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Abstract 
Energy efficiency and energy-proportional computing have become a central 
focus in modern supercomputers. These supercomputers should provide high 
throughput per unit of power to be sustainable in terms of operating cost and 
failure rates. In this paper, a power-bounded strategy is proposed that max-
imizes parallel application performance under a given power constraint. The 
strategy dynamically allocates power to core, uncore, and memory power 
domains within a node to maximize performance under a given power budg-
et. Experiments on a 20-core Haswell-EP platform for a real-world parallel 
application GAMESS demonstrate that the proposed strategy delivers per-
formance within 4% of the best possible performance for as much as 25% re-
duction in the minimum power budget required for maximum performance. 
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1. Introduction 

Power consumption has become a major concern for modern and future super-
computers. For the current topmost petascale computing platforms in the world, 
it is typical to consume power on the order of several megawatts as depicted in 
the biannual TOP 500 list1, which may cost on the order of several million dol-
lars. In the quest for exascale performance, the power consumption growth rate 
must slow down and deliver more calculations per unit of power, giving rise to 
power-bounded computing in which components of a computing system oper-
ate under a fixed power budget such that performance is maximized. 

 

 

1http://top500.org/. 
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Previous generations of Intel processors used either a fixed uncore frequency 
or a common frequency for the core and uncore. The uncore describes the func-
tions of a processor that are not handled by the core, such as the L3 cache and 
on-chip interconnect. Starting from the Intel Haswell micro-architecture, the 
core and uncore frequency domains have been decoupled, so that the uncore 
frequency can be modified independently of the core frequency, typically done 
by dynamic voltage and frequency scaling (DVFS). The uncore frequency has a 
significant impact on the on-die cache-line transfer rates as well as on the mem-
ory bandwidth. By default, the uncore frequency is set by the hardware and can 
be specified via the model-specific register (MSR) UNCORE_RATIO_LIMIT 
[1]. This technique is denoted uncore frequency scaling (UFS). The latest Intel 
CPUs work with at least two clock speed domains: one for the core (or even in-
dividual cores) and one for the uncore, which includes the L3 cache and the 
memory controllers. 

In the authors’ previous work [2] [3], the efficacy of UFS was explored in 
terms of its energy-saving potential and a strategy was proposed, which em-
ployed both DVFS and UFS to maximize energy savings for parallel application 
execution under a performance constraint. Experiments showed that larger 
energy savings can be achieved when UFS and DVFS are used jointly. In addi-
tion, joint and simultaneous DVFS of the processor and DRAM was explored in 
[4], where novel power and performance models were proposed. 

The Intel Running Average Power Limit (RAPL) interface [5] provides MSRs 
containing energy consumption estimates for up to four power planes or do-
mains of a machine as follows: 
• PKG: for the entire package,  
• PP0: for the cores,  
• PP1: for the uncore subsystem (available in client-type platforms only, main-

ly used for general-purpose applications),  
• DRAM: main memory (available in server-type machines only). 

The authors’ previous research [6] considered primarily PP0 and DRAM 
domains for budgeting power to solve the parallel application performance 
optimization problem in the quantum chemistry software GAMESS [7] [8]. 
The present paper adds the PP1 (uncore) domain, similarly to the work de-
scribed in [2], to solve this problem and proposes a power-bounded runtime 
strategy, which maximizes the parallel application performance under a given 
power budget. In essence, the work presented here may be considered as a 
combination of [2] and [6] because it determines optimal values for both 
uncore and core frequencies with the goal to distribute a given power budget 
to hardware components such that the application performance is max-
imized. Note that, because the server platform used in this work does not 
provide a separate PP1 interface to limit uncore power, UFS is used to 
achieve uncore power shifting within a given power budget. In a nutshell, the 
contributions of this work include:  
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• Determining the priority of the power budget allocation to the three do-
mains, namely, core PP0, uncore PP1 and memory DRAM. 

• Devising novel performance and power models to correlate changes in 
uncore frequency to PKG power consumption. 

• Proposing a runtime power-bounded strategy to maximize parallel applica-
tion performance under a given power budget by carefully allocating power 
to PKG, DRAM and uncore domains.  

• Maximizing performance of a quantum chemistry application GAMESS un-
der power constraints. 

The rest of the paper is organized as follows. Section 2 provides the related 
work. Section 3 studies power allocation priorities among power domains. Sec-
tion 4 proposes performance and power models. Section 5 develops the runtime 
strategy to maximize performance under a given power budget for any parallel 
application. Section 6 shows experimental results while Section 7 provides con-
clusions. 

2. Related Work 

Power is one of the most prominent HPC challenges, forcing the objectives and 
approaches of HPC power management to continuously evolve. Therefore, ex-
tensive research has been conducted to measure, model, and budget power on 
computer components and systems. In this section, a brief discussion of pre-
vious work in power capping and closely related work in system-level power and 
energy savings is studied. 

The two most commonly used techniques to limit the power consumption of a 
node come in the form of 1) DVFS/Throttling for processor and memory [9] 
[10] and 2) Hardware enforced power bounds from RAPL [5]. The authors in 
[11] propose a runtime system termed conductor that dynamically distributes 
available power to different compute nodes and cores based on the available 
slack to improve performance. It also performs either upscaling or downscaling 
of processor frequency to decrease execution time and to save energy in an indi-
rect manner through power clamping. Reference [12] explores the coordinated 
power allocation among different components within a node, observing which 
optimal power allocation strategy is proposed. The authors in [10] propose 
models that predict the performance of HPC computations under varying caps 
for different components in a node. A cluster level power allocation framework 
termed CLIP was proposed in [13], which performs application characterization 
along with performance modeling to allocate power budget to nodes and their 
components to maximize performance in a cluster. 

The work in [14] discusses a hardware level power capping strategy for limit-
ing DRAM power consumption. A multi-level hierarchical variation-aware ap-
proach of power management is proposed in [15], which at the macro level par-
titions the system power budget across jobs, and at the micro level, evaluates the 
power allocation based on application performance metrics. The idea of hard-
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ware overprovisioning has been used in [16] by proposing a scheme for deter-
mining the optimal number of nodes while distributing power between the CPU 
and memory. The design of a power scheduler capable of enforcing power bounds 
by employing dynamic system-wide power reallocation was discussed in [17]. 

Most of the work discussed in this section primarily focused on redistributing 
power between the processor cores (PP0) and memory (DRAM) domains, whe-
reas the uncore (PP1) one has largely been ignored. This paper considers the 
uncore domain and proposes a strategy that resolves the power allocation prob-
lem to maximize system throughput at the runtime. 

3. Power Allocation Priority 

For appropriately allocating a given power budget among different RAPL do-
mains, it is imperative to determine the order in which power should be distri-
buted among them because insufficient allocation to a power domain may have 
drastic negative effects on the application performance. 

Figure 1(a) & Figure 1(b) show the change in the power consumed (left 
y-axis) and execution time (right y-axis) for the NAS parallel benchmarks EP 
(embarassingly parallel) and CG (conjugate gradient), respectively, with the varying 
power allocation between PKG and DRAM power domains under a fixed power 
budget of 100 watts (W). Note that the power limits change along the x-axis in a 

 

 
Figure 1. PKG and DRAM power budget allocation out of 100 W of total power budget and the corresponding 
change in the power consumption and execution time for (a) EP and (b) CG NAS parallel benchmarks. The se-
quence of (PKG, DRAM) power-budget pairs: ( ) ( ) ( )98,2 , 96,4 , , 2,98  is along the x-axis. 
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sequence of pairs (PKG, DRAM) obtained from changing both PKG and DRAM 
power values by 2 W at a time. The power limits essentially set an upper limit for the 
maximum allocated power consumption of the respective component. For example, 
in Figure 1(b), the black vertical bar is drawn to indicate that, for the (PKG, DRAM) 
allocation pair of (42, 58) W, marked with horisonal dashes where the bar crosses the 
corrsponding power limit lines, the PKG and DRAM power consumptions are ob-
served as 42 W and 7 W, respectively, and the execution time is 36.9 seconds. 

It can be observed from Figure 1(a), that for the compute intensive EP 
benchmark, the performance is sensitive to the PKG power allocation and re-
mains unaffected by the changes to the DRAM power allocation. Specifically, the 
execution time remains stable until the PKG limit is decreased from 100 to 70 
W. For the PKG allocation less than 70 W, the performance degrades and the 
execution time keeps increasing until the PKG allocation is 34 W. Any further 
decrement in the PKG allocation from this point, neither decreases the measured 
PKG power consumption nor degrades the performance any further. On the 
other hand, for the memory intensive CG benchmark, the execution time is sen-
sitive to both PKG and DRAM power allocations, see Figure 1(b). In particular, 
the performance degrades rapidly by over 600% when the DRAM power alloca-
tion is changed from 8 to 2 W, showing an increase in the execution time from 
25 to 155 seconds. Note that the DRAM power consumption does not change 
when its allocation is increased beyond 8 W. The performance does not change 
while the PKG power allocation is above 76 W, after which the execution time 
increases despite the increase in the DRAM power limit. For CG, the effect of 
reducing the DRAM power allocation is much more severe on performance 
compared to that of reducing the PKG power allocation. This may be explained 
by the fact that, when RAPL limits the DRAM power consumption, it essentially 
cripples DRAM bandwidth according to the power-performance model in [14], 
whereas reducing the PKG power allocation essentially modifies the operating 
frequency of the processor cores. Therefore, given a specific power budget, the 
DRAM domain must have the highest priority of all three power domains when 
it comes to allocating the power budget. As for the PKG and uncore power do-
mains, the power allocation between them may be decided by using a perfor-
mance model proposed in [2]. 

4. Performance and Power Modeling 

To effectively distribute the power budget to the application performance, a 
fine-grained performance model is needed. A power model is also required to 
correlate the variation in core and uncore frequency with resultant power con-
sumption to effectively apply the power limits. In this section, the two models 
are discussed. 

4.1. Performance Model 

A performance model proposed in a previous work [2] is used here. This model 
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(in Equation (1)) correlates application performance, expressed in micro-operations 
retired, with particular core ( )cf i  and uncore ( )uf j  frequencies expressed 
by their corresponding levels, from the highest to lowest, , 1, ,i i N= 

 and 
, 1, ,j j M=  . 

( ) ( )
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            (1) 

where  
( ),i jµτ  is the number of micro-operations retired per second at core frequen-

cy ( )cf i  and uncore frequency ( )uf j . 

exeCPM  is the number of cycles per micro-operation retired barring the 
memory accesses in a second. 

α  ( 0 1α≤ ≤ ) is the out-of-core (OOO) overlap factor, which determines the 
extent of the memory access stalls overlapped with the execution cycles. 

MAPM is the number of memory accesses per micro-operation retired in a 
second. 

jβ  is the number of cycles corresponding to the memory access latency at the 
uncore frequency ( )uf j . 

4.2. Power Model 

The processor power consumption, denoted ( ),TP i j , can be expressed as [2]: 

( ) ( ) ( )3 3
1 2, ,T s c uP i j P k f i k f j= + × + ×                (2) 

where 1k  and 2k  are constants and ( )cf i  and ( )uf j  are the core and 
uncore frequencies, respectively. sP  stands for the processor static power con-
sumption, which was measured as 12 W through RAPL. Since uncore (PP1) 
power limiting is not supported in Intel server processors, the power model in 
Equation (2) is required to relate the power consumption of core/uncore do-
mains to the corresponding levels of core/uncore frequencies. Parameters 1k  
and 2k  were determined by a regression analysis of the processor power ob-
tained through the RAPL registers at different core and uncore frequencies for 
several benchmarks. The values 1k  and 2k  were found to be 0.97 and 0.46, 
respectively, indicating that changes in the core frequency affect the processor 
power consumption more than those in the uncore frequency do so. 

Given a power budget for the three domains—PP0, PP1, and DRAM—in a 
server-type platform, the shifting of power between the core and uncore do-
mains is essentially done by first modifying the uncore frequency and then 
shifting the corresponding reduction in power to increase the power limit for the 
core domain to maximize the performance. Equation (3) depicts how the power 
is transferred to the core domain (within the PKG domain) through UFS: 

( ) ( ) ( )( )PKG RAPL-MEM 1 21, 1, .B T TP P P P j P j= − + −            (3) 

Specifically, Equation (3) sets the PKG power limit PKGP  as the sum of the 
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total power budget BP  minus the DRAM power consumption RAPL-MEMP  and 
the difference in processor power consumption when the uncore frequency is 
switched from level 1j  to 2j . In this manner, the reduction in power obtained 
through UFS is transferred to the PKG power limit to increase the core frequen-
cy and subsequently to improve performance. 

5. Runtime Power-Bounded Strategy 

The proposed runtime strategy is based on the history-window predictor [4], 
which employs a window of the previous L values of a measured parameter and 
predicts its next value as some function g of these past L values. To implement 
this prediction mechanism, two registers—denoted CPR and MPR—of length L 
are maintained to record the values of exeCPM  and MAPM, respectively. If the 
register is not filled, then the corresponding quantity is considered unchanged 
from the previous prediction. 

Figure 2 displays the algorithmic steps of the proposed runtime strategy  
 

 
Figure 2. Algorithmic steps of the runtime power-bounded strategy. 
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maximizing parallel application performance under a given power budget. Step 1 
divides the user-defined power budget BP  equally between PKG and DRAM 
power domains. Step 2 profiles the application for the first timeslice of the dura-
tion τ  and obtains the relevant parameter values from the performance coun-
ters. In Step 3, the operating core frequency ( )c cf ω  is determined by using the 
APERF and MPERF MSRs [18] according to the relation: 

( ) ( ) APERF1 ,
MPERFc c cf fω ∆

= ×
∆

                   (4) 

where APERF∆  and MPERF∆  signify the change in the values of the respec-
tive registers over a given time period. Next, from performance counters, Step 4 
initializes the micro-operations retired, ( ),1cµτ ω , at the operating core fre-
quency ( )c cf ω  and the highest uncore frequency ( )1uf  for the first timeslice 
of the application execution. The corresponding exeCPM  is calculated from 
Equation (1) as: 

( )
( )

( )
( )exe 1CPM MAPM ,

,1 1
c c c c

c c

f f
f

ω ω
α β

µτ ω
= − × × ×            (5) 

and MAPM is obtained directly from the processor performance counters. For 
1r > , Step 5 determines the values of exeCPM  and MAPM through the histo-

ry-window prediction mechanism by using a simple averaging function, which 
calculates the future value as an average of the past values. If the registers CPR 
and MPR have not been completely filled, then the last values of exeCPM  and 
MAPM are used as the next values. In Step 6, ( ),i jµτ  is determined for all of 
the available core and uncore frequencies using the values of exeCPM  and 
MAPM from Step 5. Next (Step 7), the optimal core-uncore frequency pair is 
determined, such that the predicted number of micro-operations retired is at its 
maximum. In Step 8, the total power consumed at the chosen frequency pair is 
determined using Equation (2) in Step 9, the power limit for DRAM is set as the 
measured DRAM power consumption, while the PKG power limit is set as in 
Equation (3). In Step 10, if the CPR and MPR registers are completely filled, they 
are shifted left by one to discard the old values. In Step 11, the application ex-
ecutes the current timeslice r at the chosen PKG and DRAM power limits and 
the frequencies chosen in Step 7. In Step 12, the values of ( ),c uµτ ω ω , CPR[ℓ], 
and MPR[ℓ] are updated with the corresponding operating frequency pair 
( ),c uω ω  to be used in the next timeslice. 

6. Experimental Results 

The experiments were performed on a compute node, termed Gwent having two 
Intel Xeon E5-2630 v3 10 core Haswell-EP processors with 32 GB (4 × 8 GB) of 
DDR4. The core and uncore frequency ranges are 1.2 - 2.3 GHz and 0.8 - 2.9 
GHz, respectively. To measure the node power and energy consumption, a 
Wattsup2 power meter is used with a sampling rate of 1 Hz. 

 

 

2https://www.wattsupmeters.com/. 
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6.1. Overview of GAMESS 

GAMESS [7] [19] is one of the most representative freely available quantum 
chemistry applications used worldwide to do ab initio electronic structure calcula-
tions. A wide range of quantum chemistry computations may be accomplished 
using GAMESS, ranging from basic Hartree-Fock and Density Functional Theory 
computations to high-accuracy multi-reference and coupled-cluster computa-
tions. 

The central task of quantum chemistry is to find an (approximate) solution of 
the Schrödinger equation for a given molecular system. An approximate (un-
correlated) solution is initially found using the Hartree-Fock (HF) method via 
an iterative self-consistent field (SCF) approach, and then improved by various 
electron-correlated methods, such as second-order Møller-Plesset perturbation 
theory (MP2). The SCF-HF and MP2 methods are implemented in two forms, 
namely direct and conventional, which differ in the handling of electron repul-
sion integrals (ERI, also known as 2-electron integrals). Specifically, in the con-
ventional mode all ERIs are calculated once at the beginning of the interactions 
and stored on disk for subsequent reuse whereas in the direct mode ERIs are re-
calculated for each iteration as necessary. The SCF-HF iterations and the subse-
quent MP2 correction find the energy of the molecular system, followed by 
evaluation of energy gradients. 

Data Server Communication Model: The parallel model used in GAMESS 
was initially based on replicated-data message passing and later moved to 
MPI-1. Fletcher et al. [20] developed the Distributed Data Interface (DDI) in 
1999, which has been the parallel communication interface for GAMESS ever 
since. Later [21], DDI has been adapted to symmetric-multiprocessor (SMP) en-
vironments featuring shared memory communications within a node, and was 
generalized in [22] to form groups out of the available nodes and schedule tasks 
to these groups. In essence, DDI implements a PGAS programming model by 
employing a data-server concept. 

Specifically, two processes are usually created in each PE (processing element) 
to which GAMESS is mapped, such that one process does the computational 
tasks while the other, called the data server, just stores and services requests for 
the data associated with the distributed arrays. Depending on the configuration, 
the communications between the compute and data server processes occur ei-
ther via TCP/IP or MPI. A data server responds to the data requests initiated by 
the corresponding compute process, for which it constantly waits. If this waiting is 
implemented with MPI, then the PE is polled continuously for the incoming mes-
sage, thereby being always busy. Hence, it is preferred that a compute process and 
data server do not share a PE to avoid significant performance degradation. When 
executing on a 2N-processor machine, the compute C and data server D process 
ranks are assigned as follows: [ ]0, 1iC N∈ −  and [ ], 2 1iD N N∈ − , where 
( )0, , 1i N= − . Thus, the data server iD  associated with the ith compute 
process iC  is N i+ . 
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6.2. Experiment Setup 

NAS benchmarks (NPB) [18] and GAMESS were used for evaluating the efficacy 
of the proposed runtime strategy and to validate the modeling effort as NPB 
provides a good mix of compute- and memory-intensive benchmarks to test the 
core, uncore and DRAM power limiting addressed in this work. The first 
GAMESS calculation was set-up to perform the third order Fragment Molecular 
Orbital (FMO3) [23] calculation—in the conventional mode—for a cluster of 64 
water molecules at the Restricted Hartree-Fock RHF/6-31G level of theory. As 
such, it involves calculations of fragment monomers, dimers, and trimers. The 
system is partitioned into 64 fragments such that each fragment is a unique wa-
ter monomer and is referred to as h2o-64 in the rest of the paper. The second 
GAMESS calculation also performs an FMO3 calculation on 20 water molecules 
at the MP2/6-31G(d, p) level of theory. As such, each fragment N-mer (mono-
mer, dimer, and trimer) is calculated sequentially using all compute elements allo-
cated to the GAMESS executable. Three-body calculations at the RHF/6-31G(d, p) 
level of theory are also performed and are critical in order to capture the signifi-
cant exchange and charge-transfer effects present in a cluster of water molecules. 
This calculation is referred to as wat-20 in the rest of the paper. 

Table 1 depicts the PKG and DRAM power consumptions, with a 100 W 
power budget, for the three NAS benchmarks EP, CG, and LU and two GAMESS 
calculations executing at the highest core and uncore frequencies on Gwent. It 
can be observed from Table 1 that the compute-intensive benchmark EP tends 
to have lower DRAM power consumption due to its low memory utilization as 
compared with the rest of the test cases, which are more memory intensive [4]. 
For all the inputs, the total power consumption ranges from 80.2 to 88 W. 
Therefore, to stress-test the proposed runtime strategy. three power budgets of 
70, 60, and 50 W were chosen because they are substantially lower than the 
power consumption needed to maintain maximum performance for these input 
benchmarks. 

6.3. Strategy-Guided Performance under a Power Budget 

Figure 3 shows the performance degradation for each input when the proposed 
runtime strategy is used to distribute the chosen power budgets of 70, 60, and 50 W. 

EP.C.20: For the highest power budget of 70 W, the strategy selects the high-
est core and a low uncore frequency of 1.1 GHz, which results in a performance  

 
Table 1. PKG and DRAM power consumption (W) of NAS NPB benchmarks and 
GAMESS inputs to achieve the maximum performance with a 100 W power budget. In 
the NAS benchmark column names, the two-letter prefix denotes benchmark name, “C” 
stands for class C, and the two-digit suffix states the number of processes used. 

Benchmark EP.C.20 CG.C.16 LU.C.16 h2o-64 wat-20 

PKG 77 80 80 80 82 

DRAM 3.2 8 7 5 5 
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Figure 3. Performance degradation for the NAS parallel benchmarks and GAMESS in-
puts under three power budgets of 70, 60, and 50 W when the proposed power-bounded 
strategy. 

 
degradation of 1%. These frequencies were chosen by the strategy because the EP 
benchmark is substantially compute-intensive and any decrease in the core fre-
quency may substantially degrade performance. Therefore, when only the 
uncore frequency is reduced its equivalent additional available power is added to 
the PKG power budget bringing it close to the 77 W needed for the maximum 
performance. When the total power budget is reduced to 60 W, the uncore fre-
quency is reduced to its lowest value. This reduces the PKG power consumption 
by ~10 W and subsequently provides an opportunity to increase the allocated 
PKG power to 67 W, as obtained from eq:pkg and measured PKG and DRAM 
power consumptions of ~57 W and ~3 W, respectively. However, this extra 
power allocation due to the uncore frequency downscaling is not enough to en-
force the given power budget of 60 W without also reducing the core frequency 
from its highest value. Therefore, a performance degradation of 13% was ob-
served for the reduced core frequency of 2.1 GHz. Similarly, the power budget of 
50 W resulted in performance degradation of 40% since the core frequency had 
to be reduced even further to accommodate the tight power constraints. 

CG.C.16: When the power budget is 70 W, the uncore frequency is set to 2.1 
GHz by the strategy, and the resultant performance degradation is 8%. Even 
though CG is memory-intensive benchmark, as was determined from eq:uops 
and [24], scaling the uncore frequency results in a smaller performance loss 
compared to reducing the PKG power limit and, thus, reducing the core fre-
quency. The 60 W and 50 W power budgets result in 13% and 21% performance 
losses, respectively. 

LU.C.16: Its memory intensity lies between that of EP and CG. Therefore, the 
performance degradation under the three power budgets appears to be in be-
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tween the corresponding performance-loss values of the EP and CG benchmarks. 
GAMESS calculations: The two GAMESS inputs h2o-64 and wat-20 are 

mostly compute-intensive (see tab:pow) throughout their execution; and their 
compute processes are somewhat memory-intensive at certain execution phases 
as compared with the data servers. At the 70 W power budget, per runtime 
strategy, the data servers are operated at the minimum uncore frequency and the 
compute processes operate at 1.1 GHz uncore frequency throughout the execu-
tion. Subsequently, the performance losses for h2o-64 and wat-20 budget are 1% 
and 2%, respectively, the majority of which is due to the overhead of the strategy 
itself. When the power budget is reduced further to 60 W, the uncore frequency 
for both the data servers and compute processes is scaled to its minimum value 
and the additional power availability allows the PKG limit to be set to 66 W, 
leading to a core frequency of 2 GHz. This results in 4% and 8% performance 
loss for h2o-64 and wat-20, respectively. The 50 W power budget pulls the PKG 
power allocation down to 56 W, requiring to reduce the core frequency even 
more and resulting in an average performance loss of 32% for these GAMESS 
calculations. 

6.4. Minimum Power Budget for GAMESS Calculations 

The proposed strategy does not take into account the specifics and knowledge of 
the given application. Hence, its decisions may not result in the maximum opti-
mizations, which is a trade-off between using the strategy as “black-box” and 
maintaining good performance under power-budget constraints for a variety of 
applications. 

In order to find a minimum power budget to keep the GAMESS performance 
at its maximum, a knowledge of the relative performances of data servers and 
compute processes is needed. As explored in a previous work, data server per-
formance is not affected at all by DVFS [25]. With this knowledge, the minimum 
power budget required for the GAMESS calculations considered here without 
any performance degradation on Gwent is 59 W (and without using the pro-
posed strategy). Under this power budget, the core frequency of the data servers is 
reduced to its lowest value of 1.2 GHz, and the PKG portions for compute 
processes, data servers, and the DRAM are allocated 36, 18, and 5 W, respectively. 

7. Conclusions 

In this paper, a runtime strategy that employs UFS to redistribute the power 
budget was proposed. The strategy may be used as a “black box” to maximize 
parallel application performance under a given power budget. Power and per-
formance models were devised, which were deployed in a runtime strategy to 
dynamically apply power limiting to PKG and DRAM power domains along 
with the UFS in a user-transparent manner. Experiments on a 20-core Has-
well-EP platform with the NAS parallel benchmarks and a real-world test case of 
two GAMESS calculations showed that the strategy provided near maximum 
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performance even with substantially limited power budgets. Specifically, for a 
GAMESS calculation, a 25% reduction in the power consumption resulted in 
only a 4% performance loss. It was also observed that even for memory-intensive 
applications, the strategy chose the uncore frequency to be reduced first under a 
power budget instead of reducing the PKG power limit (i.e., the frequency of the 
cores). 

Future work will focus on testing the efficacy of the PKG power limiting on 
the platforms with the DDR3- and DDR4-based memory architectures and on 
accelerators, such as GPUs. Taking into account the application-architecture 
behavior, and thereby developing a “gray-box” strategy for runtime power allo-
cations power will also be studied. While inter-process communications are ex-
plicitly targeted in the authors’ previous works [26] [27] to obtain energy sav-
ings, the future plan also includes adapting and testing the proposed strategy on 
a distributed system. 
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