ θ=                        (8) 

 

 
Figure 2. Double Expected Sarsa algorithm, with tabular representation of the action-values. 
Lines 11 and 12 swap the references to AQ  and BQ , meaning each table is updated using half of 
the experiences each. Note that 0γ =  if s′  is terminal, otherwise it is the discount rate. 
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where ( )sφ  is a feature vector that represents the state s, θ  is a vector that 
represents the parameters of the network, and af  is the component of the vector-va- 
lued function f that corresponds to action a. It is important to note that this function 
approximation allows for a continuous state-space, but a discrete action-space; the ap-
proximation can be extended further to continuous action-spaces as well, especially in 
actor-critic algorithms [16], but in this paper we only discuss the former approximation. 
In order to update the Sarsa network, we use a target similar to the target used in the 
tabular form, 

( ) ( ), ; , ; ,Y r Q s a Q s aγ θ θ′ ′= + −                    (9) 

and for Expected Sarsa, 

( ) ( ) ( )| , ; , ; .
a

Y r a s Q s a Q s aγ π θ θ
′

′ ′ ′ ′= + −∑              (10) 

Deep Double Sarsa and Deep Double Expected Sarsa use two different neural net-
works that have the same structure; we represent these two networks by their parame-
ters Aθ  and Bθ . Similar to the tabular update rules, the target used for Deep Double 
Sarsa is 

( ) ( ), ; , ; ,A BY r Q s a Q s aγ θ θ′ ′= + −                 (11) 

and the target for Deep Double Expected Sarsa is 

( ) ( ) ( )| , ; , ; .A B A

a
Y r a s Q s a Q s aγ π θ θ

′

′ ′ ′ ′= + −∑            (12) 

As in the tabular algorithms, the policy is derived from the average of ( ), ; AQ s a θ  
and ( ), ; BQ s a θ . The algorithms for Deep Double Sarsa and Deep Double Expected 
Sarsa are shown in Figure 3 and Figure 4, respectively. 

 

 
Figure 3. Deep Double Sarsa algorithm, with neural network representation of the action-values. Lines 11 and 12 
swap the references to Aθ  and Bθ , meaning each table is updated using half of the experiences each. Note that 

0γ =  if s′  is terminal, otherwise it is the discount rate. 
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Figure 4. Deep Double Expected Sarsa algorithm, with neural network representation of the action-values. Lines 
12 and 13 swap the references to Aθ  and Bθ , meaning each table is updated using half of the experiences each. 
Note that 0γ =  if s′  is terminal, otherwise it is the discount rate. 

3. Results 

The experiment used to test the difference between Sarsa, Expected Sarsa, and their re-
spective doubled versions was a simple grid world (see Figure 5) with two terminal 
states, one with a positive reward of 10 and the other with a negative reward of −10. 
Additionally, a blocking “wall” was placed in between the terminal states. Every time 
the agent moves a step in the environment, it receives an average reward r with mean 
µ  and standard deviation σ . The state feature vector was represented by the conca-
tenation of four one-hot encodings of the position of each of the objects, 

( ) ( ) ( )
1 if

, , , and ,
0 if

j
j

i j

s i
s s

s i
φ φ φ φ φ φ

 == = 
≠

A P W G            (13) 

where ( )j
i sφ  is the ith element of the one-hot encoding of the position of object 

{ }, , ,j∈ A P W G , js  is the position of that object, and ( )sφ  is the concatenation of 
all the ( )j sφ  vectors. The number corresponding to each position can be seen in Fig-
ure 5, as well as the object positions, which were inspired from [20]. 

For comparison, we show the difference between the algorithms for rewards with 
both a deterministic distribution, where ( )| 1p r sµ= =  for non-terminal s, and a 
stochastic distribution of two values, where ( ) ( )| | 0.5p r s p r sµ σ µ σ= + = = − =  
for arbitrary σ  for non-terminal s. In both the deterministic and stochastic cases, the 
negative terminal state P had a reward of −10 and the positive terminal state G had a 
reward of +10. An environment with both a positive and negative terminal state is ideal 
for testing the robustness of on-policy algorithms because they must learn a policy that 
minimizes the number of steps to the positive terminal state while avoiding states that 
may lead to the negative terminal state, due to the stochastic nature of the policies. 
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Figure 5. Grid world used to test the four algorithms discussed 
in this paper, left grid shows the number corresponding to the 
position and right grid shows the initial position of each object. 
A is the agent’s starting position, W is the “wall”, P is the ter-
minal state with a reward of −10 (the “pit”), and G is the second 
terminal state with a reward of +10 (the “goal”). A is the only 
position allowed to change throughout the course of an episode. 

 
In this paper, we first compare Sarsa, Expected Sarsa, Double Sarsa, and Double Ex-

pected Sarsa in tabular form, where ( ),Q s a  is represented by a single table entry for 
each s, a pair, varying different parameters of exploration, learning, and rewards. Then, 
we discuss the extension of these algorithms to Q-Networks and Deep Q-Networks, 
using neural networks to approximate ( ),Q s a  in a few scenarios that highlight the 
advantage of applying double learning to Sarsa and Expected Sarsa. 

3.1. Tabular Representation of Q(s, a) 

A comparison of Sarsa, Expected Sarsa, Double Sarsa, and Double Expected Sarsa un-
der a deterministic reward system can be seen in Figure 6(a), showing the average re-
turn was over 100,000 episodes. Expected Sarsa and Double Expected Sarsa appear to 
have almost identical performance, although for small learning rates Expected Sarsa 
tends to perform marginally better; presumably, this is because the doubled version 
must train two tables and consequently takes longer to converge than the single ver-
sion. In the first 1000 episodes under the same reward system, the average return col-
lected by Double Expected Sarsa was about 6.4% less than the reward received by Ex-
pected Sarsa (not shown), which supports this hypothesis. 

However, unlike the Expected algorithms, there is a clear performance difference 
between Sarsa and Double Sarsa for a deterministic reward. Like Expected Sarsa, Sarsa 
performs marginally better than Double Sarsa when the learning rate is small, although 
this is difficult to see in Figure 6(a). However, for learning rates greater than about 0.25, 
Double Sarsa shows a clear performance improvement over the standard Sarsa algo-
rithm, especially as 1α → . When 1α = , the average return collected by Sarsa quickly 
drops off to below 0, while Double Sarsa stillcollects an average return of about 3.5. 
This improvement in performance is likely a consequence of the Sarsa update rule, 
which uses the value of the next action ( ),Q s a′ ′  to update the value at the current state 
and action ( ),Q s a . This can introduce a substantial amount of variation in ( ),Q s a ,  
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Figure 6. (a) Average return per episode vs. learning rate α for 100,000 episodes, deterministic reward with 1µ = −  and 0σ = , and an 
 -greedy policy with 0.1= . Expected Sarsa and Double Expected Sarsa are overlapping due to their convergence to very similar average 
returns. (b) Average return per episode vs. learning rate α for 100,000 episodes, stochastic reward with 1µ = −  and 7σ = , and an  - 
greedy policy with 0.1= . 

 
especially if α is not annealed over time. Double Sarsa reduces this variation by de-
coupling the two tables, preventing against large changes in ( ),Q s a , which tends to 
produce a more stable policy and increase the amount of reward collected. 

Figure 6(b) shows the same comparison between the four algorithms with a stochas-
tic reward, where 1µ = −  and 7σ = . For most of the learning rates tested, the 
doubled versions of the algorithms performed better than their respective single version. 
Unlike the deterministic case, Expected Sarsa does not have a clear advantage over 
Double Expected Sarsa in the first 1000 episodes (not shown), and like the deterministic 
case both exhibit the same trend over 100,000 episodes (Figure 6(b)), although the 
trend is significantly different. 

Figure 7 shows the learning rate below which returns are positive and above which 
they are negative, comparing the learning rate which produces the same average return. 
These results indicate that the double estimators employed by Double Sarsa and Double 
Expected Sarsa allow for faster learning rates under the same stochastic reward condi-
tions. As shown in Figure 7, around a 40% increase in the learning rate can be applied 
before Double Sarsa and Double Expected Sarsa collect rewards equivalent to Sarsa and 
Double Expected Sarsa, respectively. In real world applications, this can be a significant 
advantage, allowing greater returns to be collected earlier on in the learning process. 

A comparison of the path length distributions between the four algorithms in the 
stochastic case is shown in Figure 8. The path length L is the number of steps that it 
took the algorithm to reach a terminal state in a given episode. Although all four algo-
rithms reach the negative terminal state in 1L =  steps with approximately equal 
probability, it is apparent that Double Sarsa and Double Expected Sarsa tend to reach  
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Figure 7. Comparison of the performance of each algorithm with 0.1α = , a stochastic reward system of 1µ = −  and 7σ = , and an 
𝜖𝜖-greedy policy of 0.1= . The zero-crossing was determined by fitting a line g m bα= ⋅ +  to each of the curves in Figure 6(b), using at 
least 7 points very close to the line 0g = , and finding α  such that 0m bα⋅ + = . In all cases, the R2 value was greater than 0.9. The 
computation time was averaged over 100 runs; a single run includes 100,000 episodes after initialization of the algorithm, where an epi-
sode completed when the agent reaches the terminal state. Increase by Doubling was calculated by taking the ratio of the two metrics for 
Double Sasrsa to Sarsa and Double Expected Sarsa to Expected Sarsa. Increase from Sarsa was calculated by taking the ratio of the two 
metrics for Double Sarsa, Expected Sarsa, and Double Expected Sarsa to Sarsa. Computational Efficiency was computed by subtracting the 
percentage increase of computation time from the percentage increase of the zero crossing learning rate. 

 

 
Figure 8. Path length distributions for all four algorithms, accumulated over 100 runs with 100,000 episodes each, truncated to a path 
length of 15L =  to show the most frequently occurring lengths. The path length is the number of steps that were needed to reach a ter-
minal state. An  -greedy policy of 0.1=  was used, with a learning rate of 0.1α = . The reward system was stochastic, with 1µ = −  
and 7σ = . 

 
the positive terminal state in fewer steps than Sarsa and Expected Sarsa. This is likely 
due to the double versions having a more stable policy as a result of having decoupled 
action-value estimates, preventing against large changes in the action-value, as well as 
the policy. 
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Also shown in the table is the average computation time for 100,000 episodes, with 
0.1α = . As can be seen in the table, the extra computational expense of Double Sarsa, 

Expected Sarsa, and Double Expected Sarsa is marginal, with all three algorithms taking 
less than 10% more time than Sarsa. This is in contrast to the increase in the zero 
crossing learning rate (α  where 0g = ), which in all cases is significantly greater than 
the original algorithm. This indicates that there is a significant advantage of using the 
doubled versions of Sarsa and Expected Sarsa when the reward is stochastic. 

As shown with the Double Q-Learning algorithm, Double Sarsa and Double Ex-
pected Sarsa initially tend to have a lower estimate of the action-value than Sarsa and Ex-
pected Sarsa, respectively. Figure 9(a) shows the maximum action value, ( )max ,a Q s a , 
for the initial state of the agent, averaged over 1000 runs, with the doubled versions 
converging to the true value slower than the single versions. In addition, this plot shows 
the increased stability of the action-values that doubling the Sarsa and Expected Sarsa 
algorithms imparts. Interestingly, unlike Double Q-Learning, the Double Sarsa and 
Double Expected Sarsa tended to converge to a higher maximum action value (see Fig-
ure 9(a)) than Sarsa and Expected Sarsa, and approached the true value which was 
converged to in the deterministic case. This is likely due to the increased stability pro-
vided by the two decoupled action-value tables, instead of a single action-value table, 
which improves the quality of the policy and consequently increases the total reward. 

This stability is especially important for on-policy algorithms, as a more stable beha-
vior policy tends to reduce variation the distribution of states visited by the agent, as  

 

 
(a)                                                      (b) 

Figure 9. (a) Maximum action value for the initial state ( )max ,a Q s a  for each algorithm, averaged over 1000 runs. Reward was stochas-

tic with 1µ = −  and 7σ = , with  -greedy policy of 0.1=  and a learning rate of 0.1α = . The true value is the value which Ex-
pected converged to in the deterministic case. (b) Average returns for the same experiment of 1000 runs. The return g is the sum of the 
rewards in a given episode, or 

epsiode
g r=∑ . The convergence of the returns occurs much faster than the estimated maximum action val-

ue of the initial state. 
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well as the actions taken, making them significantly more predictable. For comparison, 
in the experiment shown in Figure 9(a), the average variance of the maximum ac-  

tion-value over all 1000T =  episodes, ( )2 2
1

T
tt Tσ σ

=
= ∑  (where 2

tσ  is the variance  

of ( ),Q s a  at episode t over 1000 runs) was computed. For Sarsa, 2σ  was 4.51, 2.44 
for Double Sarsa, 4.36 for Expected Sarsa, and 2.32 for Double Expected Sarsa. This is a 
significant reduction in variation, given the small difference in the average return 
curves shown in Figure 9(b). 

Figure 10(a) and Figure 10(b) show similar results from an experiment with the 
same parameters, except that the number of episodes was increased to 100,000 and the 
number of runs decreased to 100. As can be seen, the average return collected by 
Double Sarsa and Double Expected Sarsa quickly surpasses that of Sarsa and Expected 
Sarsa, and the maximum action-value increases accordingly. Once again, this is likely 
due to the reduction in variation provided by double learning. It is also interesting to 
note that this is different than what was shown in [7] for Double Q-learning. That study 
found that the double estimator should, on average, underestimate the single estimator; 
this is clearly not the case in Figure 9(a). Likely, this is due to the fact that Q-learning is 
off-policy and takes the max in its update rule, while Sarsa is on-policy and often has a 
stochastic behavior (and target) policy. 

The degree of effectiveness of Double Sarsa and Double Expected Sarsa is highly de-
pendent on the distribution of rewards. Figure 11(a) shows the average return per al-
gorithm against the standard deviation σ  of the two-value stochastic distribution,  

 

 
(a)                                                      (b) 

Figure 10. (a) Maximum action value for the initial state ( )max ,a Q s a  for each algorithm, averaged over 100 runs. Reward was stochas-

tic with 1µ = −  and 7σ = , with  -greedy policy of 0.1=  and a learning rate of 0.1α = . The graph shows the average value every 
1000 episodes, averaged over the previous 1000 episodes. The true value is the value which Expected Sarsa converged to in the determinis-
tic case. (b) Average return for the same experiment as Figure 9(a), averaged over the same 1000 episode intervals, where the return g is 
computed the same way as in Figure 9(b). 
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Figure 11. (a) Average return over 100,000 episodes with varying standard deviation of the reward system, σ . The reward distribution 
had two values, with ( ) ( )| | 0.5p s p sµ σ µ σ− = + =  for non-terminal s. For all cases, 1µ = − , 0.1α = , and an  -greedy policy of 

0.1= . Expected Sarsa had very similar average returns, as did Double Sarsa and Double Expected Sarsa. (b) Average return with varying 

power x for  -decreasing policy of ( )1 xn s= , taken over 10,000 episodes and averaged over 100 runs. A stochastic reward system was 

used, with 1µ = −  and 7σ = , and the learning rate was kept constant at 0.3α =  for all four algorithms. 
 
with 1µ = − , 0.1α = , and 0.1= . It appears that the doubled versions are signifi-
cantly more robust with respect to variations in the reward distribution. For example, 
when 20σ = , Double Sarsa and Double Expected Sarsa still net positive rewards, while 
Sarsa and Expected Sarsa are significantly negative. Note that this means the reward 
that { }21,19r∈ −  for non-terminal s, which covers a range that is about double the 
range of the terminal rewards, { }10,10r∈ − . 

The advantage of doubling Sarsa and Expected Sarsa can also be seen in Figure 11(b), 
which compares the average return collected by each algorithm over 10,000 episodes 
with an  -decreasing [21] policy and 0.3α = . For the  -decreasing policy,   was 
calculated according to ( )1 xn s= , where ( )n s  is the number of times s was visited 
and x is an arbitrary exponent used to control how quickly 0→ . For the same learn-
ing rate, a faster decreasing   (a larger x) can be used with Double Sarsa and Double 
Expected Sarsa than with Sarsa and Expected Sarsa before the returns collapse, meaning 
a greedy policy can be more quickly achieved and greater returns can be collected; in 
situations where exploration is highly undesirable (e.g. it is expensive), this can be a 
significant advantage. 

3.2. Neural Network Representation of Q(s, a) 

In order to test the robustness of each algorithm, we tested each of them with neural 
network function approximation of ( ),Q s a . All neural networks were implemented 
using the Keras library [22], and backpropagation was performed using the RMS Prop 
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technique [23]. A comparison of different neural network architectures applied to each 
algorithm can be seen in Figure 12. The parameter n represents trials from a range of 
values; typically, { }5,10, ,100n∈  . The returns were averaged over 16 runs in order to 
reduce natural variations in performance from random initialization of the network 
parameters, θ , and the maximum average return for each architecture was taken over 
n according to max maxn ng g= , where ng  is the average return for a given architec-
ture with parameter n. As can be seen in the figure, a variety of trends are apparent. 
First, as the network architecture transitions from shallow to deep, the average return 
collected generally decreases. For a random policy, the average return g was determined 
experimentally to be about −16.03, indicating that any network architecture with an 
average return 16.03g > −  has learned a policy better than random, and any network 
architecture with an average return 10g > −  has learned a policy that must reach the 
positive terminal state at least part of the time. 

For the architectures shown, the average increase in return of Double Sarsa (DS) over 
Sarsa (S), DS Sg g− , is 1.05 ± 6.29, for Expected Sarsa (ES) the average increase in re-
turn over Sarsa ES Sg g−  is 1.42 ± 3.53, and for Double Expected Sarsa (DES), 

DES Sg g−  is 0.59 ± 7.23 (the uncertainty is the standard deviation of the differences). 
Clearly, Double Sarsa, Expected Sarsa, and Double Expected Sarsa are improvements 
over Sarsa when neural networks are used. Presumably, this is because all three provide 
increased stability to the action-value estimates, in different ways. 

 

 
Figure 12. Comparison of average returns collected by neural network implementations of the four algorithms over 10,000 episodes, av-
eraged over 4 runs and maximized over the size of the last hidden layer (maxngn for each algorithm and network parameter). The input 
was a vector of length 64, concatenating the one-hot encodings of the positions of the agent, the “wall”, the “pit”, and the “goal”, each 
vectors of length 16. The network architecture represents the size of the hidden layers as a list, in consecutive order from left to right, and 
𝑛𝑛represents a parameter that was typically in the range of 5 to 10. A sub-list such as [ ],c wn n  indicates this layer is a convolutional layer 

with cn  filters of wn  inputs. The output layer had 4 units, one for each action-value. Each hidden layer used a rectified linear activation 
function, and the output layer used a linear activation function. 
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Although it is apparent that doubling Sarsa and Expected Sarsa generally improves 
the performance the algorithms when neural networks are used to approximate the ac-
tion-value function, the advantage of deep learning over shallow learning is contra-
dicted by our experiments. Presumably, this is because there are comparatively very few 
states in our simple grid world environment; it is likely that, as the size of the grid in-
creases, the benefit of neural network approximation might increase. However, even in 
this case, the advantage of deep learning over shallow learning might not fully become 
apparent without increasing the complexity of the environment; deep neural networks 
might not be beneficial until the environment reaches a certain level of complexity and 
non-linearity. 

Even so, the experiments summarized in Figure 12 show the effect of using function 
approximation on an on-policy algorithm, which in this case decreased the average re-
turn significantly, which is something that was not observed with off-policy algorithms. 
Likely, this is a product of the increased feedback present in on-policy algorithms; the 
choice of action a affects the update of θ , which changes the action-values and policy, 
and consequently affects the choice of the next action a′ . In off-policy algorithms, θ  
does not affect the policy, meaning that there is a greater degree of stability when 
training the neural network approximator. 

4. Conclusion 

Current on-policy reinforcement algorithms are less effective when rewards are sto-
chastic, requiring a reduction in the learning rate in order to maintain a stable policy. 
Two new on-policy reinforcement learning algorithms, Double Sarsa and Double Ex-
pected Sarsa, were proposed in this paper to address this issue. Similar to what was 
found with Double Q-learning, Double Sarsa and Double Expected Sarsa were found to 
be more robust to random rewards. For a constant learning rate α , these algorithms 
are more stable to large variations in rewards, allowing them to still achieve significant 
returns when the standard deviation σ  is significantly larger than the magnitude of 
the rewards received in the terminal states. We found that the estimated action-values 
of Double Sarsa and Double Expected Sarsa were much more stable than those of both 
Sarsa and Expected Sarsa, which resulted in a better policy. However, unlike Double 
Q-learning, we showed that the double estimators of the proposed algorithms could 
overestimate the single estimators of the original algorithms. In addition, we found 
that, for the same average return, a more aggressive learning rate could be used with the 
doubled versions, at only a minor computational cost. Finally, we demonstrated that 
this technique could be extended with neural networks and deep reinforcement learn-
ing, showing the same improvement from doubling as the tabular forms do. Future 
work should focus on exploring the robustness of the neural network versions of 
Double Sarsa and Double Expected Sarsa in more complex environments. 
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