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Abstract 

We discuss crystal formation in supersaturated suspensions of monodisperse hard spheres with a 
concentration of hard spheres randomly pinned in space and time. The pinning procedure intro-
duces an external length scale and an external time scale that restrict the accessible number of 
configureurations and ultimately the number of pathways leading to crystallization. We observe a 
significant drop in the nucleation rate density at a characteristic pinning concentration that can be 
directly related to the structure of the critical nucleus and the dynamics of its formation in the un-
pinned system. 
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1. Introduction 

Homogeneous as well as heterogeneous crystallization are of importance in materials design and production. But 
even for one of the most simple models for liquids, the suspension of monodisperse hard spheres, the crystalli-
zation process is not fully understood [1]-[8].  

For the hard sphere system, the transition from the supersaturated fluid to the crystal is purely entropic. It is a 
first order transition, hence in the case of packing fractions slightly higher than the coexistence packing fraction, 
the system prevails in its meta-stable fluid state for a characteristic induction time before it is transformed 
irreversibly into a crystal.  

The idea of the present work is to modify and restrict the possible number of pathways to crystallization in a 
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controlled manner to understand how sensitive the crystallization process and, in particular, the induction time 
are with respect to changes in configureuration space.  

The method we employ is to take a configureuration of hard spheres and to pin a randomly chosen fraction of 
them to their current positions.  

This approach is called the random pinning model (RP) in the literature. Even though the dynamics change, 
the configureurations correspond to typical equilibrated fluid configureurations [9]. Therefore, static properties, 
as for example the static structure factor or the pair correlation function do not display any signatures of the 
restricted number of configureurations. Nevertheless the dynamical properties of a given system is modified. Its 
impact onto the diffusive behavior and relaxation properties in the disordered phase of colloidal suspensions 
have already been studied numerically and analytically for a variety of different systems [9]-[16] and references 
therein. Especially at high pinning concentrations, the relaxation times become large and the dynamic scattering 
function displays two step relaxation. The approach of pinning particles in space is hence exploited to measure, 
for example a static length scale associated with the glass transition and jammong, see [17]-[23] and references 
therein.  

In the present work, the pinning concentrations are kept sufficiently low and do not reach the glass transition, 
because we are interested in crystallizing trajectories. Our study is based on suspensions of hard spheres and is 
split in two parts: In the first part we discuss crystallization for static random pinning, i.e. once the pinned hard 
spheres are chosen, they stay pinned for the rest of the simulation. The concentration of pinned hard spheres can 
directly be translated into a length scale that interferes with the typical size of a critical cluster. In the second 
part we alter the selection of pinned hard spheres in time intervals T∆ . T∆  directly interferes with the typical 
time scale to form a critical cluster. Due to the external time scale T∆ , trajectories in configureuration space 
are only restricted temporarily. The frustration due to the pinned hard spheres on long time scales is resolved.  

2. Simulation Method 

We investigate 216000N =  hard spheres of diameter 1σ =  at constant volume V and constant energy E. We 
focus on the packing fraction 0.5393η =  which corresponds to a chemical potential difference between the 
metastable liquid and the stable crystalline state of 0.54 Bk Tµ∆ −  at zero pinning concentration. The 
chemical potential difference has been obtained by integrating along the metastable fluid branch and the stable 
crystal branch of the equation of state. 

The time evolution of the system is calculated using an event driven molecular dynamics algorithm (EDMD), 
see [24] [25]. Periodic boundary conditions are applied in all three directions of space. The initial velocities are 
drawn from a Gaussian distribution and the mean kinetic energy per hard sphere is set to 3 Bk T . A fraction c  
of hard spheres is chosen randomly and pinned in space. They effectively possess zero velocity and infinite 
mass. 

We first discuss static pinning. Here, a set of hard spheres of average concentration { }0.00001,0.0001, ,0.1c∈  , 
is chosen at the beginning of the simulation and pinned throughout. Then we continue with periodic pinning. 
After time intervals T∆ , a new set of hard spheres is randomly pinned and for the other hard spheres new 
velocities are randomly chosen from a Gaussian distribution. Here, we will focus on 0.05c =  because in the  

case of static pinning, 0.05c =  is the largest concentration that allows us to observe crystallization. 
2

1
B

m
k T
στ =   

is the natural time unit of the simulation algorithm. The pinning time intervals discussed are 

{ }0.01 ,0.02 ,0.05 , ,16 ,32 , and 64T τ τ τ τ τ τ∆ ∈  . 

During the molecular dynamics simulation the local 6 6q q -bond order parameter [26] [27] is evaluated to 
monitor the size of the largest crystalline cluster. 

For a hard sphere i  with ( )n i  neighbors (satisfying 1.4ijr σ< ) the local orientation is characterized by  

( ) ( )
( )

( )
1

1: ,
n i

lm lm ij
j

q i Y
n i =

= ∑ r  

where ( )lm ijY r  are the spherical harmonics corresponding to the orientation of the vector ijr  between hard 
sphere i  and its neighbor j  in a given coordinate frame. We consider 6l =  in order to identify local fcc-, 
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hcp- or rcp-structures. A 13—component vector ( )6 iq  is assigned to each hard sphere, the elements 
6 6m = −   of which are defined as  

( ) ( )

( )

6
6 1 26 2

6
6

: .m
m

m
m

q i
q i

q i
=−

=
 
 
 
∑

                              (1) 

Two neighbors i  and j  were regarded as “bonded” within a crystalline region, if ( ) ( )*
6 6 0.7i j⋅ >q q . We 

define ( )bn i  as the number of “bonded” neighbors of the ith hard sphere. If a hard sphere has more than 9 
bonds we consider it crystalline. 

3. Dynamic Properties in the Different Pinning Scenarios 

We start out with the dynamic properties of the supersaturated fluid in the presence of pinned hard spheres. As it 
has been reported already in [12] [16] the overall mobility of the suspension decreases with increasing 
concentration of pinned hard spheres. We discuss here the diffusion and the relaxation properties. In Figure 1, 
the amplitude of the long-time self-diffusion constant LD  is presented. It has been extracted from the mean 
squared displacement which is defined as  

( ) ( ) ( ) 22

1

1lim : lim 0 6  .
mN

i i Lt t im

r t t D t
N→∞ →∞ =

∆ = − =∑ r r  

The sum is restricted to the mobile particles mN . In Figure 1(a) we present LD  as a function of the static 
pinning concentration c . LD  is decreasing drastically for 0.01c ≥ . For 0.2c ≥  the hard spheres cannot 
explore the entire volume anymore. This leads to an effective diffusion constant 0LD = . In Figure 1(b), for a 
fixed concentration 0.05c = , LD  is presented as a function of the inverse of T∆ . Here, dashed lines indicate 
the diffusion constant of the unpinned system and the diffusion constant for the system at static pinning. For 
large T∆ , as expected we observe convergence to this value. A maximum is observed around 0.2T τ∆ =  and 
in the limit of small T∆ , LD  decreases again. Here the pinned hard spheres change very frequently. The 
resulting dynamics is different from the dynamics of the system without pinning. The diffusive behavior is 
therefore not expected to be the same.  

In addition to the mean squared displacement, we discuss the properties of the self part of the dynamic 
structure factor sF , for the mobile particles in the system mN , defined as 
 

 
(a)                                  (b) 

Figure 1. (a) DL as a function of the static pinning concentration c ( )T∆ →∞ . (b) 

DL as a function of 1T −∆ . The upper dashed lines in the figures indicate the value 
of DL at 0c =  [8]. The lower dashed line indicates the value of DL in the limit of 
static pinning for 0.05c = . 
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( ) ( ) ( )( )( )max max
1

1, exp i 0  .
mN

s i i
im

F q t t
N =

= −∑ q r r  

In Figure 2, sF  is presented as a function of c . 
For large concentrations, 0.01c ≥ , we observe a shoulder as it is characteristic for the slow dynamics in 

glassy systems [12] [28]. For the extreme case of 0.5c = , the dynamic structure factor is not decaying to zero 
anymore because the mean squared displacement is bounded even for large times. 

As already mentioned in the introduction, slow relaxation becomes important at high concentrations, but it is 
still insignificant for concentrations 0.05c ≤ . 

4. Crystallization with Static Pinning 

Pinning a given concentration of hard spheres introduces a characteristic length scale cl , which interferes with 
the length associated with the formation of the critical nucleus. Assuming on average an arrangement of the 
pinned sites in a simple cubic crystal structure, cl  is given by  

3

3 .cl c
σ σ= −  

The diameter of the critical nucleus in the case without pinning at a packing fraction 0.5393η =  is 
3.4cd σ≈  (which corresponds to approximately 30 hard spheres) [8]. 

Crystal nucleation rate densities are presented in Figure 3 as a function of the pinning concentration c . We 
obtain the nucleation rate density as  

1

c

I
t V

=  

where ct  is the mean first passage time to form a stable nucleus and V  is the volume of the system.  
We observe a sharp decrease in the nucleation rate density around 1c cl d ≈ , which corresponds to a 

concentration 0.05c ≈ . When the length scale imposed by the pinned hard spheres becomes smaller than the 
diameter of the critical nucleus, crystal nucleation is suppressed.  

Figure 4 shows the evolution of the size of the largest cluster for different values of c . The growth rate is 
decreasing with increasing c  and the size of the cluster as a function of time is fluctuating more strongly. This 
 

 
Figure 2. Dynamic structure factor ( )max ,sF q t  for different concen- 

trations c  at packing fraction 0.5393η =  for the static pinning 
scenario. The wave vector amplitude maxq  corresponds to the first 

peak of the static structure factor ( )S q . The dashed-dotted line 

indicates the value 1 e  ( e  is Euler’s number). 
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Figure 3. Nucleation rate densities as a function of the effective average 
diameter cl  of unpinned regions divided by cd , the diameter of the 
critical nucleus. Data are compiled from 20 simulation runs each. 

 

 
Figure 4. Time evolution of the number of crystalline hard spheres 
in the largest cluster as a function of time. Shown are example runs 
for four different concentrations c. 

 
indicates internal stresses inside the nucleus, leading to a more irregular structure. This interpretation is 
supported by the analysis of the radius of gyration gR  as a function of the number of crystalline hard spheres, 
see Figure 5,  

( )22

, 1

1  .
cN

g k l
k lc

R
N =

= −∑ r r  

with cN  the number of hard spheres in a given cluster. 
The radius of gyration of the recorded nuclei for 0.05c =  is increased compared to the nuclei without 

pinning. This result clearly shows that the nuclei become more irregular with growing pinning concentration. 
We further ask whether pinned hard spheres are part the growing nuclei or whether the nuclei grow such that 

they avoid them. In Figure 6, the mean percentage of pinned hard spheres inside the crystalline clusters is 
recorded as function of the cluster size. 

For the two concentrations 0.01c =  and 0.05c = , we note that the percentage of pinned hard spheres inside 
the crystalline clusters is around half of the system’s pinning concentration. (In the case of 0.01c = , the mean  
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Figure 5. The radius of gyration 2

gR  as a function of the number of 
hard spheres of high symmetry in a cluster for two different pinning 
concentrations, 0.05c =  and 0c = . Data for 10 simulation runs each. 

 

 
Figure 6. Mean percentage of pinned hard spheres of high 
local bond order inside the growing nuclei as a function of the 
size of the nucleus for 0.01c =  and 0.05c = . The data is 
averaged over 10 simulation runs each. The dashed lines 
indicate the system average c. 

 
percentage for clusters 100N <  appears to be greater than the system average because even single pinned hard 
spheres result in concentrations greater than the system average.)  

From Figure 5 and Figure 6, we conclude that the immobile matrix is not incorporated into the growing 
clusters, which instead become more irregular with increasing c. We would also like to point out that our results 
indicate that single immobile hard spheres do not act as seeds for crystallization. Seeding of crystals requires a 
larger template, as has also been discussed in [29] [30]. 

Our findings motivate the next section of this work, where pinned hard spheres are only held immobile for a 
given pinning time interval T∆ .  

5. Crystallization with Periodic Pinning 

Static pinning induces defects inside the growing nuclei. We can release the defects on long time scales if we 
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apply periodic pinning, i.e. if a new set of pinned hard spheres is chosen after given time intervals T∆ . We 
choose a pinning concentration of 0.05c =  for this analysis. 

Figure 7 shows example simulation runs for different values of T∆ . We observe that the growth rate is 
decreasing for large T∆ . Towards the limit of static pinning, see diamond data points for 32T τ∆ =  in Figure 
7, the growing cluster fluctuates strongly in size compared to the smoothly growing clusters for 16T τ∆ =  and 

1T τ∆ = .  
The mean percentage of pinned hard spheres inside the growing crystal is presented in Figure 8. We observe 

that the concentration of pinned hard spheres inside the clusters is equal to the overall pinning concentration 
0.05c = . This leads us to the conclusion that defects are overcome on long time scales.  

The nucleation rate densities that we obtain for different T∆  are shown in Figure 9. 
The time it takes to develop a critical nucleus in the unpinned case is 5t τ∆ ≈ . For T t∆ ∆ , the nucleation 

rate densities are similar to the unpinned system (indicated by the upper dashed line). However, we have pointed 
out that the diffusion constant is affected by pinning, i.e. the short time dynamics differs between the pinned and 
the unpinned case. Nevertheless crystallization is not affected as it takes place on time scales that are long com-  
 

 
Figure 7. Time evolution of the number of crystalline hard spheres in 
the largest cluster as a function of time. Shown are example runs for 
four different values T∆  at 0.05c = . 

 

 
Figure 8. Mean percentage of pinned hard spheres inside the growing 
crystal at a pinning concentration 0.05c = . The data is shown for 
two different time intervals 8T τ∆ =  and 32T τ∆ = . The data is 
compiled for 10 simulation runs each. The dotted lines indicate the 
system average concentration of pinned hard spheres. 
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Figure 9. Nucleation rate densities as a function of the inverse of 
pinning time interval T∆  normalized by the typical time a critical 
cluster needs to develop in the unpinned case, t∆ . The pinning 
concentration is set to 0.05c = . The dashed--dotted line indicates the 
result for the unpinned system, the dashed line indicates the result at 
static pinning ( )T∆ →∞ . Data are averaged over 10 to 20 
simulation runs. Error bars indicate the standard deviation. 

 
pared to T∆ . The system exhibits Brownian motion on this time scale, i.e. the details of the short time 
dynamics do not matter for the crystallization process [31]-[33]. 

For T t∆ > ∆ , we observe a monotonic decrease towards the results of static pinning which is expected in the 
limit of large T∆ . This limit is indicated by the lower dashed line in Figure 9. The drop in the nucleation rate 
density is due to the crossover of time scales. If we pin hard spheres longer than the time it takes for a critical 
cluster to develop the critical cluster experiences an increasingly static pinning like environment. For small 
pinning time intervals, all hard spheres in the region where the critical cluster develops move at some point 
during t∆  and we recover the nucleation rate density of the unpinned system. 

6. Conclusions 

We have presented a simulation study of crystallization in suspensions of hard spheres under the constraint of 
random static and periodic pinning. This approach allows us to directly restrict the number of accessible 
configureurations and the number of possible paths leading to crystallization.  

We have shown that already a small pinning concentration is sufficient to suppress crystallization completely. 
We observe a sudden drop in the nucleation rate densities when the length scale introduced by the pinned hard 
spheres becomes smaller than the diameter of the critical nucleus of the unpinned system (i.e. at a concentration 
of 0.05c =  for the supersaturation studied here). In addition, we characterized the structural properties of the 
nuclei—more irregular structures are recorded at higher pinning concentrations, the growth rates decrease con- 
siderably, and the pinned hard spheres are not incorporated into the crystalline clusters. Since the transition is 
sharp, one can extract from the measurement of the nucleation rate density at static pinning the typical size of 
the critical nucleus of the unpinned colloidal system.  

In a second step we extended the pinning procedure to periodic pinning at a fixed concentration of 0.05c = . 
As mentioned earlier, 0.05c =  is close to the sharp decrease in the nucleation rate density. Periodic pinning 
lifts the internal stresses of the growing nuclei. For small T∆ , the nucleation rate densities approach one of the 
unpinned system even though the short time dynamics is different. At T t∆ > ∆  we observe a monotonic de- 
crease towards the limiting value for static pinning. This decrease is directly related to the time, $\Delta t$, a 
critical nucleus needs to form in the unpinned system. 

The procedure of pinning a low concentration of hard spheres in the overcompressed fluid allows one to 
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obtain information of the static and dynamic properties of the critical nucleus through observing the drop in the 
nucleation rate densities without exploring the details on the microscopic scale. The results presented here could 
be experimentally verified, for example in colloidal suspensions using laser trapping to pin hard spheres [14] or 
in two component mixtures with a significant asymmetry in mobility [9]. 
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