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Abstract 
The architecture of edge-cloud cooperation is proposed as a compromising 
solution that combines the advantage of MEC and central cloud. In this paper 
we investigated the problem of how to reduce the average delay of MEC ap-
plication by collaborative task scheduling. The collaborative task scheduling 
is modeled as a constrained shortest path problem over an acyclic graph. By 
characterizing the optimal solution, the constrained optimization problem is 
simplified according to one-climb theory and enumeration algorithm. Gener-
ally, the edge-cloud collaborative task scheduling scheme performance better 
than independent scheme in reducing average delay. In heavy workload sce-
nario, high blocking probability and retransmission delay at MEC is the key 
factor for average delay. Hence, more task executed on central cloud with 
abundant resource is the optimal scheme. Otherwise, transmission delay is 
inevitable compared with execution delay. MEC configured with higher 
priority and deployed close to terminals obtain more performance gain. 
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1. Introduction 

As digital applications proliferate, 5G network is deeply integrated with en-
hanced mobile broadband (eMBB), ultra reliable low latency communications 
(uRLLC), and massive machine type communication (mMTC) services, such as 
virtual reality/augmented reality, 4K/8K live video, artificial intelligence decision 
and big data analysis [1] [2] [3] [4]. Multiple access edge computing (MEC) is a 
promise technology which allows various access mode, high bandwidth, low la-
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tency services executed locally by deploying multiple access edge cloud at the 
edge of the network [5] [6]. As a simplified version of central cloud, MEC ex-
ecutes the cloud computing task locally by deep data inspection, which can re-
duce the transmission delay and avoid the flow storm towards backhaul and core 
network [7] [8] [9]. More and more broadband and low latency services are ap-
plied with the assistant of MEC instead of centralized cloud. However, MEC is 
deployed at the edge of network with limited resources including computing, 
storage, cache, even physical space, air-conditioning environment and energy 
consumption. Compared with MEC, central cloud is assumed to offers virtually 
unlimited computing capacity, massive storage and abundant cache in core data 
center (DC). Hence, the architecture of edge-cloud cooperation is proposed as a 
compromising solution that combines the advantage of MEC and central cloud 
[10] [11]. In the cooperation scenario, it is critical to utilize the limited resource 
efficiently and balance the workload between edge and cloud by offloading me-
chanism and resource management schemes.  

Offloading mechanism has been studied extensively in mobile edge compu-
ting scenario [12]-[19]. Generally, there are three kinds of offloading policies 
aiming at minimal delay, minimal energy and balance between delay and energy. 
Liu adopt a Markov decision process approach to handle the delay and optimal 
computation offloading policy, incorporating different timescales in the task ex-
ecution process [12] [13] [14]. Several strategies are proposed to minimize the 
energy consumption with predefined delay constrains [15] [16] [17] [18]. Ka-
moun suggested continuous optimization algorithms preconfigured offline and 
based on network status online [15] [16]. Resource allocation is considered in a 
MEC offloading system comprising multiple users sharing the same edge cloud 
[17] [18]. Furthermore, some offloading proposals are considered for energy ef-
ficiency in latency constrained [19] [20]. However, most of the literatures are 
assumed to solve the optimal cooperation between the mobile terminal and 
MEC platform with fading channels. In fact, the cooperation between MEC and 
central cloud is also significant in task scheduling [21]. In this scenario, not only 
backhaul bandwidth but also transmission delay with various MEC deployment 
positions are the critical factors.  

In this research, we investigate problem of how to reduce the average delay of 
MEC application with cloud assistant in a more generally scenario. Compared 
with one dimension linear or parallel task execution topology, the realistic MEC 
platform allows both serial and parallel computation tasks executed. The parallel 
computation task execution is designed to support micro-service application. 
Nevertheless, most tasks cannot be divided into parallel elements completely. 
Some elements are executed with others’ output as input. Hence, we build a grid 
topology model to describe the task generally. The model is consists of two di-
mensions topology. The micro-service sets are executed serially and the micro 
services are executed in parallel in each set. Then, we characterize the optimal 
solution to the optimization problem by one-climb theory and enumeration al-
gorithm [20]. 
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The rest of this paper is organized as follows. System model and problem 
formulation is presented in Section 2. Section 3 provides the characterization of 
the optimal solution to the optimization problem. In Section 4, some simula-
tion results are listed to compare the performance gain in average delay. Fi-
nally, the conclusions of this paper and suggestions for future work are given 
in Section 5. 

2. System Model and Problem Formulation 

In this section, we present the model for tasks with micro-service architecture 
collaborated between MEC and cloud. Generally, an application task is a hybrid 
of services executed sequentially and in parallel. 

1) Micro-Service Task Model 
We assume that an application task Φ is presented by a sequence of mi-

cro-service sets with a linear topology. Each micro-service set consists of mi-
cro-services which can be executed in parallel. Figure 1 illustrates the mi-
cro-service task model in a grid topology. S0 and D are the initiator and destina-
tion of the application task, respectively. There are n sequentially executed mi-
cro-service sets {S1, S2, ∙∙∙, Sn} in the task, which can be modeled as a Poisson 
process. We denote the output of Si as iα  for i = 1, 2, ∙∙∙, n. And 0α  is the in-
put initialized by the initiator S0. Each set Si (0 < i ≤ n) is consist of mi indepen-
dent micro services ,{ | 0 ,0 }i j is i n j m< ≤ < ≤  which are executed in parallel. 
Specially, ,{ | 0 ,0 }i j iw i n j m< ≤ < ≤  is the computing workload of the jth mi-
cro service in the micro-service set Si. However, micro-service set Si (0 < i ≤ n) is 
executed based on the output of previous set Si−1 (0 < i ≤ n). Hence, notice that 

iα  (0 ≤ i ≤ n) is a non-zero matrix. Generally, there are three kinds of 
edge-cloud collaborative policy: local execution, partial offload and all offload. 
Hence, ξ  is defined as the ratio of micro-service set that offloaded to MEC 
platform. 

2) Execution Model 
In this paper, we focus on the collaborative task execution between MEC and 

cloud. Specially, each micro service in the grid topology can be executed on the 
local MEC platform or offload to the cloud. In this configuration, we establish 
atomic modules involved during the collaboration between MEC and cloud. 

MEC execution. If the jth micro service in the micro-service set Si (0 < i ≤ n) is 
executed on the MEC platform, the completion time is given by 
 

 
Figure 1. Illustration of the micro-service architecture model in a grid topology. 
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( ) ( ) 1MEC
ij ij MECt l fξ ξ −= ∗                        (1) 

and the energy consumption of MEC platform is given by 

( ) ( ) 3MEC MEC MEC
ij ij MEC ij ij MECe t p t fξ κ ξ= ∗ =                 (2) 

where MECf  is the computation power function related with CPU frequency, 

ijκ  is a constant related to the hardware architecture, and MECp  is the energy 
consumption model proportional to 3

MECf . Therefore, the completion time of 
MEC platform for micro-service Si (0 < i ≤ n) with mi micro services executed in 
parallel is given by 

( ) ( ) 1max{ | [1, ] Z}MEC
i ij MEC it l f j mξ ξ −= ∗ ∩              (3) 

Edge-cloud transmission. MEC transmits necessary input iα  for mi-
cro-service set Si+1 when its buffer is full. The transmission bandwidth for MEC 
is defined as a constant B. LEC is the transmission distance from MEC to cloud. 
Generally, the typical transmission delay of backhaul is a constant related with 
distance, e.g. 5us per kilometer. Then the loop transmission delay of output data 

iα  (0 ≤ i ≤ n) between MEC and cloud is given by 

( ) 0 /2EC
i EC it t L Bξ α= ∗ ∗ ∗                     (4) 

where t0 is the transmission delay per kilometer and B is the transmission rate of 
backhaul between MEC and central cloud. 

The energy consumption of output data iα  (0 ≤ i ≤ n) transmission between 
MEC and cloud is given by 

( )t
i i te t pξ= ∗                          (5) 

where t
it  is the transmission delay to MEC or central cloud, tp  is the energy 

consumption function with fixed parameter during the computation. 
Cloud execution. Similarly, if the jth micro service in the micro-service set Si−1 

(0 < i ≤ n) is executed on the cloud, the completion time is given by 

( ) ( ) 1C
ij ij Ct l fξ ξ −= ∗                        (6) 

and the energy consumption of cloud is given by 

( ) ( ) ( ) 3MEC MEC MEC
ij ij MEC ij ij MECe t p t fξ ξ κ ξ= ∗ =             (7) 

where Cf  is the computation power function related with central CPU fre-
quency, ijκ  is a constant related to the hardware architecture, and Cp  is the 
energy consumption model proportional to 3

Cf . Generally, cloud is more po-
werful and efficient than MEC with higher Cf . Therefore, the completion time 
of cloud for micro-service Si (0 < i ≤ n) with mi micro services executed in paral-
lel is given by 

( ) ( ) 1max{ | [1, ] Z}C
i ij C it l f j mξ ξ −= ∗ ∩                (8) 

3) Markov Process 
The collaborative task execution between MEC and cloud can be modeled by a 

directed acyclic graph G = (V, A), with the finite node set V and arc set A, as 
shown in Figure 2. We denote the number of nodes and arcs as |V| and |A|, re-
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spectively. Node i represents that the ith micro-service set Si is executed on MEC 
platform and node i’ represents that the ith micro-service set Si is executed on 
cloud. We can find that |V| = 2n + 2 and |A| = 4n. However, cloud can complete 
the micro-service sets in advance without prior information from the output of 
MEC. Hence, the application task collaborated between MEC and cloud can be 
divided into two parts, as shown in Figure 3. The previous i − 1 nodes on cloud 
are independent from special MEC platform service. Hence, non-time limited 
and services independent task can be executed on cloud previously, such as 
pre-configuration and model training in machine leaning. The collaborative task 
execution between and cloud model is modified as the latter part, from node i + 
1 or i + 1’ to node n or n’ in Figure 3. Hence, the number of nodes |V| and arcs 
|A| can be modified as |V| = 2n − i + 2 and |A| = 4n − 3i. 

State (i, j) represents the state where the current number of requests at MEC is 
i and at cloud is j. Let pij be the stationary probability of state (i, j).  

Unlike cloud, computing and cache resource are limited at MEC. The subse-
quence service has to be transmitted to the cloud if its request buffer is full. 
Hence, the micro-service sets executed on the MEC platform can be expressed as 
a modified M/M/c/K queue with cache capacity K1. And the arrival rate λ1 and 
the response completion time obey negative exponential distribution with para-
meter as μ1. 

( ) ( ) ( )1
1

MEC Et tξµ
ξ ξ

 
=  

+  
                     (9) 

where [ ]  is the average operator. 
Then, the micro-service sets executed on cloud can be modeled as a modified 

M/M/c/K queue with cache capacity K2. And the arrival rate λ2 and the response 
completion time obeys negative exponential distribution with parameter as μ2. 

( )
( ) ( )2

1
C ECt t

µ ξ
ξ ξ

 
=  

+  
                    (10) 

 

 
Figure 2. Markov model of edge-cloud collaboration. 

 

 
Figure 3. Modified Markov model of edge-cloud collaboration. 
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3. Characterization of Optimal Solution to Task Scheduling  
Policy 

The arc of the adjacent modes, i and j, is associated with the nonnegative delay ti,j 
for a corresponding service. Under this framework, we can transform the 
edge-cloud collaborative scheduling problem to the shortest distance route 
problem between node i and D, subject to the constraint that the expected com-
pletion time of that path should be less than or equal to the energy ceiling. A 
path p is feasible if the expected energy consumption satisfies the energy con-
straint. A feasible path p* with the minimum time delay is the optimal solution 
among all the feasible paths. Mathematically, it can be formulated as a con-
strained shortest path problem, 

( ) ( )( ) ,,min p i ji j pT tξ ξ∈ ∈
 = ∑                (11) 

s.t. 

( )( ) ,, i j maxi j p e Eξ
∈

  ≤ ∑                   (12) 

1 1 1n n
iji j p

= =
=∑ ∑                       (13) 

0, ,ijp i j> ∀                         (14) 

0 1ξ≤ ≤                          (15) 

where   is the set of all possible paths from node i to D and Emax is the max-
imal energy consumption of the entire application. Since each micro service can 
be executed by offloading to MEC or on cloud, there are 2n-i possible options for 
the solution. This constrained optimization problem is shown to be NP-complete. 
Based on the optimality of the one-climb policy, the minimal delay optimal ex-
ecution only migrates once from MEC to the cloud after node i. Then, we design 
an efficient algorithm for task scheduling. We can enumerate all the paths under 
the one-climb policy rather than all the 2n-i paths [20]. We define ′  as the set 
of all the paths under one-climb policy. There are ( )( )( )1 / 2 1n i n i− + − +  
paths in ′ , thus the optimal solution is available by reformulating T into a se-
ries of linear programming problems with non-convex T.  

The probability flows from the previous level to the current level are captured 
by the matrix 0A  with fixed ξ , for queue length from 0 to K1, and by the ma-
trix 0 λξ= −A I  for the other levels.  

0 λξ= −A I                         (16) 

where I is the identity matrix. The queue length keeps the same with expression 

1
*

2
*

1 2

*

( 1) 0 0
( 1) 0

0 0

0 0 0

µ λ ξ λ
µ µ λ ξ λ

µ µ λξ

µ λ

+ − 
 − + − 
 = − +
 
 
 + 

A


  



          (17) 

and 
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*
2

*
2

*

1

( 1) 0 0
( 1) 0

0 0

0 0 0

λ ξ λ
µ µ λ ξ λ

µ µ λ

µ λ

− 
 − + − 

′  = − +
 
 
 + 

A


  



            (18) 

1
*

2
* *
1 2

*

0 0
0

0 0

0 0 0

µ λ λ
µ µ λ λ

µ µ λ

µ

+ − 
 − + − 
 = − +
 
 
  

A


  



              (19) 

where 1′A  and *
1A  are matrix for state (0, 0) and (K, K). 

Finally, the matrix from the next state to the current state is given by 

1
*

2
*

2 2

*

0 0 0
0 0

0 0

0 0 0

µ
µ µ

µ µ

µ

− 
 − 
 = −
 
 
 − 

A


  



                 (20) 

Then the average delay are given by 

( ) ( ) ( )
1

2 2

1 1,1 1
11 2

1 1min min 1 1
K

K K
ij K jj jp p i

i p j pξ
µ µ −= =∈ ∈ =

 
= + + +    

 
∑ ∑∑ T 

 
 

s.t.  

( )
( ),

,

1
1

1

0, ,
0 1

i j max
i j p

n
n

ijj
i

ij

e E

p

p i j

ξ

ξ

∈

=
=

  
≤  

   

 =

 > ∀


≤ ≤

∑

∑∑



                   (21) 

Searching space of the one-climb policy is much smaller than that of the 
brute-force search. Detailed procedures for solving minimal delay T are summa-
rized as follows. 
 

One-dimensional search algorithm 

set 0ξ = , and Φ as a sufficiently large integer 
for 0ϕ = : 1: Φ do 

(T,E) = Shortest Path (S0, D, t, ξ ) 
//solve the shortest path in terms of delay with a fixed ξ  

if E ≤ Emax 

return T 
else 

update the offload rate ξ  as 1/ Φξ +  
end 

find the optimal solution *ξ  for minimal delay *( )T ξ  
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4. Performance Evaluation 

In this section, we evaluated the performance of the proposed edge-cloud colla-
borative task scheduling scheme with independent task scheduling scheme. In 
this simulation, it is assumed that the input data packet obeys Poisson process. 
Compared with the independent scheme, the workload ratio ξ is adaptive to ob-
tain the minimal delay. Figure 4 illustrated the average delay comparison of co-
operative and independent schemes with ARQ (Automatic Repeat-Request). 
Generally, edge-cloud collaborative scheme performs better than the indepen-
dent scheme. The average delay gap is reduced as the workload increases with 
higher task density λ and less buffer size. In heavy workload scenario, high 
blocking probability with intensive retransmission is the most significant factor 
in average delay. Hence, the heavy workload case is a resource limited case. 
There is no extremely obvious difference whether MEC is configured with high-
er priority or not. Otherwise, high and inevitable transmission delay is a more 
critical factor in sparse task scenario. In this resource sufficient case, more task is 
executed at MEC platform until its buffer is full. Cooperative task scheduling 
obtains more performance gain than the independent scheme. Figure 5 illu-
strated the average delay comparison between different task scheduling policies 
with MEC deployed in edge DC and local DC. Compared with execution delay, 
transmission delay is a more significant factor in edge-cloud collaborative task 
scheduling with MEC deployed in different DC. Hence, the average delay is in-
creased extensively with MEC deployed on a higher layer, especially with insuf-
ficient buffer size. 
 

 
Figure 4. Average delay comparison between different task scheduling policies with ARQ 
and various λ. 
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Figure 5. Average delay comparison between different task scheduling policies with dif-
ferent MEC deployment position. 

5. Conclusions 

In this paper we investigated the problem of how to reduce the average delay of 
MEC application by collaborative task scheduling. The collaborative task sche-
duling is modeled as a constrained shortest path problem over a acyclic graph. 
By characterizing the optimal solution, the constrained optimization problem is 
simplified according to one-climb theory and enumeration algorithm. Generally, 
the edge-cloud collaborative task scheduling scheme performs better than inde-
pendent scheme in reducing average delay. In heavy workload scenario, high 
blocking probability and retransmission delay at MEC is the key factor for aver-
age delay. Hence, more task executed on central cloud with abundant resource is 
the optimal scheme. Otherwise, transmission delay is inevitable compared with 
execution delay. MEC configured with higher priority and deployed close to 
terminals obtain more performance gain. 

For future work, we will consider various extensions of this work. First, more 
mathematical models of practical details in cloud computing are necessary to be 
considered in edge-cloud collaborative execution. Second, power saving on MEC 
and cloud platform is also important. In addition, the task workflow topology 
can be extended into more general modes. 
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