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Abstract 
We construct a fuzzy varying coefficient bilinear regression model to deal with the interval finan-
cial data and then adopt the least-squares method based on symmetric fuzzy number space. Firstly, 
we propose a varying coefficient model on the basis of the fuzzy bilinear regression model. Se-
condly, we develop the least-squares method according to the complete distance between fuzzy 
numbers to estimate the coefficients and test the adaptability of the proposed model by means of 
generalized likelihood ratio test with SSE composite index. Finally, mean square errors and mean 
absolutely errors are employed to evaluate and compare the fitting of fuzzy auto regression, fuzzy 
bilinear regression and fuzzy varying coefficient bilinear regression models, and also the fore- 
casting of three models. Empirical analysis turns out that the proposed model has good fitting and 
forecasting accuracy with regard to other regression models for the capital market. 
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1. Introduction 
Researchers usually expect a more reliable estimate of dynamic indicators of the market data through rational 
design and adjustment with more flexible and applicable models when they study the financial assets price 
changes. The actual financial data which are often given in the form of interval are not only random but also 
contain fuzziness. Therefore, taking the innate fuzziness of actual financial data into account, starting with in-
terval financial observed data and combining the features of interval financial series and finally establishing an 
analytical mode are big problems in analyzing assets price changes. 

Since Zadeh [1] put forward the fuzzy set in 1965, the fuzzy set theory has been widely used in social science 
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research, especially in the economic construction, financial investment, capital market operation and manage-
ment etc. For interval financial observed data, Li Zhuyu et al. [2] defined the stationary of fuzzy financial time 
series as well as fuzzy financial assets yield series and then constructed a pth-order fuzzy auto regression (FAR) 
model, and also estimated the unknown coefficients by using fuzzy linear program (FLP) with satisfying the 
minimum fuzzy index and real meaning of financial yields. The result of estimation in [2] shows that yields 
convergence and fluctuation have the same trends; in addition, the model only can apply to centralized fuzzy 
data. This leads to deviations with the reality. In order to reflect the dynamic changes in financial yields in a pe-
riod of time, Li Zhuyu et al. [4] learned the idea from D’Urso and T. Gastaldi [3] that fluctuations depended on 
the centers to some extent in a dynamic process, then built the fuzzy bilinear regression (FBR) model with fuzzy 
financial yields centers and fluctuations respectively, and estimated the unknown coefficients by fuzzy least- 
squares (FLS) method. Wang Donghua [5] suggested that the method of fuzzy linear program (FLP) was rela-
tively simple so as to get a wide range result and was worse for our application. 

Due to the influence of various kinds of social factors, financial asset price changes with non-linear dynamic 
characteristics, so the traditional method of estimation in the description of the non-linear problems tends to 
have larger error when modelling. Financial assets yield prediction model in literature [4] still needs to combine 
the explanatory ability on model, the relationship between the dynamic data, the fitting precision and prediction 
precision more ideally. Varying coefficient models (also called functional coefficient model) can effectively 
avoid the problem of the curse of dimensionality because of its obvious flexible model structure, and have a dis-
tinct advantage in exploring non-linear dynamic characteristics, reducing model specification errors, describing 
the features of data as well as forecasting. This article generalizes the fuzzy model in literature [4] to varying 
coefficient model, which is called fuzzy varying coefficient bilinear regression (FVCBR) model, by the corres-
pondence between financial yields and the symmetric numbers used to depict its fuzziness and use fuzzy 
least-squares (FLS) method to deduce the estimator. Additionally, we test the adaptability of the proposed model 
by means of generalized likelihood ratio test. Mean square errors and mean absolutely errors are employed to 
evaluate and compare the fitting of fuzzy auto regression (FAR), fuzzy bilinear regression (FBR) and fuzzy va-
rying coefficient bilinear regression (FVCBR) models, and also the forecasting of three models in and out of the 
sample period. 

2. The Distance of Fuzzy Number Space 
In order to introduce the distance of fuzzy number space, we first need to give the introduction to the symmetric 
numbers and its operational properties.  

Definition 1 [6]. A fuzzy number A  is a fuzzy set of the real line R  with satisfying the following condi-
tions: 

1) there exists an 0x R∈  such that ( )0 1A x = ; 
2) for any ( ]0,1α ∈ , the α -level set ( ){ }A x A xα α= ≥  is an interval number. 

The set of all the fuzzy numbers is denoted by R . 
Definition 2 [6]. A fuzzy number A  with the following membership function: 

( )x x aA L
α

 
 
 

−=                                     (1) 

is called a symmetric fuzzy number and usually denoted by ( ), La α , where a  ( )a R∈  and α  ( )0α >  are 
the center and spread of A  respectively. Besides, ( )L ⋅  is a strictly decreasing function on [ )0,+∞  with
( )0 1L =  and ( ) ( )L x L x= − . When 0α = , symmetric fuzzy number A  becomes an ordinary real number 

a and is denoted by ( ),0 La a= . 
The set of all the symmetric fuzzy numbers is denoted by LR . Symmetric fuzzy number ( ), La α  is called 

symmetric triangle fuzzy number if ( ) ( )max 0,1L x x= − . 
Proposition 1 [6]. Suppose ( ), La α , ( ), LLb Rβ ∈   and k R∈ , therefore: 
1) ( ) ( ), ,

L
k a ka kα α⋅ = ; 

2) ( ) ( ) ( ), , ,L L La b a bα β α β+ = + + . 
Let A  and B  be two fuzzy numbers. Xu [7] proposed a formula that defines complete distance between 

fuzzy numbers generalized by distance between interval numbers: 
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( ) ( ) ( )( )
1

1 22
0

, , dd A B f d A Bλ λλ λ= ∫                                (2) 

where f(λ) is an increasing function on [0,1] satisfying ( )0 0f =  and ( )1

0
d 1 2f λ λ =∫ , ( ) ( )1 2,A a aλ λ λ=      

and ( ) ( )1 2,B b bλ λ λ=     are λ -level sets of A  and B  respectively and 

( ) ( ) ( ) ( ) ( )2 22
1 1 2 2,d A B a b a bλ λ λ λ λ λ= − + −       . 

As pointed out in [7], the monotonically increasing function ( )f λ  emphasizes the contribution of higher 

values of λ  to the distance between A  and B . Furthermore, ( )0 0f =  and ( )1

0
d 1 2f λ λ =∫  ensure  

( ),d A B   is generalized by ordinary distance. In fact, we usually let ( )f λ λ= . 
When ( ), A LA a s=  and ( ), B LB b s=  are two symmetric fuzzy numbers, the λ -level sets of A  and B  

are respectively ( ) ( )1 1,A AA a L s a L sλ λ λ− − = − +   and ( ) ( )1 1,B BB b L s b L sλ λ λ− − = − +  , therefore 

( ) ( ) ( )( ) ( )
22 22 1, 2 2 A Bd A B a b L s sλ λ λ−= − + −  and the distance (2) becomes 

( ) ( ) ( )( )( )
1

2 2 2, , A Bd A B a b L f s s= − + ∆ −                                (3) 

where ( ) ( ) ( )( )21 1
0

, 2 dL f f Lλ λ λ−∆ = ∫ . 

Proposition 21. If A , B , LC R∈   and k R∈ , therefore: 
1) ( ) ( ), ,d kA kB k d A B=   ; 

2) ( ) ( ), ,d A B d A C B C= + +     . 

Proposition 32. ( ),LR d  is separable distance space. 

3. The Estimation and Test of Model 
Suppose that { }, , 1, 2, ,l u

t tx x t n  = ⋅⋅ ⋅   is a given interval series, in which l
tx  and u

tx  are respectively the lowest  
and highest prices of financial products. Fuzzy financial time series ( ){ }, , 1, 2, ,t t t L

x x s t n= = ⋅⋅⋅  is the fuzzy  

depiction of interval series { }, , 1, 2, ,l u
t tx x t n  = ⋅⋅ ⋅  , where ( )0.5 l u

t t tx x x= +  represents the average price of fi-  

nancial product on t-th day and the series of centers { }tx  depicts the trend of convergence of financial product  
price; ( )0.5 u l

t t ts x x= −  is the radius of fluctuations in price and the series of spreads { }ts  depicts the uncer-  

tainty of { }tx  on t-th day, namely the magnitude of nonrandomfluctuations. Series { }tr  is called fuzzy finan- 
cial yields series and denoted by lnt tr x= ∇  . Furthermore, { }tr  can also be put in another form of sym-  
metric fuzzy numbers series { } ( ){ }, , 2, ,t t t L

r c u t n= = ⋅⋅⋅ , then the series of centers reflects the convergence be-  

ing the following formula: 

{ }
1 1

1 ln ln , 2, ,
2

u l
t t

t l u
t t

x x
c t n

x x− −

   = + =  
   

                                (4) 

the series of spreads reflects the magnitude of nonrandomfluctuations and is expressed as following: 

{ }
1 1

1 ln ln , 2, ,
2

u l
t t

t l u
t t

x x
u t n

x x− −

   = − =  
   

                                (5) 

 

 

1It is proved by proposition 1. 
2It is proved by the density of the set of rational number in the set of real numbers. 
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3.1. Fuzzy Auto Regression (FAR) Model 
If { } ( ){ }, , 2, ,t t t L

r c u t n= = ⋅⋅⋅  is a conditional stationary series, a p-th order fuzzy auto regression model [2] 
can be established through tr  and 1, ,t t pr r− −⋅ ⋅ ⋅  : 

1 1 2 2 , 1, ,t t t P t p tr A r A r A r t p nε− − −= + + ⋅⋅⋅ + + = + ⋅⋅⋅                               (6) 

where 1 2, , , PA A A R⋅ ⋅ ⋅ ∈  are auto regressive parameters and tε  are the fuzzy errors on t-th day. 
The p-th order fuzzy auto regression model has two obvious limitations, one of those is that the fuzzy auto re-

gression as (6) will finally leads to the same trends of centers and spreads, another is that formula (6) can be 
equivalent to the combination of auto regression models built by two ordinary time series with centers and 
spreads respectively. However, only centralized data can omit the constant terms in auto regression models with 
traditional time series while in the common case of data, the constant terms usually cannot be ignored. 

3.2. Fuzzy Bilinear Regression (FBR) Model 
The fuzzy bilinear regression (FBR) model in [4] set up by the centers and spreads of fuzzy financial yields se-
ries respectively solves those two problems fundamentally.  

0 1 1

0 1 1

, 1, ,t t p t p t

t t q t q t t

c c c
t k n

u u u c e

α α α ε

β β β γ
− −

− −

= + + ⋅⋅⋅ + + = + ⋅⋅⋅ = + + ⋅⋅⋅ + + +
                         (7) 

where ( )max ,k p q= , ( )T
0 1, , , pα α α= ⋅⋅⋅α  and ( )T

0 1, , , ,qβ β β γ= ⋅⋅⋅β  are unknown coefficient vectors and
tε  and te  are error terms of the series of centers and spreads respectively on t-th day. 
The model (7) respectively describes the auto regression relationship between the convergence of fuzzy fi-

nancial yields on t-th day and the p-th order lagging value of yields, as well as the auto regression relationship 
between fluctuations and its p-th order lagging value. Meanwhile, the model also expresses the interdependent 
relationship between the fluctuations and the convergence of fuzzy financial yields. When p q= , 0 0 0α β= = ,

( )1i i i pα β= ≤ ≤  and 0γ = , the model (7) will turn into the model (6) in form. Therefore, on one hand, the 
model (7) is formally generalized by the model (6), and on other hand, the model (7) can improve the explana-
tory ability to fuzzy financial yields. 

3.3. Fuzzy Varying Coefficient Bilinear Regression (FVCBR) Model 
In the FAR model and FBR model, the regression coefficients being constants suggests that explanatory va-
riables impact on explained variables constantly during the sample period. While in the study of financial assets 
yields prediction, the yields is a time series and the level of influence of various factors in different intervals will 
change. Consequently, linear models with constant coefficients are unfit for prediction and the varying coeffi-
cient models should put to use. The form of FVCBR model shows below: 

( ) ( ) ( )
( ) ( ) ( ) ( )

0 1 1

0 1 1

, 1, ,t t p t p t

t t q t q t t

c t t c t c
t k n

u t t u t u t c e

α α α ε

β β β γ
− −

− −

= + + ⋅⋅⋅ + + = + ⋅⋅⋅
= + + ⋅⋅⋅ + + +

                   (8) 

In which the model coefficients are the function of t . 

3.3.1. Coefficients Estimate of Fuzzy Varying Coefficient Bilinear Regression (FVCBR) Model 
Considering the number of unknown coefficients of varying coefficient model will multiply as the sample size 
gets large, thus fitting models with traditional methods of estimation are not appropriate. Because of the above- 
mentioned disadvantages, the restricted weighted least-squares estimation is much used at present. Generally 
speaking, suppose that t0 is a given point in the domain of variable t, the existing observations ( ){ },t t L

c u  all 
provide information to the model coefficients ( ) ( ) ( )0 0 1 0 0, , , pt t t⋅ ⋅ ⋅α α α , ( ) ( ) ( )0 0 1 0 0, , , qt t tβ β β⋅⋅⋅ , ( )0tγ  
around 0t , but different observations work different effects. The importance is shown by assigning each obser-
vation a weight, and the t-th weight corresponds to the t-th observation ( ),t t L

c u . 
The kernel estimation is used to estimate the unknown coefficients ( ) ( ) ( )0 1, , , pt t tα α α⋅⋅⋅ , ( )0 tβ , ( )1 tβ ,
( ) ( )2 , , qt tβ β⋅⋅⋅ , ( )tγ . On the basis of distance (3) and the principle of the kernel smoothing in statistics, we 

formulate the following restricted weighted least-square problem. That is, the objective function is 
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( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0 1 0 0 0 0 0 0

2
0 0 0 0 0 0 0 0

1 1 1

22

0 0 0 0 0 0 0
1 1

, , , , , , ,

, , ,

,

p q

p qn

t t i t i j t j t hL
t k i j L

p q

t i t i t j t j t
i j

t t t t t t

d c u t t c t t u t c K t t

c t t c L f u t t u t c

α α α β β γ

α α β β γ

α α β β γ

− −
= + = =

− −
= =

Ψ ⋅⋅⋅ ⋅ ⋅ ⋅

    
 = + + + −          

  
= − − + ∆ − − −  

   

∑ ∑ ∑

∑ ∑ ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0
1

22

0 0 0 0 0 0 0 0 0
1 1 1 1

,

n

h
t k

p qn n

t i t i h t j t j t h
t k i t k j

K t t

c t t c K t t L f u t t u t c K t tα α β β γ

= +

− −
= + = = + =

 
  −
 
 

  
= − − − + ∆ − − − −  

   

∑

∑ ∑ ∑ ∑

 

And it is minimized with respect to ( ) ( ) ( ) ( )0 0 1 0 0 0 0, , , , ,pt t t tα α α β⋅⋅⋅  ( ) ( ) ( )1 0 0 0, , ,qt t tβ β γ⋅⋅ ⋅  where  
( ) ( )hK K h h⋅ = ⋅ , with ( )K ⋅  being a given kernel function and h  being the smoothing parameter.  

The restricted weighted least-squares problem is equivalent to minimizing the following equations: 

( ) ( ) ( )

( ) ( ) ( ) ( )

2

0 0 0 0
1 1

2

0 0 0 0 0
1 1

pn

t i t i h
t k i

qn

t j t j t h
t k j

c t t c K t t

u t t u t c K t t

α α

β β γ

−
= + =

−
= + =

  
− − −  

  


 
− − − − 

 

∑ ∑

∑ ∑
                         (9) 

Let ( )T1,1, ,1= ⋅⋅⋅1 , ( )T
1 2, , ,k k nc c c+ += ⋅⋅ ⋅c , ( )T

1 2, , ,k k nu u u+ += ⋅⋅ ⋅u , ( ) ( )T
1 2, , , 1i k i k i n ic c c i p− + − + − −= ⋅⋅ ⋅ ≤ ≤c ,  

( ) ( )T
1 2, , , 1j k j k j n ju u u j q− + − + − −= ⋅⋅ ⋅ ≤ ≤u , ( )1 2, , , , p− − −= ⋅⋅ ⋅X c c c1 , ( )1 2, , , , ,q− − −= ⋅⋅ ⋅Y u u u c1 ,  

( ) ( ) ( ) ( )( )T
0 0 0 1 0 0, , , pt t t tα α α= α , ( ) ( ) ( ) ( ) ( )( )T

0 0 0 1 0 0 0, , , ,qt t t t tβ β β γ= ⋅⋅⋅β ,  

( ) ( ) ( ) ( )( )0 0 0 0diag 1 , 2 , ,h h ht K k t K k t K n t= + − + − −W  . 

We here assume that the inverse matrix of ( )T
0tX W X  and ( )T

0tY W Y  exist for each 0t .Then the solu-
tion of the weighted least-squares problem (9), that is, the estimation of the vectors ( )0tα  and ( )0tβ  of the 
fuzzy coefficients can be obtained using matrix notation as 

( ) ( )( ) ( )

( ) ( )( ) ( )

1T T
0 0 0

1T T
0 0 0

ˆ

ˆ

t t t

t t t

−

−

 =

 =

X W X X W c

Y W Y Y W u

α

β
                                (10) 

From (10) we can see the factor ( ),L f∆  is independent of the unknown parameters.   
If the observed values of explanatory variables are known, we can obtain the fitted values of explained va-

riables at 0t . Furthermore, performing the above estimation procedure at 0 1, 2, ,t k k n= + + ⋅⋅⋅  respectively, we 
can obtain the estimation of explained variables during the whole study period. 

( ) ( ) ( )
( ) ( ) ( ) ( )

0 1 1

0 1 1

ˆ ˆ ˆˆ
, 1, 2, ,ˆ ˆ ˆ ˆˆ

t t p t p

t t q t q t

c t t c t c
t k k n

u t t u t u t c

α α α

β β β γ

− −

− −

= + + ⋅⋅⋅ + = + + ⋅⋅⋅
= + + ⋅⋅⋅ + +

                  (11) 

As in statistical nonparametric regression, two kinds of kernel functions are commonly used and one of them 
is Gaussian kernel: 

( ) 21 1exp
22π

K t t = − 
 

                                    (12) 

and the other is Beta kernel [8]: 

( ) ( ) ( ) ( )21 1 1
Beta 1 2, 1

K t t I t
γ

γ γ
= − ≤

+
                             (13) 

Here, we use the distance (3) used to fuzzify the cross-validation procedure [8] in statistics for selecting the 
optimal value of the smoothing parameter h , that is, let 
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( ) ( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

1
2

0
1 1

2

0
1 1

ˆ ˆ, , ,

ˆ ˆ, ,

ˆ ˆ ˆ, , , ,

n

t t t tL Lt k

pn
t t

t i t i
t k i

qn
t t t

t j t j t
t k j

CV h d c u c h u h

c t h t h c

L f u t h t h u t h c h

α α

β β γ

− −
= +

− −
−

= + =

− − −
− −

= + =

=

 
= − − 

 

 
+ ∆ − − − 

 

∑

∑ ∑

∑ ∑

          (14) 

where ( ) ( ) ( )ˆ , 0t
i t h i pα − ≤ ≤ , ( ) ( ) ( )ˆ , 0t

j t h j qβ − ≤ ≤  and ( ) ( )ˆ ,t t hγ −  are the resulting estimates of the centers  
and spreads of the fuzzy coefficients under h  through deleting the t-th observation and computing the estimates 
according to the restricted weighted least-squares described above. Thus, 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0
1

0
1

ˆ ˆˆ , ,
, 1, 2, ,

ˆ ˆ ˆˆ , , ,

p
t t

i t it
i

q
t t t

j t jt t
j

c h t h t h c
t k k n

u h t h t h u t h c h

α α

β β γ

− −
−−

=

− − −
−− −

=


= +

 = + + ⋅⋅⋅
 = + +


∑

∑
          (15) 

Then, select 0h  as the optimal value of the smoothing parameter such that ( ) ( )0 0minhCV h CV h>= . 

3.3.2. The Test of the FVCBR Model 
As point out in [4], FBR model can be used to analyze the fuzzy financial yields series, but whether the analysis 
model with constant coefficients are enough to embody the dynamic changes of yields is a question worth 
thinking about, that is, whether the effects of explanatory variables on explained variables will significantly 
change or nor as the time goes by? For that reason, we need to test the constant coefficients hypothesis, and 

( ) ( )0
ˆˆ: ,H t t= =α α β β  

where α̂  and β̂  are estimates of coefficients of constant coefficients model. 
Here we use the generalized likelihood ratio (GLR) test [9]. Let  

( ) ( ) ( ) ( )

22

0 0 0
1 1 1 1

TT

ˆ ˆˆ ˆ ˆ

ˆ ˆˆ ˆ

p qn n

t i t i t j t j t
t k i t k j

RSS c c u u cα α β β γ− −
= + = = + =

  
= − − + − − −  

   

= − − + − −

∑ ∑ ∑ ∑

c X c X u Y u Yα α β β

                (16) 

( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( )

1 2
1 1 1

22

0 0
1 1 1 1

TT

ˆ ˆˆ ˆ ˆ

ˆ ˆˆ ˆ

p qn n

t i t i t j t j t
t k i t k j

RSS RSS RSS

c t t c u t t u t c

t t t t

α α β β γ− −
= + = = + =

= +

  
= − − + − − −  

   

= − − + − −

∑ ∑ ∑ ∑

c X c X u Y u Yα α β β

          (17) 

Here 0RSS  and 1RSS  are residual sum of squares of null hypothesis and the whole space respectively. The 
GLR statistic is 

0

1

ln
2

RSSn kT
RSS

−
=                                      (18) 

Then, the asymptotic distribution of statistic can be generalized by the method of Bootstrap. Specific steps are 
as follows: 

Step 1. Let ( )12
1 1

1ˆ RSS
n k

σ =
−

, and a series of random numbers obeyed ( )2
1ˆ0,N σ  will be generated, that is,  

( )2
1ˆ~ 0,t Nε σ  where 1, ,t k n= + ⋅⋅⋅ , and let ˆ= +c X α ε ; 

Let ( )22
2 1

1ˆ RSS
n k

σ =
−

, and a series of random numbers obeyed ( )2
2ˆ0,N σ  will be generated, that is,  
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( )2
2ˆ~ 0,te N σ  where 1, ,t k n= + ⋅⋅⋅ , and let ˆ= +u Y e β ; 

Step 2. Use the sample data to construct GLR statistics T ; 
Step 3. Repeat Step 1 and Step 2 m times and then get m  GLR statistics 1 2, , , mT T T  

 ; 
Step 4. The asymptotic distribution of GLR statistic T  of null hypothesis is expressed by the empirical dis-

tribution of 1 2, , , mT T T  

 , that is 

( ) { }
1

1ˆ
m

m i
i

F t I T t
m =

= ≤∑                                (19) 

4. Empirical Analysis 
Now, we will fit and forecast the fuzzy financial yields with the FVCBR model. The database consists of 
119observations of the SSE Composite index from July 17, 2014 to January 9, 2015. Assume that  

{ }, , 1, 2, ,119l u
t tx x t  = ⋅⋅ ⋅   is a series of interval observations of the SSE Composite index, in which l

tx  and 
u
tx  represent the maximum and minimum of the SSE Composite index at time t  respectively, as shown in 

Figure 1. In order to obtain the yields series { }, 2,3, ,119tr t = ⋅⋅⋅ , as shown in Figure 2, we deal with the fuzzy 

series { }tx  by logarithmic transformation and then first order difference. Further, we divide the data  

( ){ }, , 2, ,119t t L
c u t = ⋅⋅⋅  into two parts. One is the fitted samples ( ){ }, , 2, ,104t t L

c u t = ⋅⋅⋅  and the other is the  

forecast samples ( ){ }, , 105, ,119t t L
c u t = ⋅⋅⋅ , and we will test the empirical results and prediction abilities of 

models in and out of the sample period. 

4.1. The Varying Coefficient Bilinear Regression Model of Fuzzy Financial Yields Series 

In Figure 1 we can see that the observations of the SSE Composite index { }, , 1, 2, ,119l u
t tx x t  = ⋅⋅ ⋅   show an  

obvious increase with the time. Then, we adopt the method of run test to test the series of centers { }tx  of  

{ }, , 1, 2, ,119l u
t tx x t  = ⋅⋅ ⋅   and the results shown in the column 2 of Table 1 rejecting the null hypothesis with sig-  

nificant level 5% suggests that the sequence of { }tx  is non-stationary, in other words, the sequence of the SSE 
Composite index { }tx  is non-stationary. 

As can be seen in Figure 2, the sequence of yields { }tr  has been detrended fluctuation basically and ranges 
about from −0.04 to 0.04. Then, we also employ the method of run test to the centers { }tc  of { }tr , and the re-
sults shown in the column 3 of Table 1 cannot reject the null hypothesis with significant level 5%, that is, the 
sequence { }tc  is stationary so that we can infer { }tr  is conditional stationary. 

 

 
Figure 1. The series of interval observations of the SSE Com-
posite index SSE Composite index (2014.7.17-2015.01.09) 
(2014.7.17-2015.01.09).                                                       
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Figure 2. The fuzzy yields series of the SSE Composite index SSE Composite index (2014.7.17-2015.01.09) (2014.7.17- 
2015.01.09).                                                                                                          

 
Table 1. The fuzzy time series of the SSE Composite index/the run test of centers of fuzzy yields series.                                    

 Centers of fuzzy time series Centers of fuzzy yields series 

Test values 2353.99300 0.00394 

The number of samples that are less than test values 59 59 

The number of samples that are equal or greater than test values 60 59 

Simple size 119 118 

Number of runs 4 51 

Z −10.403 −1.664 

P value 0.000 0.096 

Note: the test values are the averages of each sequence. 
 
We can establish the FVCBR model for the conditional stationary financial yields { } ( ){ },t t t L

r c u= . Here we 
will not consider the order determination of the model and only modelling the fuzzy yields sequence of the SSE 
Composite index { } ( ){ },t t t L

r c u=  with FVCBR (1,1) and finally discuss the imitative effect. 

( ) ( )
( ) ( ) ( )

0 1 1

0 1 1

, 2,3, ,104t t t

t t t t

c t t c
t

u t t u t c e

α α ε

β β γ
−

−

= + + = ⋅⋅⋅
= + + +

                   (20) 

We select Epanechnikov kernel, Briweight kernel, Triweight kernel and Gaussian kernel to analysis respec-
tively, and in turn denote above kernel functions as 1K , 2K , 3K  and 4K . For each kernel function, we use 
the cross-validation procedure to find the right h . 

Suppose that h  is selected from 1 to 20 and steps by 0.2. Figure 3(a) illustrates the CV values computed by 
each of the kernel functions change with h . From Figure 3(a) we can see that the CV values of all kernel func-
tions decrease first and then increase with the increase of h . Therefore, under the assumption of that h  is 
chosen from 1 to 20, the optimum h  for 4K  is 2 and are 4 for 1K , 2K , 3K  respectively. In order to find 
more better h , we further let h  steps by 0.05 from 1 to 5, and the relationship between CV values and h  is 
shown in Figure 3(b). So we can obtain the right h  for every kernel functions are respectively 3.18, 3.82, 4.36 
and 1.82. 

For every kernel function, we select the optimal bandwidth and then obtain the estimates of regression coeffi-
cients of model (20) at any point in time. Figure 4 shows the estimate values of regression coefficients of dif-
ferent kernel functions and also indicates that the regression coefficients vary similarly with the time although 
the different kernel functions, that is, different kernel function has little effect on the estimates values of coeffi- 
cients. Based on this result, we instead considering Gaussian kernel as the kernel function in this article. As we  
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(a)                                                      (b) 

Figure 3. The changes of CV values of every kernel function with h increasing (a) h is from 1 to 20; (b) h is from 1 to 5.               
 

 
Figure 4. The estimates of regression coefficients of model (20). (a) 0α ; (b) 1α ; (c) 0β ; (d) 1β ; (e) γ .                      

 
can see from the estimates of model (20) and Figure 4, the spreads of fuzzy yields have positive correlation to 
its first order lagging values while the relationship between the centers of fuzzy yields and its first order lagging 
values as well as the relationship between the spreads and current centers remain positive or negative in the dy-
namic changes. 

Next, we will test the hypothesis of the regression coefficients are constants by using Gaussian kernel as the 
selected kernel function. Based on the data of SSE composite index and formula (18), we can get the generalized 
likelihood ratio (GLR) statistic T = 42.6781. When repeat the Step 1 and Step 2 of Bootstrap method for 100 
times, that is, m = 100, the curve of asymptotic distribution of GLR statistic is as shown in Figure 5(a) and at 
this time the p  value being lower than 0.01 suggests that the result reject the null hypothesis with significant 
level 0.01. Similarly, when m = 1000, the curve of asymptotic distribution of GLR statistic is as shown in Fig-
ure 5(b), and in this case the p  value being lower than 0.001 illustrates the result reject the null hypothesis 
with significant level 0.001. In conclusion, we reject the null hypothesis and hold that the regression coefficients 
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are change with time. As a result, the fuzzy varying coefficient regression model is a better choice. 

4.2. Forecasting and Evaluation of Simulation 
4.2.1. Forecasting 
We forecast the real data from 105-th to 119-th with one-step-ahead prediction by using the model (20) and 
formula (10). The results are as shown in Table 2. 

4.2.2. Evaluation of Simulation of the Model 
In order to compare to the prediction of FAR model and FBR model, we respectively calculate the absolute error 
of prediction and show them with curves (as see in Figure 6) of FAR model, FBR model and FVCBR model. 

As we can see from Figure 6(a), when predict the centers, the absolute errors of FVCBR model are a little 
greater than FAR model and FBR model only on the 1st, the 2nd, the 5th and the 9th periods; meanwhile, when 
predict the spreads, the predicted values are all much close to the observed values at every period except the 1st, 
the 12th and the 14th periods. So, we preliminary infer that the predictions of FVCBR model are more precise 
than FAR model and FBR model. 

For the purpose of judging the predictions and evaluations of simulation of the three models more accurately, 
we use the mean square error (MSE) and mean absolute error (MAE) that are often used in regression analysis to 
evaluate the fitting effects and prediction accuracy. Specifically, we calculate the MSE and MAE of financial 
yields { }tr  in and out of sample period respectively and the results are shown in Table 3. 

 

       
(a)                                                                (b) 

Figure 5. The asymptotic distribution of GLR statistic. (a) m = 100; (b) m = 1000.                                                                       
 

      
(a)                                                                (b) 

Figure 6. The comparisons of predictions of FAR model, FAR model and FVCBR model. (a) The sequence of centers; 
(b) The sequence of spreads.                                                                                      
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Table 2. The results of one-step-ahead prediction of fuzzy varying coefficient bilinear regression model3.                           

Periods 105 106 107 108 109 

Observed values (0.0083, 0.0234) (0.0025, 0.0259) (0.0233, 0.0320) (−0.0190, 0.0339) (−0.0292, 0.0374) 

Predicted values (0.0065, 0.0245) (0.0093, 0.0252) (0.0077, 0.0312) (−0.0083, 0.0347) (−0.0101, 0.0367) 

Periods 110 111 112 113 114 

Observed values (0.0097, 0.0364) (0.0302, 0.0332) (0.0195, 0.0313) (−0.0047, 0.0247) (0.0119, 0.0223) 

Predicted values (−0.0024, 0.0363) (0.0186, 0.0335) (0.0156, 0.0304) (0.0092, 0.0244) (0.0155, 0.0235) 

Periods 115 116 117 118 119 

Observed values (0.0347, 0.0303) (0.0112, 0.0310) (−0.0015, 0.0230) (−0.0031, 0.0238) (0.0007, 0.0350) 

Predicted values (0.0192, 0.0303) (0.0130, 0.0291) (0.0028, 0.0247) (−0.0020, 0.0268) (−0.0008, 0.0338) 

 
Table 3. The errors measurements of fitting and forecasting of SSE composite index.                                       

Model 
In the sample period Out of the sample period 

MSE MAE MSE MAE 

FVCBR model 4.19E−05 0.0061 1.11E−04 0.0098 

FBR model 9.46E−05 0.0099 3.15E−04 0.0185 

FAR model 1.26E−04 0.0111 4.56E−04 0.0233 

 
From Table 3, we can see no matter in and out of the sample period, the MSE and MAE of FVCBR model 

are all lower than FAR model and FBR model. This result proves that the fitting effects and prediction accuracy 
of FVCBR model are superior to FAR model and FBR model. 

5. Conclusion 
This article introduces the fuzzy financial yields series to deal with the interval observed samples in financial 
markets and constructs the fuzzy varying coefficient bilinear regression (FVCBR) model with satisfying the 
practical significance of financial yields. Besides, based on the complete distance between fuzzy numbers, we 
develop the fuzzy least squares method to obtain the estimates of the unknown coefficients. Empirical analysis 
shows that compared with constant coefficient regression model and fuzzy auto regression model, the varying 
coefficient regression has shown some improvements no matter in fitting effects or prediction. The fuzzy auto 
regression model has certain limitations in model fitting and forecasting because the auto regression of centers 
and spreads are considered independently rather than taking the effect that centers have on the spreads into ac-
count. Fuzzy varying coefficient bilinear regression explores the problem of financial fuzzy time series more 
flexibly and applicatively to make the fitted values and predictions be intervals and thus more consistent with 
the description of real financial market. Finally, this article only discusses the uncertainty of changes of financial 
assets price, that is, reflects the changes of yields only by fuzzy data but ignores the probability distribution of 
parameters. So, later research will focus on the coefficient estimates, statistical tests, model fitting and forecast-
ing after introducing the random error, so as to give deciders more perspective to recognize and explain the 
changes of financial markets. 
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