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Abstract 
In this simulation study, five correlation coefficients, namely, Pearson, Spearman, Kendal Tau, 
Permutation-based, and Winsorized were compared in terms of Type I error rate and power un-
der different scenarios where the underlying distributions of the variables of interest, sample siz-
es and correlation patterns were varied. Simulation results showed that the Type I error rate and 
power of Pearson correlation coefficient were negatively affected by the distribution shapes espe-
cially for small sample sizes, which was much more pronounced for Spearman Rank and Kendal 
Tau correlation coefficients especially when sample sizes were small. In general, Permutation- 
based and Winsorized correlation coefficients are more robust to distribution shapes and correla-
tion patterns, regardless of sample size. In conclusion, when assumptions of Pearson correlation 
coefficient are not satisfied, Permutation-based and Winsorized correlation coefficients seem to 
be better alternatives. 
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1. Introduction 
In practice, researchers are often interested in investigating the linear association between two variables, where 
Pearson-moment correlation coefficient (r) is probably the most commonly used method [1]-[4]. This correlation 
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coefficient, however, is only valid under the assumptions of bivariate normality, and linear relationship between 
and homoscedasticity of the two variables [5]-[8]. It is also highly sensitive to outliers as reported by Wilcox [5] 
that a single outlier can mask strong relationship between two variables. In practice, these assumptions may not 
be satisfied, which results in a decrease in power and a deviation of the type I error rate from the nominal level 
[9]-[12]. The issue of non-normality, a commonly recommended approach is to normalize the non-normal va-
riables using an appropriate transformation and then compute Pearson correlation coefficient on the transformed 
data. However, in practice, transformation approach does not give satisfactory results in many experimental 
conditions [13] [14]. Various alternatives have been proposed, such as Spearman-Rank, Kendall-Tau, non-  
normal transformation based Pearson correlation coefficient, Winsorized and Permutation-based correlation 
coefficients when assumptions of Pearson-Moment correlation are not satisfied [5] [15] [16], among which 
Spearman-Rank correlation coefficient is the next most commonly utilized approach in practice while the Win-
sorized and Permutation-based correlation coefficients may be even more appropriate as they both are not highly 
affected by distribution shape and outliers [2] [12] [16]-[19]. However, the relative performance of these differ-
ent methods needs to be explored further.  

In this study, we compare the performance of the Pearson-moment correlation coefficient with that of the al-
ternatives, namely, Spearman-Rank, Kendall-Tau, Winsorized and the Permutation-based correlation coefficient 
under different experimental conditions through extensive simulations. In Section 2, we provide a brief descrip-
tion of the correlation coefficients we are comparing. In Section 3, we describe those experimentation condition, 
followed by the results of these simulations in Section 4. We end with a practical real-life example and discus-
sions. 

2. Materials and Methods 
2.1. Simulation Setting 
Three different bivariate distributions, namely, bivariate normal distribution, bivariate t-distribution with 10 de-
gree of freedom, and bivariate log-normal distribution (skewness = 2.1), were considered, where the choices of 
bivariate t and log-normal distributions represents different degrees of violations of bivariate normality. All 
three distributions were generated as suitable transformations from a standard bivariate normal distribution with 
a given covariance structure. 

The bivariate normal distributions ( ) ( )2 2, ~ , , , ,t t
x y x y xyX Y BVN µ µ σ σ ρ  were generated according to the 

following transformation: 
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The bivariate t-distribution with 10 d.f. ( ) ( ), ~ ,T T xyX Y t dfρ  was generated as follows: 
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where, u and v are independent variables generated from the gamma distribution.  
The log-normal distribution was generated as an exponential transformation of the bivariate normal distribu-

tion as follows: 
( ) ( ) ( ), 2 2

log loge , ~ LogNormal , , , ,
t tX Y

n n x y x y xyX Y µ µ σ σ ρ− −=  [20]-[23]. 

For each experimentation condition with sample sizes of 5, 10, 20, 30, 50, and 100, and the true correlation 
coefficients of 0, 0.2, 0.4, 0.6 and 0.8, 50,000 random samples were generated. Naturally, the experimental con-
ditions with the true Pearson’s correlation coefficient of 0 (zero) correspond to the absence of any relations be-
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tween two variables; thus, the rejection of the null hypothesis that ρ = 0 corresponds to the type I error rate while 
the rejection rate is the test power when ρ ≠ 0. 

The type I error rate and test power are estimated as the rejection proportion based on the nominal alpha level 
of 0.05; that is, the rejection rate (R) is calculated as 

{ }*P
I  

R
N

α<
=  

where I is the indicator function, *P , is the permutation p-value, and N is the number of simulations. IMSL li-
brary of Fortran Power Station Developer was used for all simulations. 

2.2. Correlation Coefficients 
2.2.1. Pearson-Moment Correlation Coefficient 
Given a bivariate data set of size n, ( ) ( ) ( )1 1 2 2, , , , , ,n nx y x y x y , the sample Pearson-moment correlation coef-
ficient, xyr , between variables X and Y is defined by the formula 

( )( )2 2

x y
xy
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d d
r

d d
= ∑

∑ ∑
 

where x yd d∑  is the sum of products of the departures from the means, 2
xd∑  and 2

yd∑  are the sum of 
squares of X and Y variables, respectively [24]. 

2.2.2. Spearman-Rank Correlation Coefficient 
Spearman’s rank correlation provides a distribution free test of independence between two variables. Let R(x) 
and R(y) denote the ranks of a pair of variables (X and Y). In this case, Spearman-Rank correlation coefficient is 
calculated as  
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2.2.3. Winsorized Correlation 
It is well known that the Pearson correlation coefficient is sensitive to outliers. Wilcox (2001) proposed that one 
of the ways of handling outliers is to compute the Winsorized correlation coefficient, which is computed after 
the k smallest observations are replaced by the (k + 1)st smallest observation, and the k largest observations are 
replaced by the (k + 1)st largest observation. Therefore, the observations are winsorizedat each end of both X and 
Y [5] [18]. 

Let ( ) ( ) ( )1 1 2 2, , , , , ,n nX Y X Y X Y  be a random sample from any bivariate distribution. We winsorize iX  
to iW  and iY  to iV  as described above. Then, the Winsorized correlation coefficient wr , is computed same 
as the Pearson moment correlation using the Winsorized data as follows: 

( )( )
( ) ( )2 2 2 2

i W i W W V
w

W Vi W i W

W X V Y d d
r

d dW X V Y

− −
= =

− −

∑ ∑
∑ ∑∑ ∑  

where WX  and WY  are the Winsorized means of X and Y variables, respectively Let γ denote the Winsorized 
percent and define g nγ= ; then, wr  is distributed as t-distribution with (n-2g-2) d.f. [18]. 

2.2.4. Permutation-Based Pearson Correlation 
Principals of permutation tests consist of the following four basic steps:  

1) Calculate the Pearson correlation coefficient, xyr , using the original data set.  
2) Find all possible permutations as: n!; if n is too large, take a large sample, say, 10,000, from all possible 



E. Tuğran et al. 
 

 
90 

permutations. 
3) Re-calculate the Pearson correlation coefficient for each permutation sample ( pxyr ), and 
4) Compare the absolute value of the correlation coefficients from the permuted samples with the absolute 

value of the correlation coefficient from the original sample. The permutation-based p-value is computed by 
counting the number of times that correlation coefficients ( pxyr ) calculated from all permuted samples are great-
er than or equal to calculated Pearson correlation coefficient ( xyr ) and dividing it by the total number of permu-
tations used, which is shown as follows: 

Number of simulation with 

Total number of simulation
pxy xyr r

P
≥

≅  [25] [26]. 

In our simulations, we used 10,000 permutations to obtain the permutation p-values to evaluate the Type-1 
error and power.  

2.2.5. Kendall-Tau Correlation 
Let ( ) ( ) ( )1 1 2 2, , , , , ,n nX Y X Y X Y  be a set of joint observations from two random variables, X and Y. Any pair of 
observations ( ),i iX Y  and ( ),j jX Y  are called to be concordant if the ranks for both pairs agree (i.e. if both 

i jX X>  and i jY Y>  or if both i jX X<  and i jY Y< ), otherwise discordant if i jX X>  and i jY Y<  or if 
i jX X<  and i jY Y> .  
Let C and D denote the number concordant and discordant pairs, respectively. The Kendall Tau coefficient is 

defined as: 

( ) ( )( )1 2taur C D n n= − −  [27]. 

3. Results 
The empirical type I error rates and power for Pearson-moment, Spearman-Rank, Kendal-Tau, Permutation- 
based and Winsorized correlation coefficients are presented in Tables 1-3. When samples are taken from biva-
riate normal distribution, which is the ideal case for Pearson-moment correlation coefficient, except for very 
small sample sizes such as n = 5, all correlation coefficients retain the type I error rate at the nominal. When the 
type I error rate and power were evaluated together Pearson, Winsorized and Permutation-based correlation 
coefficients are more robust when compared to the Spearman-Rank and Kendall-Tau correlation coefficients.  

Empirical the type I error rates for bivariate t-distribution with 10 d.f. are given in Table 2. As seen in Table 
2, the type I error rates are very similar to obtained under bivariate normality presented in Table 1, which is not 
surprising because bivariate t-distribution with 10 degrees of freedom is quite close to the bivariate normal dis-
tribution. Permutation-based and Winsorized correlation coefficients are the best especially when sample sizes 
are small (n ≤ 10) under these experimental conditions as they retain the type-I error rate while have higher 
power than the other approaches. On the other hand, as sample size increases, all correlations coefficient tend to 
give similar results as expected.   

The empirical type I error rate and power of the correlation coefficients under bivariate lognormal distribution 
are presented in Table 3, where it is obvious that the Pearson correlation coefficient is highly negatively af-
fected by the distribution shape. The empirical the type I error rate for Pearson correlation coefficient is esti-
mated to be greater than 6% even when sample size is 100. Spearman-Rank and Kendall-Tau correlation coeffi-
cients are not much affected from the distribution shape where their type I error rates are quite similar to what 
was observed the type I error bivariate normal distribution. These two tests especially affected by the sample 
sizes, which is not surprising. Under these experimental conditions, the Winsorized and Permutation-based cor-
relation coefficients, especially the Winsorized correlation coefficient, seem to be the most robust alternatives to 
the distribution shape, while all methods except Pearson correlation coefficient, seem to have similar the type I 
error rates as sample sizes are increased. When both the type I error rate and power were evaluated together, the 
Winsorized and Permutation-based correlation coefficients seem to be more advantageous over the Pearson, 
Spearman-Rank and Kendall-Tau correlation coefficients as they are more robust to the shape of the underlying 
distribution and sample size. 

We also studied sampling distributions of the estimates for different correlation coefficients to evaluate the 
relative frequency of the positive estimates which provide an indirect indication of the relative test power of  
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Table 1. Type I error rates and test powers when samples taken from bivariate normal distribution.                                

Sample size Correlation approach 

( )1α β−  

True correlation coefficients 

0 0.2 0.4 0.6 0.8 

 Pearson 4.93 9.00 16.50 30.42 58.23 

 Spearman-Rank 1.70 2.02 3.03 5.75 13.44 

5 Kendal-Tau 1.67 2.00 3.04 5.88 13.45 

 Permutation 6.03 11.01 17.85 30.84 55.43 

 Winsorized 4.96 9.21 16.63 30.37 58.46 

 Pearson 5.14 13.77 32.17 62.56 92.76 

 Spearman-Rank 4.95 7.50 17.86 39.01 75.75 

10 Kendal-Tau 4.16 7.48 17.01 38.15 74.73 

 Permutation 5.75 16.27 36.22 68.36 94.88 

 Winsorized 5.10 13.87 31.66 60.59 90.92 

 Pearson 4.83 22.01 57.86 91.53 99.88 

 Spearman-Rank 4.89 11.96 37.15 76.70 98.66 

20 Kendal-Tau 4.77 11.49 36.11 75.41 98.56 

 Permutation 5.88 24.04 57.34 91.33 99.90 

 Winsorized 4.95 19.91 50.79 85.77 99.47 

 Pearson 4.95 28.17 72.71 97.74 99.99 

 Spearman-Rank 4.97 17.03 54.40 92.31 99.94 

30 Kendal-Tau 4.99 16.74 54.30 92.26 99.93 

 Permutation 5.06 30.75 74.28 97.76 100.00 

 Winsorized 5.00 25.85 67.18 96.00 99.98 

 Pearson 4.92 40.08 90.10 99.90 100.00 

 Spearman-Rank 5.02 37.77 86.62 99.76 100.00 

50 Kendal-Tau 5.01 25.89 78.51 99.39 100.00 

 Permutation 5.14 42.23 90.14 99.97 100.00 

 Winsorized 4.85 59.32 98.85 100.00 100.00 

 Pearson 4.93 64.10 99.46 100.00 100.00 

 Spearman-Rank 4.96 59.83 98.95 100.00 100.00 

100 Kendal-Tau 5.00 47.47 97.75 100.00 100.00 

 Permutation 5.29 34.20 82.18 99.41 100.00 

 Winsorized 4.91 59.32 98.85 100.00 100.00 
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Table 2. Type I error rates and test powers when samples taken from bivariate t-distribution with 10 d.f.                         

Sample size Correlation approach 

( )1α β−  

True population coefficients 

0 0.2 0.4 0.6 0.8 

 Pearson 5.02 8.89 15.73 28.30 52.95 

 Spearman-Rank 1.64 1.99 3.05 5.39 11.85 

5 Kendal-Tau 1.64 2.01 3.15 5.84 13.43 

 Permutation 5.94 10.09 17.94 29.06 51.48 

 Winsorized 4.98 8.95 15.91 28.63 53.16 

 Pearson 5.14 13.15 30.29 58.24 89.65 

 Spearman-Rank 4.94 7.47 17.00 37.02 72.21 

10 Kendal-Tau 4.69 7.33 16.99 38.25 75.05 

 Permutation 5.08 13.92 34.11 64.31 92.07 

 Winsorized 5.13 13.66 30.64 58.84 89.73 

 Pearson 4.94 19.97 52.14 87.01 99.64 

 Spearman-Rank 4.94 11.74 35.56 74.01 98.16 

20 Kendal-Tau 4.75 11.66 36.12 75.44 98.52 

 Permutation 4.91 20.83 51.68 87.72 99.59 

 Winsorized 5.08 19.22 49.29 84.45 99.31 

 Pearson 4.98 26.35 68.06 96.47 99.99 

 Spearman-Rank 5.06 16.16 52.67 90.88 99.92 

30 Kendal-Tau 4.92 16.42 54.38 92.16 99.94 

 Permutation 4.81 26.35 68.56 97.03 100.00 

 Winsorized 5.16 25.23 65.62 95.31 99.97 

 Pearson 4.99 37.27 86.92 99.77 100.00 

 Spearman-Rank 5.03 36.29 85.33 99.67 100.00 

50 Kendal-Tau 4.93 25.94 78.53 99.41 100.00 

 Permutation 5.33 38.29 87.26 99.71 100.00 

 Winsorized 5.00 35.86 85.23 99.65 100.00 

 Pearson 4.91 59.65 98.93 100.00 100.00 

 Spearman-Rank 4.99 58.38 98.71 99.99 100.00 

100 Kendal-Tau 5.01 47.31 97.77 99.99 100.00 

 Permutation 5.32 59.69 98.82 100.00 100.00 

 Winsorized 5.08 57.95 98.55 99.99 100.00 
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Table 3. Type I error rates and test powers when samples taken from bivariate log-normal distribution.                              

Sample size Correlation approach 

( )1α β−  

True population coefficients 

0 0.2 0.4 0.6 0.8 

 Pearson 8.05 13.33 21.52 33.38 33.14 

 Spearman-Rank 1.69 2.03 3.15 5.95 13.26 

5 Kendal-Tau 1.64 2.01 3.15 5.84 13.43 

 Permutation 5.96 10.05 17.05 27.25 49.35 

 Winsorized 7.81 13.42 21.12 33.34 54.59 

 Pearson 7.91 16.16 29.91 50.86 51.31 

 Spearman-Rank 4.99 7.62 17.06 39.06 75.73 

10 Kendal-Tau 4.69 7.33 16.99 38.25 75.50 

 Permutation 5.23 12.71 24.92 46.57 80.06 

 Winsorized 5.47 13.37 28.64 54.37 87.05 

 Pearson 7.22 19.47 41.93 72.97 73.25 

 Spearman-Rank 4.84 11.95 37.46 76.65 98.72 

20 Kendal-Tau 4.75 11.66 36.12 75.44 98.52 

 Permutation 5.44 14.65 33.72 63.22 94.05 

 Winsorized 5.44 18.67 45.86 80.05 98.97 

 Pearson 7.92 21.98 49.86 83.87 99.64 

 Spearman-Rank 5.01 16.75 54.67 92.39 99.95 

30 Kendal-Tau 4.92 16.42 54.38 92.16 99.94 

 Permutation 5.20 18.13 42.86 77.31 98.85 

 Winsorized 5.37 23.89 60.43 92.98 99.95 

 Pearson 6.60 27.11 64.19 94.89 95.05 

 Spearman-Rank 5.06 37.33 86.85 99.76 100.00 

50 Kendal-Tau 4.93 25.94 78.53 99.41 100.00 

 Permutation 5.31 22.91 57.68 91.65 99.95 

 Winsorized 5.37 32.89 80.31 99.24 100.00 

 Pearson 6.34 37.49 85.16 99.73 99.73 

 Spearman-Rank 5.00 60.25 98.95 100.00 100.00 

100 Kendal-Tau 5.01 47.31 97.77 99.99 100.00 

 Permutation 5.29 34.20 80.58 99.41 100.00 

 Winsorized 5.16 52.50 97.20 99.99 100.00 
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these correlation coefficients. It is expected to observe a higher frequency of positive estimates for the correla- 
tion coefficient which corresponds to higher power when compared to the others. As expected, the number of 
positive correlation coefficient estimates increase as the sample size increases (Figures 1-3). In general, the test 
power of Permutation-based, Winsorized and Pearson correlation coefficients are higher than those of the 
Spearman rank and Kendal Tau correlation coefficients. There are significant differences between these tests 
especially when the sample size is small. 

Figures 1-3 (also these) are examples of the sampling distributions of the five correlation coefficient methods 
for the true correlation coefficient of 0.6 and sample sizes of 5, 20 and 100, respectively. Each sampling distribution  
 

 
Figure 1. Sampling distributions of Pearson-Moment, Spearman-Rank, Kendal Tau and Winsorized correlation coefficients 
when samples were taken from bivariate normal distribution with ρ = 0.60.                                              
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Figure 2. Sampling distributions of Pearson-Moment, Spearman-Rank, Kendal Tau and Winsorized correlation coefficients 
when samples were taken from bivariate t-distribution with 10 d.f.                                                       
 
is obtained from 50,000 simulations. Despite the smaller range, the frequency of positive estimates of Kendall’s 
correlation coefficient is the least powerful of the five approaches. 

4. A Real-Life Application 
To illustrate the application of the five correlation coefficients discussed above. We used a data set that is ob-
tained from an experiment to investigate the effects of three different feeding programs (AD: Adlibitum, R20:  
Feed Restriction Program 1, NF6: Feed Restriction Program 2) on growth curves of male chickens (Table 4), 
where the association between the back weight and the chest weight was of interest to the investigator. 
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Figure 3. Sampling distributions of Pearson-Moment, Spearman-Rank, Kendal Tau and Winsorized correlation coefficients 
when samples were taken from bivariate log-normal distribution.                                                                                         
 
Table 4. Back weight (g) and chest weight (g) of chickens.                                                               

Back weight Chest weight 
365.0 479.5 
381.0 401.5 
256.0 346.5 
367.5 403.0 
350.5 380.0 
257.5 334.0 
402.0 377.5 
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4.1. Pearson Correlation Coefficient 
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4.2. Spearman Rank Correlation 

Back weight (X) Chest weight (Y) Rank for X Rank for Y D (Xi − Yi) D2 

365.0 479.5 4 7 −3 9 

381.0 401.5 6 5 1 1 
256.0 346.5 1 2 −1 1 
367.5 403.0 5 6 −1 1 

350.5 380.0 3 4 −1 1 

257.5 334.0 2 1 1 1 

402.0 377.5 7 3 4 16 
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4.3. Kendall Tau Correlation 
For this data set, the number concordant and discordant pairs are found to be 13 and 8, respectively. Thus, the 
Kendall Tau correlation coefficient and its significance test are calculated as follows: 

( ) ( )( ) ( )1 2 13 8 21 0.238 23.8%taur C D n n= − − = − = =  

( )
( )

( )3 1 3 0.238 42
0.751.

382 2 5
taur n n

Z
n

∗ −
= = =

+
 

4.4. Winsorized Correlation 
Firstly, the data are sorted from the smallest to the largest in each cell. Then, the smallest and the largest values 
are replaced with the observations closest to them. Let Winsorized percentage, g, be 10.0%. In this case, the new 
data set would be as follows: 
 

Back weight (X) Chest weight (Y) 

365.0 403.0 
381.0 401.5 

257.5 346.5 

367.5 403.0 

350.5 380.0 
257.5 346.5 
381.0 377.5 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2360 2658
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4.5. Permutation-Based Correlation Coefficient 
For this data set, it is possible to form 7! 7 6 5 4 3 2 1 5040= × × × × × × =  permutation samples. From these poss-
ible permutations, we have computed the permutation-based p-value as 0.152. Correlation coefficient values and 
hypotheses testing about these correlation coefficients are given in Table 5. As seen in Table 5, while the Win-
sorized correlation coefficient rejected the null hypothesis, the Pearson, Permutation-based, Spearman and Ken-
dal-Tau correlations accepted the null hypothesis. Therefore, due to differences in their theory, computation 
steps, and assumptions it is not surprise to get different results even the same data set is used. 

5. Discussion 
In any research area, association between two variables is often of interest to the researcher; for example, the 
researcher may be interested in estimating the association between weight and systolic blood pressure, or plant 
length and yield, etc. In doing so, the researcher wishes to test for the existence of an association as well as its 
strength and direction if one exists. To do that, among various available methods, the researcher needs to choose 
the one that is most suitable to the data at hand, which may not be an easy task. Although most commonly em-
ployed in practice, many studies have shown that the Pearson-moment correlation coefficient is not robust to the 
violations of its assumptions, which prompts the researcher to consider alternatives such as Spearman-Rank, 
Kendal-Tau, and Pearson correlation-based nonlinear transformation, Permutation-based and Winsorized corre-
lation coefficients, etc., where Spearman-Rank and Kendal-Tau correlation coefficients are the most cited alter-
natives. However, although the advantages of these two correlation coefficients for the ordinal and ranked data 
are emphasized, their performance under continuous data is not clear. In addition, the performance of the 
Spearman-Rank correlation coefficient has not been investigated thoroughly under many experimental condi-
tions which the researcher faces in practice. Another practical approach is to normalize the data via a suitable 
transformation so to use Pearson-correlation coefficient [15] [16] [28] [29]. However, nonlinear transformations  
 
Table 5. Correlation coefficients, the corresponding critical values, and decision about null hypothesis.                            

Correlation coefficient Values Critical table value Decision 

Pearson 0.621 2.571 H0: accept 

Spearman 0.464 2.571 H0: accept 

Kendall 0.238 1.96 H0: accept 

Winsorized 0.901 2.571 H0: reject 

Permutation 0.152 0.05 H0: accept 
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are not given satisfactory results especially when distributions are highly skewed and sample size is small. Fur-
thermore, nonlinear transformations can cause to interpretational ambiguity [13] [14]. Thus, it necessitates using 
other robust alternatives such as Winsorized and Permutation-based correlation coefficients when assumptions 
of Pearson-moment correlation coefficient are violated. However, there has been a need to extensively investi-
gate the performance of these two correlation coefficients under different experimental conditions commonly 
met in practice.  

Simulation results showed that unless severe deviations from the normality assumptionexist, Pearson correla-
tion coefficient is a method of choice, which is the case under both bivariate normal distribution and bivariate 
t-distribution with 10 d.f, where there is no skewness. However, it is sensitive to excessive deviations from the 
normality especially to skewness with small sample sizes (n < 50).  

Although Spearman-Rank correlation coefficient is the most recommended when assumptions of Pearson- 
moment correlation coefficient is not met, in our simulations, its performance as well as the performance of 
Kendal-Tau are quite poor. Our findings seem to contradict with those of Fowler [10] who reported that Spear-
man’s correlation was more powerful than Pearson’s r across a range of non-normal bivariate distributions. 
Likewise, Zimmerman and Zumbo [11] reported that Spearman’s correlation was more powerful under mixed- 
normal and non-normal distributions. They also reported that when studying with exponential distributions, 
Spearman’s correlation retained the type I error rates at or below the nominal level whereas Pearson’s correla-
tion produced inflated the type I error. Indeed, as stated in many studies, using the Spearman-Rank and Kendal 
Tau correlation coefficients are more appropriate when data are ordinal or ranked [24] [30]-[32]. The apparent 
difference between our results and those discussed above may come from the experimental conditions such as 
distribution shapes, sample size, number of simulations taken into considered (Note that we worked with 50,000 
simulation samples per condition). 

In general, Permutation-based Pearson correlation coefficient and especially the Winsorized correlation coef-
ficient are most robust to the distribution shape, sample size, and outliers. Thus, it is possible to recommend 
both Permutation-based correlation coefficient and Winsorized correlation coefficient over the Spearman-Rank 
and Kendall-Tau correlation coefficients when assumptions of Pearson correlation coefficient are not satisfied. 
Hayes [2] reported that especially when normality assumption is violated, permutation tests tend to do well at 
controlling the type I error rate, which was similarly argued by Good [19] as well. Good [33] and Mielke and 
Berry [34] recommended using Permutation-based procedures, especially when sample sizes are small and the 
variables of interest are non-normally distributed, which are conclusions supported by our study as well. How-
ever, it must be kept in mind as suggested by Keller-McNulty and Higgins [35], Rasmussen [15], Hayes [2] that 
permutation tests do not always solve all assumption violation problems, and simulation results on this issue 
have been mixed.  

6. Conclusion 
To conclude, we recommend the use of either Winsorized correlation coefficient or Permutation-based Pearson 
correlation for investigating the relationship between two continuous variables of interest. Between the two, the 
permutation-based Pearson correlation is more computationally challenging, as it is critical to generate suffi-
ciently large number of permutation samples to avoid misleading results [36]. For example, for n = 5, there ex-
ists 5! = 120 permutation samples, which can be generated very easily. For n = 8, we have 40,320, and for n = 
10, we have 3,628,800 possible permutations. Any sample size beyond n = 10 may be too difficult to generate 
all possible permutations, which necessitates to sample from possible permutations, where such a sample must 
be sufficiently large. Although Hayes [2] [37] [38] proposed to limit the number of permutation samples to 5000, 
with today’s computing power, a sample of as big as 100,000 or even bigger sample size, can be easily achieved.  
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