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Abstract 
In order to optimize the network coding resources in a multicast network, an 
improved adaptive quantum genetic algorithm (AM-QEA) was proposed. 
Firstly, the optimization problem was translated into a graph decomposition 
problem. Then the graph decomposition problem was represented by the bi-
nary coding, which can be processed by quantum genetic algorithm. At last, a 
multiple-operators based adaptive quantum genetic algorithm was proposed 
to optimize the network coding resources. In the algorithm, the individual 
fitness evaluation operator and population mutation adjustment operator 
were employed to solve the shortcomings of common quantum genetic al-
gorithm, such as high convergence rate, easy to fall into local optimal solu-
tion and low diversity of the population in later stage. The experimental 
results under various topologies show that the proposed algorithm has the 
advantages of high multicast success rate, fast convergence speed and strong 
global search ability in resolving the network coding resource optimization 
problems. 
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1. Introduction 

Multicast allows the information transmitted from single point to multiple 
points in networks. Compared with the traditional unicast and broadcast me-
thods, multicast dramatically improves transmission efficiency. Multicast tech-
nology can provide critical technical support for most services, such as distance 
learning, video on demand, data distribution in the data center and etc. [1]. 
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Network coding is an effective technique for improving network throughput, 
and it also can bring many benefits for the multicast transmission. It allows in-
termediate network nodes to perform arbitrary mathematical calculations to 
combine (encode) the input packets, and then output the encoded packets to the 
downstream nodes [2]. The key problem network coding based multicast tech-
nology is how to quickly and efficiently determine the coding nodes of each 
route in the network. Therefore, the point-to-multipoint multicast rate can reach 
the upper limit specified by Shannon’s “maximum stream-minimum cut” theo-
rem [3]. As an emerging technology, network coding technology has received 
much attention. However, this problem belongs to the NP-hard problem, and 
there is currently no clear and efficient solution. 

The research on network coding technology initially focused on creating dif-
ferent coding constructs. For example, a polynomial time algorithm for network 
coding was proposed by P. Sander et al. [4], an algebraic construction method 
for network coding was given by R. Koetter and M. Medard of MIT [5] [6]. Re-
cently, research on network coding technology has become more diverse. For 
example, Sudipta Sengupta et al. [7] studied coding in wireless networks. In or-
der to solve the Network Coding problem for Critical Infrastructure Networks, 
Rakesh Kumar et al. [8] proposed an architecture that realizes linear NC by de-
composing the linear NC functions. Imad El Qachchach et al. [9] implemented 
an efficient multi-source network coding by using low-rank parity check code. 

In 1996, A. Narayanan and M. Moore first combined the quantum computing 
theory with evolutionary algorithms and proposed the concept of the quantum 
genetic algorithm [10]. The quantum genetic algorithm has the advantages of 
small population size, maintaining population diversity, and being easy to paral-
lelize. Compared with traditional genetic algorithms, it can solve the shortcom-
ings of the traditional genetic algorithm such as sensitivity to population size, 
more iterations, easy falling into the local optimum solution, and slow conver-
gence speed. 

Quantum genetic algorithms have a wide range of applicability. In recent 
years, it has been the focus of research on solving optimization problems. For 
example, Lijun Mao et al. [11] applied the quantum genetic algorithm to the 
cloud computing job scheduling. Ye Zhang et al. [12] used it to solve the ob-
serving and downloading integrated scheduling problem of earth observation 
satellite. Kong Haipeng et al. [13] presented an adaptive double chain quantum 
genetic algorithm (ADCQGA) for solving constrained optimization problems. 
Kim et al. [14] first introduced genetic algorithm to solve the network coding 
resources optimization problem in a multicast network. However, due to the in-
stability of genetic algorithm, the effect is general. Based on Kim’s method, Qu et 
al. [15] [16] proposed a genetic algorithm to optimize network coding resources 
with transmission restriction in a multicast network. 

The key problems of the quantum genetic algorithm are to determine the 
quantum bit coding, the quantum revolving gate mechanism, and the population 
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fitness evaluation function. For each individual, the evolutionary parameters 
should be considered carefully because the adjustment of the rotation angle is 
flexible. If the rotation angle is too small, the convergence speed of the algorithm 
is slow, and the rotation angle is too large, which makes the algorithm easy to 
fall into the local optimal solution. 

To optimize the network coding resource in a multicast network, an adaptive 
quantum genetic algorithm based on the multi-operator coordination mechan-
ism was presented. The algorithm can solve the problem of easy to fall into the 
optimal local solution by improving the diversity of the population in the later 
evolution stage. 

2. Problem Formulation 

In order to facilitate the research, this paper simplifies the network coding re-
sources problem to be studied as follows: assume that the communication net-
work is represented by a directed graph G (V, E) with all sides being unit flows. 
The edge with capacity K can be replaced with the side of the K unit flow in this 
graph. Then the single source multicast problem can be represented by a quater-
nion (G, s, T, R), where G represents a directed topology, s is a multicast source 
node, { }1 2, , , nT t t t=   is the set of destination nodes, and R is the multicast 
rate of node s to all target nodes. We combine the coded nodes linearly. A cod-
ing strategy that the multicast rate from s to all target nodes is R called a feasible 
linear network coding. For a particular (G, s, T, R), we hope that the last estab-
lished multicast tree has as little coding as possible while achieving the given 
multicast rate R. 

We use the number of encoded edges to measure the task quantities of the 
encoding operation. As shown in Figure 1, a coding node v has three input 
edges and two exit edges, where 1 1 2y x x= + , 2 1 2 3y x x x= + + . If at least two 
input edges need to output information from an output edge simultaneously, 
then this output edge is defined as the coded edge. Therefore, the node has two 
coding edges and thus has two encoding operations. For a particular node in (G, 
s, T, R), it can be considered a potential coding node if and only if its number of 
input edges 2m ≥  and the exit edge 1n ≥ . 

In order to facilitate the design of the fitness function, we split all potential 
coding nodes. Assuming that an encoding node has m input edges and n output  

 

 
Figure 1. Coding node v. 
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edges, we introduce p auxiliary nodes { }21, , , pu u u
 to connect with the nodes 

of the input links, and introduce q auxiliary nodes { }21, , , qw w w
 is connected 

with the nodes of the output links. Then all traffic flowing through the node can 
be represented as a linear combination between the secondary node iu  and the 
secondary node jw . The topological maps of each algorithm in this paper are 
all decomposed topological maps. For example, the topological map after the 
decomposition of the coding node v in Figure 1 is as shown in Figure 2. 

3. Algorithm Description 
3.1. Algorithm Flow 

The whole algorithm includes three parts: the rotation angle adaptive adjust-
ment mechanism, the multi-operator synergy mutation mechanism, and the 
population fitness evaluation. The overall algorithm flow can be described, as 
shown in Figure 3. 

3.2. Rotation Angle Adaptive Adjustment Mechanism 

The method of population update in this algorithm uses a quantum revolving 
door update strategy. Its update matrix can be expressed as follows. 

( ) ( )
( ) ( )

cos sin
sin cos

i ii i

i ii i

α αθ θ
β βθ θ
′  −   
=     ′    

                 (1) 

In Equation (1), ( ),i iα β  is the i-th qubit in the chromosome and iθ  is a 
rotation angle. The adaptive adjustment mechanism modifies the rotation angle 
of individual evolution according to the fitness of different individuals. The ro-
tation angle lookup table used in this algorithm is shown in Table 1. 

In Table 1, f(x) represents the fitness value of the individual x, j
ix  represents 

the i-th position of the j-th individual, represents the i-th position of the optimal 
individual in the current population, and ( ),j j

i iS α β  represents the rotation 
angle in the polar coordinates. jθ  is the rotation angle step used by the j-th in-
dividual. Its definition is as follows. 

( )min
2 1 1 max min

max min

1 max min

,

,

j
j

f f
K K K f f

f f
K f f

θ
−

⋅ − + ≠= −
 =

            (2) 

 

 

Figure 2. Split coding node v. 
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Figure 3.The flow chart for the AM-QGA. 

 
In the current population, the i-th evolutionary rotation angle step and rota-

tion direction of the jth individual can be calculated by the Equation (3). 

( ),j j j j
i i iSθ θ α β∆ = ⋅                       (3) 

3.3. Fitness Function Design 

For the convenience of solving problems, we translate the minimization problem  
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Table 1. Rotation angle step lookup table. 

j
ix  ib  

j
iθ∆  

( ),j j
i iS α β

 

0j j
i iα β >  0j j

i iα β <  0j
iα =  0j

iβ =  

0 0 1 0jθ =  − − − − 

0 0 2 0jθ =  − − − − 

0 1 3 0jθ =  +1 −1 0 ±1 

0 1 4 0jθ =  −1 +1 ±1 0 

1 0 5 0jθ =  −1 +1 ±1 0 

1 0 6 0jθ =  +1 −1 0 ±1 

1 1 7 0jθ =  − − − − 

1 1 8 0jθ =  − − − − 

 
into the maximization problem. For a single chromosome X, the fitness formula 
is designed as follows: 

( )
max

, 1
, 0

W need f
Fitness X

W n f
− =

=  − =
                  (4) 

In this equation, maxn  is the number of all coding edges in the topology map 
corresponding to chromosome X, and need is the number of coding edges in the 
generated multicast tree, and W is a constant much larger than maxn . 

The variable need can be calculated by the following steps. First, we generate the 
topological map corresponding to chromosome X and then use the topology map as 
input. Second, we use the dinic algorithm to solve the maximum flow (s, t) of the 
source point s to all other target nodes t T∈ . If there is any flow (s, t) less than mul-
ticast rate R, this indicates that the topology can’t meet the condition. That is, if f = 0, 
then need = maxn , otherwise f = 1. For all target nodes t T∈ , we use the 
Dijkstra algorithm to solve the path set ( ) ( ) ( ) ( ){ }1 2, , , , , , ,RP s t P s t P s t P s t= 

. 
For each target node, we run R times Dijkstra algorithm. It is necessary to ensure 
that for every ( ),jP s t  path set, for any i j≠ , ( ) ( ), ,i jP s t P s t = ∅ . We 
record the passing edges in the tag array when we run the Dijkstra algorithm, 
which ensures that the repeated edges will not be taken during the next iteration 
of the algorithm. The path set P is all sides of the multicast tree. In this multicast 
tree, if the number of incident edges of a node is not less than 2, the corres-
ponding output edge of the node is the coding edge. In the process of the 
Dijkstra algorithm, we could define two sets for all potential coding nodes. In 
this way, we record the edges emitted from the point, and the edges injected into 
the point, respectively. The need can be quickly calculated through these two 
sets. The whole process of the fitness evaluation function is shown in Figure 4. 

3.4. Multi-Operator Synergy Mutation Mechanism 

The adaptive quantum genetic algorithm can assign different rotation angle steps  
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Figure 4.Fitness assessment function flow chart. 

 
according to the characteristics of each individual, which greatly improves the 
convergence speed of the algorithm. However, in the later stage of the algorithm, 
the algorithm is easy to fall into the optimal local solution due to the decline of 
population diversity. Based on this, the multi-operator synergy mutation me-
chanism is added. The current population status is evaluated by multiple opera-
tors, which increases the diversity of populations in the late stage of the algo-
rithm. And the algorithm can jump out of the optimal local solution with a large 
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probability. The stability of the algorithm is enhanced. 
The individual similarity evaluation operator simX  is used to evaluate the 

differences between individuals in the current population. As shown in the Equ-
ation (5), where maxd  and mind  respectively represent the largest and smallest 
individual between the current population and the optimal individual. The avgd  
is the average value of the Hamming distance between all individuals in the cur-
rent population. 

min
max min

max min

max min

,

0,

avg

sim

d d
d d

X d d
d d

−
≠= −

 =

                 (5) 

The larger the similarity simX , the more the majority of the current popula-
tion is farther from the optimal solution. In this case, the larger mutation proba-
bility can be used. The smaller the similarity simX , the more the current popu-
lation distance solution is closer. The individual mutation probability can be re-
duced to make the algorithm converge faster. 

The role of the individual fitness assessment operator is to evaluate the per-
formance of each in the current population. The maxf  and minf  respectively 
represent the optimal fitness and the worst fitness value of the current popula-
tion. The if  indicates the fitness value of the current individual. 

max
max min

max min

max min

,

0,

i

fit

f f
f f

f fy
f f

− ≠ −= 
 =

                  (6) 

The larger the operator fity , the worse the performance of the current indi-
vidual. the greater the probability of mutation should be given to the current in-
dividual so that it will mutate more quickly. The smaller the operator fity , the 
better the performance of the current individual. A smaller probability of mutation 
should be given to the current individual. It could maintain its excellent traits. 

The population variation adjustment operator ( )accF n  is a function related 
to evolutionary algebra to avoid the premature occurrence of the algorithm. 
When the algorithm falls into the optimal local solution, the operator can in-
crease the mutation probability and make the algorithm jump out of the optimal 
local solution. 

( )
( ) ( ) ( )

( ) ( ) ( )
max max

max max

1 , where

1 , where
0, where

acc

acc
acc

s nF n C f n f n T n T
s

F n F n f n f n T n T
n T

− − + ⋅ = − ∧ >=  − ≠ − ∧ >
 ≤

  (7) 

The n is the current evolutionary algebra, s is the maximum evolution algebra, 
T is the algebra of the optimal solution in the iterative process of the algorithm, 
( )0 1C C≤ ≤  is the adjustment constant, maxf  is the optimal adaptation in the 

nth generation population degree. It can be known from the definition that 
when the optimal fitness in the population does not change T generation conti-
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nuously, the mutation probability will increase correspondingly in the T + 1 
generation. 

The mutation probability of each individual in each evolution is determined 
by the individual similarity evaluation operator, the individual fitness evaluation 
operator, and the population variation adjustment operator. The formula for 
calculating the mutation probability is shown in Equation (8). 

( )0 max min

max min

,

0,

n
fit sim acci

n

p y x F n f f
p

f f

 ⋅ ⋅ + ≠= 
=

              (8) 

In Equation (8), i
np  is the mutation probability of the i-th individual of the 

n-th generation population, 0p  is the initial mutation probability constant de-
termined according to different problems. 

The multi-operator synergistic mutation mechanism mainly includes indi-
vidual similarity evaluation operator, individual fitness evaluation operator, and 
population variation adjustment operator. Their combined action is to deter-
mine the mutation probability of each in the current population. 

4. Simulations and Analysis 

In order to verify the effectiveness of the algorithm, this paper compares GA, 
QGA, and AM-QGA, and carries out the following experiments. 

The software and hardware environment used in the experiment is: CPU: In-
tel(R) Core(TM) i5-6200U CPU4 core 2.30 GHz; memory: 4 G; Windows10; 
Codeblocks 16.0; GCC 5.4.0. 

Firstly, we experimented with a small number of cases, as shown in Figure 5. 
The capacity of each link in the figure is unit capacity. The s is the source node, 
and t1, t2, t3, and t4 are destination nodes. According to the maximum flow 
minimum cut theorem, the multicast throughput between s and t1, t2, t3, and t4 is 
two units of capacity. In this experiment, the multicast throughput is set to 2 
units. In Figure 5, the potential coding nodes are nodes 7, 8, 9, 10, 12, maxn  is 9. 
And the required number of chromosome coding bits is 18. The minimum  

 

 
Figure 5. Topology-Network. 
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number of encodings required for Figure 5 using the exhaustive method is 0. In 
this experiment, the population size of GA, QGA, and AM-QGA was 30, and the 
termination algebra was 200. 

In the evaluation of algorithm performance, three evaluating indicators are 
the average optimal algebra, average optimal coding times, and the minimum 
number of coding times in ten experiments. They show as follows: FBG (first 
best solution generation), BSR (best solution success ratio), and MOP (mini-
mum operation). The experimental results are shown in Table 2. 

It can be seen from Table 2 that the three algorithms in this paper are the 
same as the results obtained by the violence calculation, so the correctness of the 
three algorithms can be proved. 

In order to ensure the experimental results, this paper generated a larger scale 
topological map according to the literature [1] strategy. As shown in Figure 6, 
the original topology map is a directed topology map of one source point and 
two target nodes. 

We copy Figure 6 into two copies and use the target starting point as the 
source point of the duplicated image to obtain the topological map, as shown in 
Figure 7. We named it 3-copy. Similarly, we get 7-copy, 15-copy, and 31-copy 
topologies, respectively. The total nodes, the number of edges, the number of 
target nodes, the number of potential coding nodes, the number of individual 
chromosome bits, the maximum number of coding operations, and all possible 
coding operands for these topological maps are shown in Table 3. 

For the four topological maps in the above table, the same index is used for 
evaluation. The population size of GA, QGA, and AM-QGA is set to 30, and the 
ending algebra MAXGEN is 500. The average result of 10 experiments is ob-
tained. The experimental results are shown in Table 4. 

 
Table 2. Topology-Network algorithm operation result table. 

Algorithm FBG BSR MOP 

GA 8.1 100% 0 

QGA 4.7 100% 0 

AM-QGA 2.2 100% 0 

 

 
Figure 6. Original network. 
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Figure 7. 3-copy network 

 
Table 3. Network parameters. 

Networks Nodes Links Sinks Code_Nodes Bits Max_Code_Links Possibilities 

3-copy 19 30 4 7 34 15 32768 

7-copy 43 70 8 19 98 43 8.79609e+012 

15-copy 91 150 16 43 226 99 6.33825e+029 

31-copy 187 310 32 91 482 211 3.29101e+63 

 
Table 4. Simulation results. 

Multicast scenarios Algorithms FBG BSR MOP 

3-copy 

GA 10.3 100% 0 

QGA 6.9 100% 0 

AM-QGA 4.5 100% 0 

7-copy 

GA 293.9 100% 0 

QGA 96 100% 0 

AM-QGA 15.9 100% 0 

15-copy 

GA - 0% 36 

QGA 247.9 90% 0 

AM-QGA 134.1 100% 0 

31-copy 

GA - 0% 94 

QGA 343.1 80% 1 

AM-QGA 241.8 100% 1 

 
Figures 8-11 show the relationship between the optimal coding operands and 

evolutionary algebras of different algorithms in four different multicast scenarios. 
From the data in the table, it can be found that the convergence rate of AM-QGA  
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Figure 8. 3-copy network evolution result graph. 

 

 

Figure 9. 7-copy network evolution result graph. 
 

 

Figure 10. 15-copy network evolution result graph. 
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Figure 11. 31-copy network evolution result graph. 
 

is the fastest, and it has the best global search ability and anti-early maturity 
ability. The convergence performance of the QGA is second only to AM-QGA. 
GA has the worst convergence performance and anti-local search ability. Be-
cause AM-QGA adopts adaptive adjustment mechanism and multi-operator 
co-evolution mechanism, the search efficiency of the algorithm is much im-
proved. And AM-QGA is not easy to fall into local optimum. It has the best 
performance among the three algorithms. Because QGA uses qubit coding, pop-
ulation diversity is superior to a genetic algorithm, so its algorithm performance 
is better than the GA algorithm. Figures 8-11 show the relationship between the 
optimal operation codes calculated by different algorithms and their evolutio-
nary algebras. It can be seen that when the GA and QGA calculate the big data 
graph, the optimal solution cannot be found after 500 generations sometimes. 
This shows that the quantum genetic algorithm is very easy to fall into local op-
timum, although it converges quickly. By comparison, the BSR of AM-QGA is 
100%. It can be seen that AM-QGA has strong global search ability in resolving 
the network coding resources problem. It can also maintain the diversity of the 
population well in the later period of the algorithm so that it can easily jump out 
of the optimal local solution. It can be concluded that AM-QGA has better sta-
bility and better global convergence performance after fully considering indi-
vidual distribution in the population and adjusting the mutation probability. 

5. Conclusion 

Network coding technology has changed the traditional IP multicast mode 
which can only store and forward information. It effectively increases the multi-
cast throughput, improves the bandwidth utilization efficiency, and has broad 
application prospects. In order to solve the problem that QGA is likely to fall in-
to local optimum solution with high convergence rate, the AM-QGA was pro-
posed. It mainly consists of three parts: a cooperative decision-making mechan-
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ism based on individual similarity evaluation operator, individual fitness evalua-
tion algorithm, and population mutation adjustment operator. The AM-QGA is 
used to optimize the network coding resources in multicast network. The 
AM-QGA has the advantages of fast convergence, the high success rate of mul-
ticast, and a strong ability to get rid of the local optimum solution. However, due 
to the high complexity of the evaluation function, the algorithm has the problem 
that the time complexity constant is too large and the running time is long. The 
next research direction is to optimize the evaluation function algorithm or use 
parallel operations to increase the speed of the algorithm. 
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