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ABSTRACT 

Various gene signatures of chemosensitivity in breast cancer have been discovered. One previous study employed t-test 
to find a signature of 31 probe sets (27 genes) from a group of patients who received weekly preoperative chemotherapy. 
Based on this signature, a 30-probe set diagonal linear discriminant analysis (DLDA-30) classifier of pathologic com-
plete response (pCR) was constructed. In this study, we sought to uncover a signature that is much smaller than the 31 
probe sets and yet has enhanced predictive performance. A signature of this nature could inform us what genes are es-
sential in response prediction. Genetic algorithms (GAs) and sparse logistic regression (SLR) were employed to identify 
two such small signatures. The first had 13 probe sets (10 genes) selected from the 31 probe sets and was used to build 
a SLR predictor of pCR (SLR-13), and the second had 14 probe sets (14 genes) selected from the genes involved in 
Notch signaling pathway and was used to develop another SLR predictor of pCR (SLR-Notch-14). The SLR-13 and 
SLR-Notch-14 had a higher accuracy and a higher positive predictive value than the DLDA-30 with much lower P val-
ues, suggesting that our two signatures had their own discriminative power with high statistical significance. The SLR 
prediction model also suggested the dual role of gene RNUX1 in promoting residual disease (RD) or pCR in breast 
cancer. Our results demonstrated that the multivariable techniques such as GAs and SLR are effective in finding sig-
nificant genes in chemosensitivity prediction. They have the advantage of revealing the interacting genes, which might 
be missed by single variable techniques such as t-test. 
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1. Introduction 

The molecular and pathological characteristics observed 
in breast cancer patients implies that breast cancer is a 
heterogeneous disease. Distinct molecular subtypes of 
breast cancer identified by patterns of gene expression 
could lead to different clinical outcomes. In current prac-
tice, chemotherapy is applied empirically, and does not 
benefit all patients, illustrating the imperative needs for a 
more personalized approach in cancer treatment. There-
fore, the ability to predict whether an individual patient 
will benefit from a specific therapy is of great clinical 
significance. Single clinical or molecular indicators, such 
as tumor size, tumor grade, histology, hormone receptor 
or human epidermal growth factor receptor 2 (HER2) 
expression, does not always give reliable predictions of 
response to a treatment. With gene expression profiling, 
it is possible to find multiple genes that can used to build 

an enhanced predictor of response to chemotherapy in 
breast cancer [1-7]. 

In [8], t-test for unequal-variance was applied to find a 
signature of 31 probe sets (27 genes) with highest differ-
entially expressed values between pRC and residual dis-
ease (RD). A 30-probe set diagnal linear discriminant 
analysis (DLDA-30) predictor of pCR was constructed 
based on this signature. The value of this predictor is the 
ability to identify those patients most likely to benefit 
from a particular treatment, the neoadjuvant chemother-
apy, in this case. This predictor is able to recognize not 
all responsive patients but exclusively those that will 
benefit the most, as defined by attaining a pCR.  

As a single variable technique, the t-test used in [8] 
analyzes one gene at a time and might miss the interac-
tions between genes. We hypothesized that the signature 
of 31 probe sets in [8] could be optimized with help of 
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multivariable techniques such as genetic algorithms (GAs), 
which can explore multiple solutions concurrently to find 
interacting and informative genes. In this study, our aim 
was to identify a signature that is a small subset of the 31 
probe sets in [8] and use it to develop a predictor of pCR 
that can achieve better predictions than the DLDA-30. A 
gene signature of this nature captures the essence of re-
sponse prediction. 

2. Patients and Methods 

2.1. Patient Cohorts and Clinical  
Information 

One breast cancer patient cohort was obtained from a 
previous publication [8] (n = 133). Needle-biopsy sam-
ples were collected from 133 patients with stage I, II, or 
III breast cancer who received preoperative weekly pa-
clitaxel and a combination of fluorouracil, doxorubicin, 
and cyclophosphamide (T/FAC). These 133 patients were 
divided into two subsets, one training set of size 81 and 
one validation set of size 52. These data contain clinical 
information including patient age, gender, race, histo-
logical classification, stage, nuclear grade, ER (estrogen 
receptor), PR (progesterone receptor), and HER2 (human 
epidermal growth factor 2) status, pathologic complete 
response, and residual disease. These data also contain 
each patient’s genome-scale gene expression profiles 
generated using Affymetrix U133A chip (Santa Clara, 
CA). pCR was defined as no residual invasive cancer in 
the breast or lymph nodes. pCR is presently accepted as a 
reasonable early indicator for long-term survival. 

2.2. Sparse Logistic Regression 

A standard least squared linear regression solves the fol-
lowing problem: 

Given data , find 1{ , }m
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The LASSO regression, studied by Tibshirani R [9], 
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Cawley GC et al. [10] utilized a novel technique to 
solve this sparse logistic regression problem efficiently. 
In our study, we used +1 to label those cases of RD status, 
and used –1 to label those cases of pCR status.  

2.3. Notch Signaling Pathway 

Notch genes encode highly conserved cell surface recep-
tors. The Notch signaling pathway consists of Notch re-
ceptors, ligands, negative and positive modifiers, and 
transcription factors. It plays a key role in the normal 
development of many tissues and cell types, through di-
verse effects on cell regulation, proliferation, and differ-
entiation. Aberrant Notch signaling has been observed in 
several human cancers, including acute T-cell lym-
phoblastic leukemia, cervical cancer, and breast cancer 
[11,12]. The Oligo GEArray Human Notch Signaling 
Pathway Microarray [13] was designed for profiling ex-
pression of 113 genes (Table 1) involved in Notch sig-
naling. 

2.4. Prediction Accuracy Evaluation 

In order to evaluate the significance of our predictions, 
we need to compare them with random guesses. For each 
dataset, a random-label permutation was conducted while 
keeping the number of instances in each group fixed. The 
matches between the permuted labels and the original 
ones were recorded. The standard P value was the per-
centage of 1000 random predictions with higher accuracy 
than the calculated predictions.  

2.5. Genetic Algorithms 

Genetic algorithms (GAs), a particular class of evolu-
tionary algorithms, are search algorithms that adopt some 
common processes in genetics such as selection, muta-
tion, and inheritance. The GAs outperform other tradi-
tional search algorithms in various applications.  

Pseudo-code for genetic algorithms is as follows:  
 Generate an initial population of individuals 
 Evaluate initial population 
 Repeat 

Perform selection 
Apply genetic operations such as mutation and cross-
over to generate a new generation of individuals 
Evaluate individuals in the population 

 Until some stopping criteria is satisfied 

3. Results 

To search for a subset of the 31 probe sets, we repre-
sented our solution, referred to as an individual in GAs, 
as a binary vector of size 31 to indicate the presence (1)  
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Table 1. Genes involved in notch signaling pathway as described in [13]. 

Notch Signaling Pathway:  
Notch Binding: DLL1 (DELTA1), DTX1, JAG1, JAG2. 
Notch Receptor Processing: ADAM10, PSEN1, PSEN2, PSENEN (PEN2). 

Notch Signaling Pathway Target Genes: 
Apoptosis Genes: CDKN1A, CFLAR (CASH), IL2RA, NFKB1. 
Cell Cycle Regulators: CCND1 (Cyclin D1), CDKN1A (P21), IL2RA. 
Cell Proliferation: CDKN1A (P21), ERBB2, FOSL1, IL2RA. 
Genes Regulating Cell Differentiation: DTX1, PPARG. 
Neurogenesis: HES1, HEY1. 
Regulation of Transcription: DTX1, FOS, FOSL1, HES1, HEY1, NFKB1, NFKB2, NR4A2, PPARG, STAT6. 
Other Target Genes with Unspecified Functions: CD44, CHUK, IFNG, IL17B, KRT1, LOR, MAP2K7, PDPK1, PTCRA. 

Other Genes Involved in the Notch Signaling Pathway: 
Apoptosis Genes: AXIN1, EP300, HDAC1, NOTCH2, PSEN1, PSEN2. 
Cell Cycle Regulators: AXIN1, CCNE1, CDC16, EP300, FIGF, JAG2, NOTCH2, PCAF. 
Cell Proliferation: CDC16, FIGF, FZD3, JAG1, JAG2, LRP5, NOTCH2, PCAF, STIL (SIL). 
Genes Regulating Cell Differentiation: DLL1, JAG1, JAG2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PAX5, SHH. 
Neurogenesis: DLL1, EP300, HEYL, JAG1, NEURL, NOTCH2, PAX5, RFNG, ZIC2 (HPE5). 
Regulation of Transcription: AES, CBL, CTNNB1, EP300, GLI1, HDAC1, HEYL, HOXB4, HR, MYCL1, NCOR2, NOTCH1, NOTCH2, 
NOTCH3, NOTCH4, PAX5, PCAF, POFUT1, RUNX1, SNW1 (SKIIP), SUFU, TEAD1, TLE1. 
Others Genes with Unspecified Functions: ADAM17, GBP2, LFNG, LMO2, MFNG, MMP7, NOTCH2NL, NUMB, SEL1L, SH2D1A. 

Other Signaling Pathways that Crosstalk with the Notch Signaling Pathway: 
Sonic Hedgehog (Shh) Pathway: GLI1, GSK3B, SHH, SMO, SUFU. 
Wnt Receptor Signaling Pathway: AES, AXIN1, CTNNB1, FZD1, FZD2, FZD3, FZD4, FZD6, FZD7, GSK3B, LRP5, TLE1, WISP1, WNT11. 
Other Genes Involved in the Immune Response: CXCL9, FAS (TNFRSF6), G1P2, GBP1, IFNG, IL2RA, IL2RG, IL4, IL4R, IL6ST, IRF1, 
ISGF3G, OAS1, OSM, STAT5A, STUB1.  

 
or absence (0) of each probe set in the 31 probe sets. Our 
fitness value was the prediction accuracy of SLR based 
on the training set. In each generation of GA, we ran-
domly divided the training set (n = 82) into five equal 
subsets for five-fold cross validation, where four subsets 
were used as a training set for SLR and one subset as a 
test set to get the accuracy of SLR on this test set. We ran 
the GA algorithm with population size 40, individual size 

31, and 100 generations. In each generation, the top 50% 
of the individuals with highest fitness values were se-
lected as parents to produce the next generation. A single 
point crossover and point mutations were applied to each 
individual in the population. As a result of GA selection, 
a collection of individuals with high prediction accuracy 
were discovered. The following individual has this prop-
erty with training set accuracy equal to 0.89. 

 
1 0 0 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0

 
The above binary representation means the following 

13 probe sets (10 genes) were selected (Table 2). 
This 13 probe set signature highlighted the critical 

genes for response prediction, and therefore provided 
clear insight into the molecular mechanisms that regulate 
the chemosensitivity in breast cancer. Encouraged by the 
finding of the 13 probe sets from the 31 probe sets in [8], 
we applied the same selection procedure using GAs to 
the 113 genes involved in Notch signaling pathway 
(Table 1), resulting in a signature of 14 probe sets 
(SLR-Notch-14) (Figure 1). It is worth noting that our 
search for a smaller and yet more discriminative set of 
genes from the 31 probe sets was accomplished by two 
size reductions. First, the size of informative genes was 
reduced from 31 probe sets to 13 by GAs, and then SLR 
was able to further reduce this 13 probe sets to 10 probe 
sets (Figure 1). 

We report in Tables 2 and 3 the t-test statistic, P value, 
and gene names for the 13 probe sets from the 31 probe 

sets in [8] and the 14 probe sets from the genes involved 
in Notch signaling pathway. The P values in these two 
tables showed that the most discriminative genes as a 
group measured by SLR were not necessarily those with 
the smallest P values as individual genes. In general, the 
genes that were highly expressed in the RD cases con-
tributed positively to the prediction of RD and those 
highly expressed in the pCR cases contributed positively 
to the prediction of pCR. 

In addition to testing the SLR-13 and SLR-Notch14 on 
the training set (Table 4), we also tested them on the 
validation set (Tables 5 and 6) for prediction perform-
ance and P values. Table 5 suggests that the two predic-
tors, SLR-13 and SLR-Notch-14, complemented each 
other in their specificity and sensitivity. On the other 
hand the confusion matrix in Table 6 contains informa-
tion about actual and predicted classifications obtained 
through the three predictors. The SLR-Notch-14 had 
three nonzero P values and they were all less than 0.05,  
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Table 2. 13 informative probe sets selected by GA and SLR from the 31 probe sets in [8]. 

SLR Weights Probe Set ID Gene Symbol Gene Name t-test P value Higher Expression in 
1.0998 203929_s_at MAPT Microtubule-associated protein tau 6.6019 .00000001 RD 
0.2047 203928_x_at MAPT Microtubule-associated protein tau 5.9166 .00000008 RD 

0.14744 212207_at THRAP2 Thyroid hormone receptor 
associated protein 2 

6.0604 .00000010 RD 

0.13463 217542_at MGC5370 Hypothetical protein MGC5370 5.6999 .00000027 RD 

0.26123 206401_s_at MAPT Microtubule-associated protein tau 5.6116 .00000028 RD 
0 219741_x_at ZNF552 Zinc finger protein 552 5.4961 .00000047 RD 
0 205548_s_at BTG3 BTG family, member 3 –5.9508 .00000056 pCR 

–0.26046 202204_s_at AMFR Autocrine motility factor 
receptor 

5.2823 .00000129 RD 

0.46085 209617_s_at CTNND2 

Catenin (cadherin-associated 
protein), delta 2 (neural 
plakophilin-related armrepeat 
protein) 

5.1606 .00000178 RD 

0.14544 205354_at GAMT Guanidinoacetate Nmethyltransferase 5.349 .00000250 RD 
0.24103 204509_at CA12 Carbonic anhydrase XII 5.0802 .00000282 RD 
0.36339 214124_x_at FGFR1OP FGFR1 oncogene partner 5.1848 .00000311 RD 
0.34214 215616_a_at JMDJ2B Jumonji domain containing 2B 5.0047 .00000559 RD 

 
Table 3. 14 informative probe sets selected by GA and SLR from Notch signaling pathway. 

SLR Weight Probe Set ID Gene Symbol Gene Name t-Test P value Higher Expression in

0.18233 202221_s_at EP300 E1A binding protein p300 2.585026 0.011947 RD 
0 204262_s_at FZD1 frizzled homolog 1 –1.39285 0.174441 pCR 
0 207535_s_at SHH sonic hedgehog homolog -0.35197 0.726497 pCR 
0 207539_s_at NCOR2 nuclear receptor co-repressor 2 0.450195 0.654935 RD 
0.16053 207586_at RUNX1 runt-related transcription factor 1 1.130322 0.264823 RD 
0 209835_x_at HR hairless homolog –0.42314 0.675586 pCR 
0 210086_at CTNNB1 catenin (cadherin-associated protein), beta 1 –0.38441 0.7025 pCR 
–0.08195 210930_s_at RUNX1 runt-related transcription factor 1 –2.28195 0.031343 pCR 
0.30715 211209_x_at CFLAR CASP8 and FADD-like apoptosis regulator 1.873074 0.066922 RD 
0 212195_at MFNG Manic fringe homolog –0.26482 0.79271 pCR 
0.33756 212849_at OSM oncostatin M 3.355561 0.001316 RD 
–0.29049 214058_at SNW1 SNW domain containing 1 –2.47946 0.019481 pCR 
0 214637_at CD44 CD44 antigen –1.12707 0.268386 pCR 
0.14599 222183_x_at SH2D1A SH2 domain protein 1A 1.281554 0.207413 RD 

 
Table 4. Prediction measures of SLR-13 and SLR-Notch-14 on the training set (five-fold cross validation). 

Measures DLDA-30 SLR-13  SLR-Notch-14 

Accuracy 0.73 0.83 0.78 

Sensitivity 0.75 0.84 0.78 

Specificity 0.73 0.83 0.78 

PPV 0.50 0.62 0.56 

NPV 0.90 0.94 0.91 

 
Table 5. Prediction measures of DLDA-30, SLR-13, and SLR-Notch-14 on the validation set. 

Measure DLDA-30 P value SLR-13 P value SLR-Notch-14 P value 

Accuracy 0.76 0.1900 0.88 0 0.82 0.0040 

Sensitivity 0.92 0 0.77 0 0.77 0 

Specificity 0.71 0.96 0.92 0 0.84 0.0190 

PPV 0.52 0.0920 0.77 0 0.63 0.0040 

NPV 0.96 0 0.92 0 0.91 0 

Copyright © 2011 SciRes.                                                                                  JCT 



Identification of Small and Discriminative Gene Signatures for Chemosensitivity Prediction in Breast Cancer 200 

Table 6. Confusion matrices for DLDA-30, SLR-13, and SLR-Notch-14 on the validation set. 

DLDA-30 
Predicted as  

pCR 
Predicted as  

RD 
SLR-13 

Predicted as 
pCR 

Predicted as 
RD 

SLR-Notch-14 
Predicted as  

pCR 
Predicted as 

RD 
Observed pCR n = 12 n = 1 Observed pCR n = 10 n = 3 Observed pCR n = 10 n = 3 

Observed RD n = 11 n = 27 Observed RD n = 3 n = 35 Observed RD n = 6 n = 32 

 

 
 

 

Figure 1. The SLR weights of the 13 probe set and 14 probe set signature. 
 

implying that the prediction accuracies of SLR-13 and 
SLR-Notch14 were statistically significant. The DLDA-30 
had three nonzero P values but they were all larger than 
0.05, especially those for accuracy and specificity. 

In Table 2, the genes were all highly expressed in the 
RD cases with one exception, whereas Table 3 has more 
balanced gene numbers in the RD and pCR cases, which 
could partially contribute to the distinct predicting power 
of SLR-13 and SLR-Notch-14 (Tables 5 and 6). In the 
SLR model, genes with a positive weight contributed 
positively to the RD prediction and those with a negative 
weight contributed positively to the prediction of pCR. 
Obviously, genes of zero weight did not contribute to 
response prediction. The gene BTG3 [14] was highly 
expressed in the pCR cases, and so it was weighted posi-
tively toward the prediction of pCR in the SLR-13 sig-
nature (Figure 1). However, in the SLR-Notch-14 sig-
nature one UNIX1 probe set was expressed highly in the 
RD cases and another UNIX1 probe set was highly ex-

pressed in the pCR cases, which were also reflected by 
their opposite SLR weights (Figure 1). RUNX1 has a 
dual role in promoting cell cycle progression and differ-
entiation [15] and can function as a transcription activa-
tor or as a repressor [16]. 

4. Discussion 

Predicting the treatment response for patients with breast 
cancer is a great challenge in clinics and is critical in 
personalized medicine. Various such genes signatures of 
different predicting power have been identified. The fo-
cus of the current study was to find a gene signature that 
is small but has improved predictions. Our strategy was 
to apply genetic algorithm, an efficient search algorithm, 
to refine the genes in a known signature so that only the 
most relevant genes were remained after this procedure. 
The findings of this report demonstrated the validity of 
this approach. We believed that genes in a small signa-
ture reveal the essence of association between gene ex-

Copyright © 2011 SciRes.                                                                                  JCT 



Identification of Small and Discriminative Gene Signatures for Chemosensitivity Prediction in Breast Cancer 201 

pressions and clinical outcome.  

5. Conclusions 

Recent studies suggest that gene expression profile cor-
relates with responses to neoadjuvant chemotherapy, 
with tumors displaying the ER-positive gene signatures 
being less likely to respond than other types of breast 
cancer [17]. In this study, we intended to discover a 
much smaller gene signature than the 31 probe sets in [8] 
that predicts whether a breast cancer patient will benefit 
from a preoperative treatment containing paclitaxel fol-
lowed by fluorouracil, doxorubicin, and cyclophos-
phamide by achieving a pCR. With the ability to account 
for multiple gene interactions, two multivariable tech-
niques, genetic algorithms and sparse logistic regression, 
were employed to identify a 13 probe sets from the 31 
probe sets in [8] and a 14 probe set signatures from the 
genes involved Notch signaling pathway (Table 1). The 
response predictions of our two signatures had much 
lower P values than the 31 probe sets in [8], revealing the 
improved statistical significance of their predictions. The 
SLR prediction model also verified the dual role of gene 
RNUX1 in promoting RD or pCR in breast cancer. 
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