
Journal of Computer and Communications, 2019, 7, 252-266
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2019.77021 Jul. 29, 2019 252 Journal of Computer and Communications

Maximizing Performance under a Power
Constraint on Modern Multicore Systems

Vaibhav Sundriyal1, Masha Sosonkina1, Bryce Westheimer2, Mark S. Gordon2

1Old Dominion University, Norfolk, Virginia, USA
2Iowa State University and Ames Laboratory, Ames, IA, USA

Abstract
Energy efficiency and energy-proportional computing have become a central
focus in modern supercomputers. These supercomputers should provide high
throughput per unit of power to be sustainable in terms of operating cost and
failure rates. In this paper, a power-bounded strategy is proposed that max-
imizes parallel application performance under a given power constraint. The
strategy dynamically allocates power to core, uncore, and memory power
domains within a node to maximize performance under a given power budg-
et. Experiments on a 20-core Haswell-EP platform for a real-world parallel
application GAMESS demonstrate that the proposed strategy delivers per-
formance within 4% of the best possible performance for as much as 25% re-
duction in the minimum power budget required for maximum performance.

Keywords
Uncore Frequency Scaling (UFS), Dynamic Voltage and Frequency Scaling
(DVFS), Power Budget, GAMESS

1. Introduction

Power consumption has become a major concern for modern and future super-
computers. For the current topmost petascale computing platforms in the world,
it is typical to consume power on the order of several megawatts as depicted in
the biannual TOP 500 list1, which may cost on the order of several million dol-
lars. In the quest for exascale performance, the power consumption growth rate
must slow down and deliver more calculations per unit of power, giving rise to
power-bounded computing in which components of a computing system oper-
ate under a fixed power budget such that performance is maximized.

1http://top500.org/.

How to cite this paper: Sundriyal, V.,
Sosonkina, M., Westheimer, B. and Gor-
don, M.S. (2019) Maximizing Performance
under a Power Constraint on Modern Mul-
ticore Systems. Journal of Computer and
Communications, 7, 252-266.
https://doi.org/10.4236/jcc.2019.77021

Received: August 26, 2018
Accepted: July 26, 2019
Published: July 29, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2019.77021
http://www.scirp.org
http://top500.org/
https://doi.org/10.4236/jcc.2019.77021
http://creativecommons.org/licenses/by/4.0/

V. Sundriyal et al.

DOI: 10.4236/jcc.2019.77021 253 Journal of Computer and Communications

Previous generations of Intel processors used either a fixed uncore frequency
or a common frequency for the core and uncore. The uncore describes the func-
tions of a processor that are not handled by the core, such as the L3 cache and
on-chip interconnect. Starting from the Intel Haswell micro-architecture, the
core and uncore frequency domains have been decoupled, so that the uncore
frequency can be modified independently of the core frequency, typically done
by dynamic voltage and frequency scaling (DVFS). The uncore frequency has a
significant impact on the on-die cache-line transfer rates as well as on the mem-
ory bandwidth. By default, the uncore frequency is set by the hardware and can
be specified via the model-specific register (MSR) UNCORE_RATIO_LIMIT
[1]. This technique is denoted uncore frequency scaling (UFS). The latest Intel
CPUs work with at least two clock speed domains: one for the core (or even in-
dividual cores) and one for the uncore, which includes the L3 cache and the
memory controllers.

In the authors’ previous work [2] [3], the efficacy of UFS was explored in
terms of its energy-saving potential and a strategy was proposed, which em-
ployed both DVFS and UFS to maximize energy savings for parallel application
execution under a performance constraint. Experiments showed that larger
energy savings can be achieved when UFS and DVFS are used jointly. In addi-
tion, joint and simultaneous DVFS of the processor and DRAM was explored in
[4], where novel power and performance models were proposed.

The Intel Running Average Power Limit (RAPL) interface [5] provides MSRs
containing energy consumption estimates for up to four power planes or do-
mains of a machine as follows:
• PKG: for the entire package,
• PP0: for the cores,
• PP1: for the uncore subsystem (available in client-type platforms only, main-

ly used for general-purpose applications),
• DRAM: main memory (available in server-type machines only).

The authors’ previous research [6] considered primarily PP0 and DRAM
domains for budgeting power to solve the parallel application performance
optimization problem in the quantum chemistry software GAMESS [7] [8].
The present paper adds the PP1 (uncore) domain, similarly to the work de-
scribed in [2], to solve this problem and proposes a power-bounded runtime
strategy, which maximizes the parallel application performance under a given
power budget. In essence, the work presented here may be considered as a
combination of [2] and [6] because it determines optimal values for both
uncore and core frequencies with the goal to distribute a given power budget
to hardware components such that the application performance is max-
imized. Note that, because the server platform used in this work does not
provide a separate PP1 interface to limit uncore power, UFS is used to
achieve uncore power shifting within a given power budget. In a nutshell, the
contributions of this work include:

https://doi.org/10.4236/jcc.2019.77021

V. Sundriyal et al.

DOI: 10.4236/jcc.2019.77021 254 Journal of Computer and Communications

• Determining the priority of the power budget allocation to the three do-
mains, namely, core PP0, uncore PP1 and memory DRAM.

• Devising novel performance and power models to correlate changes in
uncore frequency to PKG power consumption.

• Proposing a runtime power-bounded strategy to maximize parallel applica-
tion performance under a given power budget by carefully allocating power
to PKG, DRAM and uncore domains.

• Maximizing performance of a quantum chemistry application GAMESS un-
der power constraints.

The rest of the paper is organized as follows. Section 2 provides the related
work. Section 3 studies power allocation priorities among power domains. Sec-
tion 4 proposes performance and power models. Section 5 develops the runtime
strategy to maximize performance under a given power budget for any parallel
application. Section 6 shows experimental results while Section 7 provides con-
clusions.

2. Related Work

Power is one of the most prominent HPC challenges, forcing the objectives and
approaches of HPC power management to continuously evolve. Therefore, ex-
tensive research has been conducted to measure, model, and budget power on
computer components and systems. In this section, a brief discussion of pre-
vious work in power capping and closely related work in system-level power and
energy savings is studied.

The two most commonly used techniques to limit the power consumption of a
node come in the form of 1) DVFS/Throttling for processor and memory [9]
[10] and 2) Hardware enforced power bounds from RAPL [5]. The authors in
[11] propose a runtime system termed conductor that dynamically distributes
available power to different compute nodes and cores based on the available
slack to improve performance. It also performs either upscaling or downscaling
of processor frequency to decrease execution time and to save energy in an indi-
rect manner through power clamping. Reference [12] explores the coordinated
power allocation among different components within a node, observing which
optimal power allocation strategy is proposed. The authors in [10] propose
models that predict the performance of HPC computations under varying caps
for different components in a node. A cluster level power allocation framework
termed CLIP was proposed in [13], which performs application characterization
along with performance modeling to allocate power budget to nodes and their
components to maximize performance in a cluster.

The work in [14] discusses a hardware level power capping strategy for limit-
ing DRAM power consumption. A multi-level hierarchical variation-aware ap-
proach of power management is proposed in [15], which at the macro level par-
titions the system power budget across jobs, and at the micro level, evaluates the
power allocation based on application performance metrics. The idea of hard-

https://doi.org/10.4236/jcc.2019.77021

V. Sundriyal et al.

DOI: 10.4236/jcc.2019.77021 255 Journal of Computer and Communications

ware overprovisioning has been used in [16] by proposing a scheme for deter-
mining the optimal number of nodes while distributing power between the CPU
and memory. The design of a power scheduler capable of enforcing power bounds
by employing dynamic system-wide power reallocation was discussed in [17].

Most of the work discussed in this section primarily focused on redistributing
power between the processor cores (PP0) and memory (DRAM) domains, whe-
reas the uncore (PP1) one has largely been ignored. This paper considers the
uncore domain and proposes a strategy that resolves the power allocation prob-
lem to maximize system throughput at the runtime.

3. Power Allocation Priority

For appropriately allocating a given power budget among different RAPL do-
mains, it is imperative to determine the order in which power should be distri-
buted among them because insufficient allocation to a power domain may have
drastic negative effects on the application performance.

Figure 1(a) & Figure 1(b) show the change in the power consumed (left
y-axis) and execution time (right y-axis) for the NAS parallel benchmarks EP
(embarassingly parallel) and CG (conjugate gradient), respectively, with the varying
power allocation between PKG and DRAM power domains under a fixed power
budget of 100 watts (W). Note that the power limits change along the x-axis in a

Figure 1. PKG and DRAM power budget allocation out of 100 W of total power budget and the corresponding
change in the power consumption and execution time for (a) EP and (b) CG NAS parallel benchmarks. The se-
quence of (PKG, DRAM) power-budget pairs: () () ()98,2 , 96,4 , , 2,98 is along the x-axis.

https://doi.org/10.4236/jcc.2019.77021

V. Sundriyal et al.

DOI: 10.4236/jcc.2019.77021 256 Journal of Computer and Communications

sequence of pairs (PKG, DRAM) obtained from changing both PKG and DRAM
power values by 2 W at a time. The power limits essentially set an upper limit for the
maximum allocated power consumption of the respective component. For example,
in Figure 1(b), the black vertical bar is drawn to indicate that, for the (PKG, DRAM)
allocation pair of (42, 58) W, marked with horisonal dashes where the bar crosses the
corrsponding power limit lines, the PKG and DRAM power consumptions are ob-
served as 42 W and 7 W, respectively, and the execution time is 36.9 seconds.

It can be observed from Figure 1(a), that for the compute intensive EP
benchmark, the performance is sensitive to the PKG power allocation and re-
mains unaffected by the changes to the DRAM power allocation. Specifically, the
execution time remains stable until the PKG limit is decreased from 100 to 70
W. For the PKG allocation less than 70 W, the performance degrades and the
execution time keeps increasing until the PKG allocation is 34 W. Any further
decrement in the PKG allocation from this point, neither decreases the measured
PKG power consumption nor degrades the performance any further. On the
other hand, for the memory intensive CG benchmark, the execution time is sen-
sitive to both PKG and DRAM power allocations, see Figure 1(b). In particular,
the performance degrades rapidly by over 600% when the DRAM power alloca-
tion is changed from 8 to 2 W, showing an increase in the execution time from
25 to 155 seconds. Note that the DRAM power consumption does not change
when its allocation is increased beyond 8 W. The performance does not change
while the PKG power allocation is above 76 W, after which the execution time
increases despite the increase in the DRAM power limit. For CG, the effect of
reducing the DRAM power allocation is much more severe on performance
compared to that of reducing the PKG power allocation. This may be explained
by the fact that, when RAPL limits the DRAM power consumption, it essentially
cripples DRAM bandwidth according to the power-performance model in [14],
whereas reducing the PKG power allocation essentially modifies the operating
frequency of the processor cores. Therefore, given a specific power budget, the
DRAM domain must have the highest priority of all three power domains when
it comes to allocating the power budget. As for the PKG and uncore power do-
mains, the power allocation between them may be decided by using a perfor-
mance model proposed in [2].

4. Performance and Power Modeling

To effectively distribute the power budget to the application performance, a
fine-grained performance model is needed. A power model is also required to
correlate the variation in core and uncore frequency with resultant power con-
sumption to effectively apply the power limits. In this section, the two models
are discussed.

4.1. Performance Model

A performance model proposed in a previous work [2] is used here. This model

https://doi.org/10.4236/jcc.2019.77021

V. Sundriyal et al.

DOI: 10.4236/jcc.2019.77021 257 Journal of Computer and Communications

(in Equation (1)) correlates application performance, expressed in micro-operations
retired, with particular core ()cf i and uncore ()uf j frequencies expressed
by their corresponding levels, from the highest to lowest, , 1, ,i i N=

 and
, 1, ,j j M= .

() ()
()
() ()exe

, ,
CPM MAPM

1

c

c
j

c

f i
i j

f i
f

µτ
α β

=
+ × ×

 (1)

where
(),i jµτ is the number of micro-operations retired per second at core frequen-

cy ()cf i and uncore frequency ()uf j .

exeCPM is the number of cycles per micro-operation retired barring the
memory accesses in a second.

α (0 1α≤ ≤) is the out-of-core (OOO) overlap factor, which determines the
extent of the memory access stalls overlapped with the execution cycles.

MAPM is the number of memory accesses per micro-operation retired in a
second.

jβ is the number of cycles corresponding to the memory access latency at the
uncore frequency ()uf j .

4.2. Power Model

The processor power consumption, denoted (),TP i j , can be expressed as [2]:

() () ()3 3
1 2, ,T s c uP i j P k f i k f j= + × + × (2)

where 1k and 2k are constants and ()cf i and ()uf j are the core and
uncore frequencies, respectively. sP stands for the processor static power con-
sumption, which was measured as 12 W through RAPL. Since uncore (PP1)
power limiting is not supported in Intel server processors, the power model in
Equation (2) is required to relate the power consumption of core/uncore do-
mains to the corresponding levels of core/uncore frequencies. Parameters 1k
and 2k were determined by a regression analysis of the processor power ob-
tained through the RAPL registers at different core and uncore frequencies for
several benchmarks. The values 1k and 2k were found to be 0.97 and 0.46,
respectively, indicating that changes in the core frequency affect the processor
power consumption more than those in the uncore frequency do so.

Given a power budget for the three domains—PP0, PP1, and DRAM—in a
server-type platform, the shifting of power between the core and uncore do-
mains is essentially done by first modifying the uncore frequency and then
shifting the corresponding reduction in power to increase the power limit for the
core domain to maximize the performance. Equation (3) depicts how the power
is transferred to the core domain (within the PKG domain) through UFS:

() () ()()PKG RAPL-MEM 1 21, 1, .B T TP P P P j P j= − + − (3)

Specifically, Equation (3) sets the PKG power limit PKGP as the sum of the

https://doi.org/10.4236/jcc.2019.77021

V. Sundriyal et al.

DOI: 10.4236/jcc.2019.77021 258 Journal of Computer and Communications

total power budget BP minus the DRAM power consumption RAPL-MEMP and
the difference in processor power consumption when the uncore frequency is
switched from level 1j to 2j . In this manner, the reduction in power obtained
through UFS is transferred to the PKG power limit to increase the core frequen-
cy and subsequently to improve performance.

5. Runtime Power-Bounded Strategy

The proposed runtime strategy is based on the history-window predictor [4],
which employs a window of the previous L values of a measured parameter and
predicts its next value as some function g of these past L values. To implement
this prediction mechanism, two registers—denoted CPR and MPR—of length L
are maintained to record the values of exeCPM and MAPM, respectively. If the
register is not filled, then the corresponding quantity is considered unchanged
from the previous prediction.

Figure 2 displays the algorithmic steps of the proposed runtime strategy

Figure 2. Algorithmic steps of the runtime power-bounded strategy.

https://doi.org/10.4236/jcc.2019.77021

V. Sundriyal et al.

DOI: 10.4236/jcc.2019.77021 259 Journal of Computer and Communications

maximizing parallel application performance under a given power budget. Step 1
divides the user-defined power budget BP equally between PKG and DRAM
power domains. Step 2 profiles the application for the first timeslice of the dura-
tion τ and obtains the relevant parameter values from the performance coun-
ters. In Step 3, the operating core frequency ()c cf ω is determined by using the
APERF and MPERF MSRs [18] according to the relation:

() () APERF1 ,
MPERFc c cf fω ∆

= ×
∆

 (4)

where APERF∆ and MPERF∆ signify the change in the values of the respec-
tive registers over a given time period. Next, from performance counters, Step 4
initializes the micro-operations retired, (),1cµτ ω , at the operating core fre-
quency ()c cf ω and the highest uncore frequency ()1uf for the first timeslice
of the application execution. The corresponding exeCPM is calculated from
Equation (1) as:

()
()

()
()exe 1CPM MAPM ,

,1 1
c c c c

c c

f f
f

ω ω
α β

µτ ω
= − × × × (5)

and MAPM is obtained directly from the processor performance counters. For
1r > , Step 5 determines the values of exeCPM and MAPM through the histo-

ry-window prediction mechanism by using a simple averaging function, which
calculates the future value as an average of the past values. If the registers CPR
and MPR have not been completely filled, then the last values of exeCPM and
MAPM are used as the next values. In Step 6, (),i jµτ is determined for all of
the available core and uncore frequencies using the values of exeCPM and
MAPM from Step 5. Next (Step 7), the optimal core-uncore frequency pair is
determined, such that the predicted number of micro-operations retired is at its
maximum. In Step 8, the total power consumed at the chosen frequency pair is
determined using Equation (2) in Step 9, the power limit for DRAM is set as the
measured DRAM power consumption, while the PKG power limit is set as in
Equation (3). In Step 10, if the CPR and MPR registers are completely filled, they
are shifted left by one to discard the old values. In Step 11, the application ex-
ecutes the current timeslice r at the chosen PKG and DRAM power limits and
the frequencies chosen in Step 7. In Step 12, the values of (),c uµτ ω ω , CPR[ℓ],
and MPR[ℓ] are updated with the corresponding operating frequency pair
(),c uω ω to be used in the next timeslice.

6. Experimental Results

The experiments were performed on a compute node, termed Gwent having two
Intel Xeon E5-2630 v3 10 core Haswell-EP processors with 32 GB (4 × 8 GB) of
DDR4. The core and uncore frequency ranges are 1.2 - 2.3 GHz and 0.8 - 2.9
GHz, respectively. To measure the node power and energy consumption, a
Wattsup2 power meter is used with a sampling rate of 1 Hz.

2https://www.wattsupmeters.com/.

https://doi.org/10.4236/jcc.2019.77021
https://www.wattsupmeters.com/

V. Sundriyal et al.

DOI: 10.4236/jcc.2019.77021 260 Journal of Computer and Communications

6.1. Overview of GAMESS

GAMESS [7] [19] is one of the most representative freely available quantum
chemistry applications used worldwide to do ab initio electronic structure calcula-
tions. A wide range of quantum chemistry computations may be accomplished
using GAMESS, ranging from basic Hartree-Fock and Density Functional Theory
computations to high-accuracy multi-reference and coupled-cluster computa-
tions.

The central task of quantum chemistry is to find an (approximate) solution of
the Schrödinger equation for a given molecular system. An approximate (un-
correlated) solution is initially found using the Hartree-Fock (HF) method via
an iterative self-consistent field (SCF) approach, and then improved by various
electron-correlated methods, such as second-order Møller-Plesset perturbation
theory (MP2). The SCF-HF and MP2 methods are implemented in two forms,
namely direct and conventional, which differ in the handling of electron repul-
sion integrals (ERI, also known as 2-electron integrals). Specifically, in the con-
ventional mode all ERIs are calculated once at the beginning of the interactions
and stored on disk for subsequent reuse whereas in the direct mode ERIs are re-
calculated for each iteration as necessary. The SCF-HF iterations and the subse-
quent MP2 correction find the energy of the molecular system, followed by
evaluation of energy gradients.

Data Server Communication Model: The parallel model used in GAMESS
was initially based on replicated-data message passing and later moved to
MPI-1. Fletcher et al. [20] developed the Distributed Data Interface (DDI) in
1999, which has been the parallel communication interface for GAMESS ever
since. Later [21], DDI has been adapted to symmetric-multiprocessor (SMP) en-
vironments featuring shared memory communications within a node, and was
generalized in [22] to form groups out of the available nodes and schedule tasks
to these groups. In essence, DDI implements a PGAS programming model by
employing a data-server concept.

Specifically, two processes are usually created in each PE (processing element)
to which GAMESS is mapped, such that one process does the computational
tasks while the other, called the data server, just stores and services requests for
the data associated with the distributed arrays. Depending on the configuration,
the communications between the compute and data server processes occur ei-
ther via TCP/IP or MPI. A data server responds to the data requests initiated by
the corresponding compute process, for which it constantly waits. If this waiting is
implemented with MPI, then the PE is polled continuously for the incoming mes-
sage, thereby being always busy. Hence, it is preferred that a compute process and
data server do not share a PE to avoid significant performance degradation. When
executing on a 2N-processor machine, the compute C and data server D process
ranks are assigned as follows: []0, 1iC N∈ − and [], 2 1iD N N∈ − , where
()0, , 1i N= − . Thus, the data server iD associated with the ith compute
process iC is N i+ .

https://doi.org/10.4236/jcc.2019.77021

V. Sundriyal et al.

DOI: 10.4236/jcc.2019.77021 261 Journal of Computer and Communications

6.2. Experiment Setup

NAS benchmarks (NPB) [18] and GAMESS were used for evaluating the efficacy
of the proposed runtime strategy and to validate the modeling effort as NPB
provides a good mix of compute- and memory-intensive benchmarks to test the
core, uncore and DRAM power limiting addressed in this work. The first
GAMESS calculation was set-up to perform the third order Fragment Molecular
Orbital (FMO3) [23] calculation—in the conventional mode—for a cluster of 64
water molecules at the Restricted Hartree-Fock RHF/6-31G level of theory. As
such, it involves calculations of fragment monomers, dimers, and trimers. The
system is partitioned into 64 fragments such that each fragment is a unique wa-
ter monomer and is referred to as h2o-64 in the rest of the paper. The second
GAMESS calculation also performs an FMO3 calculation on 20 water molecules
at the MP2/6-31G(d, p) level of theory. As such, each fragment N-mer (mono-
mer, dimer, and trimer) is calculated sequentially using all compute elements allo-
cated to the GAMESS executable. Three-body calculations at the RHF/6-31G(d, p)
level of theory are also performed and are critical in order to capture the signifi-
cant exchange and charge-transfer effects present in a cluster of water molecules.
This calculation is referred to as wat-20 in the rest of the paper.

Table 1 depicts the PKG and DRAM power consumptions, with a 100 W
power budget, for the three NAS benchmarks EP, CG, and LU and two GAMESS
calculations executing at the highest core and uncore frequencies on Gwent. It
can be observed from Table 1 that the compute-intensive benchmark EP tends
to have lower DRAM power consumption due to its low memory utilization as
compared with the rest of the test cases, which are more memory intensive [4].
For all the inputs, the total power consumption ranges from 80.2 to 88 W.
Therefore, to stress-test the proposed runtime strategy. three power budgets of
70, 60, and 50 W were chosen because they are substantially lower than the
power consumption needed to maintain maximum performance for these input
benchmarks.

6.3. Strategy-Guided Performance under a Power Budget

Figure 3 shows the performance degradation for each input when the proposed
runtime strategy is used to distribute the chosen power budgets of 70, 60, and 50 W.

EP.C.20: For the highest power budget of 70 W, the strategy selects the high-
est core and a low uncore frequency of 1.1 GHz, which results in a performance

Table 1. PKG and DRAM power consumption (W) of NAS NPB benchmarks and
GAMESS inputs to achieve the maximum performance with a 100 W power budget. In
the NAS benchmark column names, the two-letter prefix denotes benchmark name, “C”
stands for class C, and the two-digit suffix states the number of processes used.

Benchmark EP.C.20 CG.C.16 LU.C.16 h2o-64 wat-20

PKG 77 80 80 80 82

DRAM 3.2 8 7 5 5

https://doi.org/10.4236/jcc.2019.77021

V. Sundriyal et al.

DOI: 10.4236/jcc.2019.77021 262 Journal of Computer and Communications

Figure 3. Performance degradation for the NAS parallel benchmarks and GAMESS in-
puts under three power budgets of 70, 60, and 50 W when the proposed power-bounded
strategy.

degradation of 1%. These frequencies were chosen by the strategy because the EP
benchmark is substantially compute-intensive and any decrease in the core fre-
quency may substantially degrade performance. Therefore, when only the
uncore frequency is reduced its equivalent additional available power is added to
the PKG power budget bringing it close to the 77 W needed for the maximum
performance. When the total power budget is reduced to 60 W, the uncore fre-
quency is reduced to its lowest value. This reduces the PKG power consumption
by ~10 W and subsequently provides an opportunity to increase the allocated
PKG power to 67 W, as obtained from eq:pkg and measured PKG and DRAM
power consumptions of ~57 W and ~3 W, respectively. However, this extra
power allocation due to the uncore frequency downscaling is not enough to en-
force the given power budget of 60 W without also reducing the core frequency
from its highest value. Therefore, a performance degradation of 13% was ob-
served for the reduced core frequency of 2.1 GHz. Similarly, the power budget of
50 W resulted in performance degradation of 40% since the core frequency had
to be reduced even further to accommodate the tight power constraints.

CG.C.16: When the power budget is 70 W, the uncore frequency is set to 2.1
GHz by the strategy, and the resultant performance degradation is 8%. Even
though CG is memory-intensive benchmark, as was determined from eq:uops
and [24], scaling the uncore frequency results in a smaller performance loss
compared to reducing the PKG power limit and, thus, reducing the core fre-
quency. The 60 W and 50 W power budgets result in 13% and 21% performance
losses, respectively.

LU.C.16: Its memory intensity lies between that of EP and CG. Therefore, the
performance degradation under the three power budgets appears to be in be-

https://doi.org/10.4236/jcc.2019.77021

V. Sundriyal et al.

DOI: 10.4236/jcc.2019.77021 263 Journal of Computer and Communications

tween the corresponding performance-loss values of the EP and CG benchmarks.
GAMESS calculations: The two GAMESS inputs h2o-64 and wat-20 are

mostly compute-intensive (see tab:pow) throughout their execution; and their
compute processes are somewhat memory-intensive at certain execution phases
as compared with the data servers. At the 70 W power budget, per runtime
strategy, the data servers are operated at the minimum uncore frequency and the
compute processes operate at 1.1 GHz uncore frequency throughout the execu-
tion. Subsequently, the performance losses for h2o-64 and wat-20 budget are 1%
and 2%, respectively, the majority of which is due to the overhead of the strategy
itself. When the power budget is reduced further to 60 W, the uncore frequency
for both the data servers and compute processes is scaled to its minimum value
and the additional power availability allows the PKG limit to be set to 66 W,
leading to a core frequency of 2 GHz. This results in 4% and 8% performance
loss for h2o-64 and wat-20, respectively. The 50 W power budget pulls the PKG
power allocation down to 56 W, requiring to reduce the core frequency even
more and resulting in an average performance loss of 32% for these GAMESS
calculations.

6.4. Minimum Power Budget for GAMESS Calculations

The proposed strategy does not take into account the specifics and knowledge of
the given application. Hence, its decisions may not result in the maximum opti-
mizations, which is a trade-off between using the strategy as “black-box” and
maintaining good performance under power-budget constraints for a variety of
applications.

In order to find a minimum power budget to keep the GAMESS performance
at its maximum, a knowledge of the relative performances of data servers and
compute processes is needed. As explored in a previous work, data server per-
formance is not affected at all by DVFS [25]. With this knowledge, the minimum
power budget required for the GAMESS calculations considered here without
any performance degradation on Gwent is 59 W (and without using the pro-
posed strategy). Under this power budget, the core frequency of the data servers is
reduced to its lowest value of 1.2 GHz, and the PKG portions for compute
processes, data servers, and the DRAM are allocated 36, 18, and 5 W, respectively.

7. Conclusions

In this paper, a runtime strategy that employs UFS to redistribute the power
budget was proposed. The strategy may be used as a “black box” to maximize
parallel application performance under a given power budget. Power and per-
formance models were devised, which were deployed in a runtime strategy to
dynamically apply power limiting to PKG and DRAM power domains along
with the UFS in a user-transparent manner. Experiments on a 20-core Has-
well-EP platform with the NAS parallel benchmarks and a real-world test case of
two GAMESS calculations showed that the strategy provided near maximum

https://doi.org/10.4236/jcc.2019.77021

V. Sundriyal et al.

DOI: 10.4236/jcc.2019.77021 264 Journal of Computer and Communications

performance even with substantially limited power budgets. Specifically, for a
GAMESS calculation, a 25% reduction in the power consumption resulted in
only a 4% performance loss. It was also observed that even for memory-intensive
applications, the strategy chose the uncore frequency to be reduced first under a
power budget instead of reducing the PKG power limit (i.e., the frequency of the
cores).

Future work will focus on testing the efficacy of the PKG power limiting on
the platforms with the DDR3- and DDR4-based memory architectures and on
accelerators, such as GPUs. Taking into account the application-architecture
behavior, and thereby developing a “gray-box” strategy for runtime power allo-
cations power will also be studied. While inter-process communications are ex-
plicitly targeted in the authors’ previous works [26] [27] to obtain energy sav-
ings, the future plan also includes adapting and testing the proposed strategy on
a distributed system.

Acknowledgments

This work was supported in part by the U.S. Department of Energy (DOE) Of-
fice of Science, Office of Basic Energy Sciences, Computational Chemical
Sciences (CCS) Research Program under work proposal number AL-18-380-057
and the Exascale Computing Project (ECP) through the Ames Laboratory, oper-
ated by Iowa State University under contract No. DE-AC00-07CH11358, by the
U.S. Department of Defense High Performance Computing Modernization Pro-
gram, through a HASI grant.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this
paper.

References
[1] Lento, G. (2014) Optimizing Performance with Intel Advanced Vector Extensions.

https://computing.llnl.gov/tutorials/linux_clusters/intelAVXperformanceWhitePap
er.pdf

[2] Sundriyal, V., Sosonkina, M., Westheimer, B. and Gordon, M. (2018) Core and
Uncore Joint Frequency Scaling Strategy. Journal of Computer and Communica-
tion, 6, 184-201. https://doi.org/10.4236/jcc.2018.612018

[3] Sundriyal, V., Sosonkina, M., Westheimer, B.M. and Gordon, M. (2018) Compari-
sons of Core and Uncore Frequency Scaling Modes in Quantum Chemistry Appli-
cation GAMESS. In: Proceedings of the High Performance Computing Symposium,
Society for Computer Simulation International, San Diego, CA, 1-13.

[4] Sundriyal, V. and Sosonkina, M. (2016) Joint Frequency Scaling of Processor and
DRAM. The Journal of Supercomputing, 72, 1549-1569.
https://doi.org/10.1007/s11227-016-1680-4

[5] (2016) Intel Software Developer’s Manual.

[6] Sundriyal, V., Sosonkina, M. and Gordon, M. (2017) Runtime Power Limiting in

https://doi.org/10.4236/jcc.2019.77021
https://computing.llnl.gov/tutorials/linux_clusters/intelAVXperformanceWhitePaper.pdf
https://computing.llnl.gov/tutorials/linux_clusters/intelAVXperformanceWhitePaper.pdf
https://doi.org/10.4236/jcc.2018.612018
https://doi.org/10.1007/s11227-016-1680-4

V. Sundriyal et al.

DOI: 10.4236/jcc.2019.77021 265 Journal of Computer and Communications

GAMESS on Dual-Socket Nodes. 2017 International Conference on Computational
Science and Computational Intelligence, Las Vegas, NV, 14-16 December 2017,
1594-1599. https://doi.org/10.1109/CSCI.2017.277

[7] Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H.,
Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., Mont-
gomery Jr., J.A., et al. (1993) General Atomic and Molecular Electronic Structure
System. Journal of Computational Chemistry, 14, 1347-1363.
https://doi.org/10.1002/jcc.540141112

[8] Sundriyal, V., Gaenko, A., Sosonkina, M. and Zhang, Z. (2013) Energy Saving
Strategies for Parallel Applications with Point-to-Point Communication Phases.
Journal of Parallel and Distributed Computing, 73, 1157-1169.
https://doi.org/10.1016/j.jpdc.2013.03.006

[9] Chen, M., Wang, X. and Li, X. (2011) Coordinating Processor and Main Memory
for Efficientserver Power Control. In: Proceedings of the International Conference
on Supercomputing, ACM, New York, 130-140.
https://doi.org/10.1145/1995896.1995917

[10] Tiwari, A., Schulz, M. and Carrington, L. (2015) Predicting Optimal Power Alloca-
tion for CPU and DRAM Domains. 2015 IEEE International Parallel and Distri-
buted Processing Symposium Workshop, Hyderabad, India, 25-29 May 2015,
951-959. https://doi.org/10.1007/978-3-319-20119-1_28

[11] Marathe, A., Bailey, P.E., Lowenthal, D.K., Rountree, B., Schulz, M. and de Supinski,
B.R. (2015) A Run-Time System for Power-Constrained HPC Applications. In:
Kunkel, J. and Ludwig, T., Eds., High Performance Computing. ISC High Perfor-
mance 2015. Lecture Notes in Computer Science, Springer International Publishing,
Cham, 394-408. https://doi.org/10.1109/IPDPSW.2015.146

[12] Ge, R., Feng, X., He, Y. and Zou, P. (2016) The Case for Cross-Component Power
Coordination on Power Bounded Systems. 2016 45th International Conference on
Parallel Processing, Philadelphia, PA, 16-19 August 2016, 516-525.
https://doi.org/10.1109/ICPP.2016.66

[13] Zou, P., Allen, T., Davis, C.H., Feng, X. and Ge, R. (2017) CLIP: Cluster-Level Intel-
ligent Power Coordination for Power-Bounded Systems. 2017 IEEE International
Conference on Cluster Computing, Honolulu, HI, 5-8 September 2017, 541-551.
https://doi.org/10.1109/CLUSTER.2017.98

[14] David, H., Gorbatov, E., Hanebutte U.R., Khannal R. and Le, C. (2010) RAPL:
Memory Power Estimation and Capping. In: Proceedings of the 16th ACM/IEEE
International Symposium on Low Power Electronics and Design, ACM, New York,
189-194. https://doi.org/10.1145/1840845.1840883

[15] Gholkar, N., Mueller, F. and Rountree, B. (2016) Power Tuning HPC Jobs on Pow-
er-Constrained Systems. In: Proceedings of the 2016 International Conference on
Parallel Architecture and Compilation, ACM, New York, 179-191.
https://doi.org/10.1145/2967938.2967961

[16] Sarood, O., Langer, A., Kalé, L., Rountree, B. and de Supinski, B. (2013) Optimizing
Power Allocation to CPU and Memory Subsystems in Overprovisioned HPC Sys-
tems. 2013 IEEE International Conference on Cluster Computing, Indianapolis, IN,
23-27 September 2013, 1-8. https://doi.org/10.1109/CLUSTER.2013.6702684

[17] Ellsworth, D.A., Malony, A.D., Rountree, B. and Schulz, M. (2015) POW: Sys-
tem-wide Dynamic Reallocation of Limited Power in HPC. In: Proceedings of the
24th International Symposium on High-Performance Parallel and Distributed
Computing, ACM, New York, 145-148. https://doi.org/10.1145/2749246.2749277

https://doi.org/10.4236/jcc.2019.77021
https://doi.org/10.1109/CSCI.2017.277
https://doi.org/10.1002/jcc.540141112
https://doi.org/10.1016/j.jpdc.2013.03.006
https://doi.org/10.1145/1995896.1995917
https://doi.org/10.1007/978-3-319-20119-1_28
https://doi.org/10.1109/IPDPSW.2015.146
https://doi.org/10.1109/ICPP.2016.66
https://doi.org/10.1109/CLUSTER.2017.98
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1145/2967938.2967961
https://doi.org/10.1109/CLUSTER.2013.6702684
https://doi.org/10.1145/2749246.2749277

V. Sundriyal et al.

DOI: 10.4236/jcc.2019.77021 266 Journal of Computer and Communications

[18] Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L., Fa-
toohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D., Venkata-
krishnan, V. and Weeratunga, S.K. (1991) The NAS Parallel Benchmarks-Summary
and Preliminary Results. In: Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing, ACM, New York, 158-165. https://doi.org/10.1145/125826.125925

[19] Gordon, M.S. and Schmidt, M.W. (2005) Advances in Electronic Structure Theory:
GAMESS a Decade Later. In: Dykstra, C.E., Frenking, G., Kim, K.S. and Scuseria,
G.E., Eds., Theory and Applications of Computational Chemistry: The First Forty
Years, Elsevier Science, Amsterdam, Netherlands, 1167-1189.

[20] Fletcher, G.D., Schmidt, M.W., Bode, B.M. and Gordon, M.S. (2000) The Distri-
buted Data Interface in GAMESS. Computer Physics Communications, 128,
190-200. https://doi.org/10.1016/S0010-4655(00)00073-4

[21] Olson, R.M., Schmidt, M.W., Gordon, M.S. and Rendell, A.P. (2003) Enabling the
Efficient Use of SMP Clusters: The GAMESS/DDI Model. In: Proceedings of the
2003 ACM/IEEE Conference on Supercomputing, ACM, New York, 41.
https://doi.org/10.1145/1048935.1050191

[22] Fedorov, D.G., Olson, R.M., Kitaura, K., Gordon, M.S. and Koseki, S. (2004) A New
Hierarchical Parallelization Scheme: Generalized Distributed Data Interface (GDDI),
and an Application to the Fragment Molecular Orbital Method (FMO). Journal of
Computational Chemistry, 25, 872-880. https://doi.org/10.1002/jcc.20018

[23] Fedorov, D.G. and Kitaura, K. (2004) The Importance of Three-Body Terms in the
Fragment Molecular Orbital Method. The Journal of Chemical Physics, 120,
6832-6840. https://doi.org/10.1063/1.1687334

[24] Sundriyal, V. and Sosonkina, M. (2016) Joint Frequency Scaling of Processor and
DRAM. The Journal of Supercomputing, 72, 1549-1569.

[25] Sundriyal, V., Gaenko, A., Sosonkina, M. and Zhang, Z. (2013) Energy Saving
Strategies for Parallel Applications with Point-to-Point Communication Phases.
Journal of Parallel and Distributed Computing, 73, 1157-1169.

[26] Sundriyal, V. and Sosonkina, M. (2011) Per-Call Energy Saving Strategies in
All-to-All Communications. In: Cotronis, Y., Danalis, A., Nikolopoulos, D.S. and
Dongarra, J., Eds., Recent Advances in the Message Passing Interface. Lecture Notes
in Computer Science, Springer-Verlag, Berlin, Heidelberg, 188-197.
https://doi.org/10.1007/978-3-642-24449-0_22

[27] Sundriyal, V., Sosonkina, M. and Gaenko, A. (2012) Runtime Procedure for Energy
Savings in Applications with Point-to-Point Communications. 2012 IEEE 24th In-
ternational Symposium on Computer Architecture and High Performance Compu-
ting, New York, 24-26 October 2012, 155-162.
https://doi.org/10.1109/SBAC-PAD.2012.20

https://doi.org/10.4236/jcc.2019.77021
https://doi.org/10.1145/125826.125925
https://doi.org/10.1016/S0010-4655(00)00073-4
https://doi.org/10.1145/1048935.1050191
https://doi.org/10.1002/jcc.20018
https://doi.org/10.1063/1.1687334
https://doi.org/10.1007/978-3-642-24449-0_22
https://doi.org/10.1109/SBAC-PAD.2012.20

	Maximizing Performance under a Power Constraint on Modern Multicore Systems
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Power Allocation Priority
	4. Performance and Power Modeling
	4.1. Performance Model
	4.2. Power Model

	5. Runtime Power-Bounded Strategy
	6. Experimental Results
	6.1. Overview of GAMESS
	6.2. Experiment Setup
	6.3. Strategy-Guided Performance under a Power Budget
	6.4. Minimum Power Budget for GAMESS Calculations

	7. Conclusions
	Acknowledgments
	Conflicts of Interest
	References

