
Journal of Computer and Communications, 2019, 7, 1-10
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2019.74001 Apr. 8, 2019 1 Journal of Computer and Communications

The Visualization of Simulated Load-Bearing
Soil Particles Using HttpHandler of ASP.NET

Fang Hu

Department of Information Science & Technology, Sichuan Staff University of Science and Technology, Chengdu, China

Abstract
The Mincrosoft.NET Framework library provides a rich set of components
and services for applications, greatly increasing the efficiency of software de-
velopment. As the HttpHandler features no control parsing, it does not need
to go through complicated page processing. Thus, the efficiency is signifi-
cantly improved. It is especially suitable for the case where the server does not
need to return HTML results to the client. This article demonstrates a simple
application where HttpHandler and Ajax are combined to transfer large im-
age data to the browser page and keep the display smooth, which proves their
efficacy.

Keywords
HttpHandler, Ajax, Asynchronous Request

1. Introduction

ASP.NET is a worldwide prevalent programming framework based on the Mi-
crosoft’s next-generation. Net platform, utilizes the Common Language Runtime
to provide users with powerful enterprise-class Web application services at the
server backend. During the Web application development based on ASP.NET, a
large number of server controls and services provided by ASP.NET Framework
enable us with the convenience as well as the efficiency due to the characteristics
of Web applications.

In the simulation of soil particle distribution, the picture will be “flashing”
constantly due to the application of webform, and the simulated graph cannot be
clearly and smoothly displayed. In this scenario where the execution efficiency is
highly emphasized and a large number of images are returned to the client, using
webform is not competent. Instead, we could use another web component pro-

How to cite this paper: Hu, F. (2019) The
Visualization of Simulated Load-Bearing
Soil Particles Using HttpHandler of ASP.NET.
Journal of Computer and Communications,
7, 1-10.
https://doi.org/10.4236/jcc.2019.74001

Received: February 24, 2019
Accepted: April 5, 2019
Published: April 8, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2019.74001
http://www.scirp.org
https://doi.org/10.4236/jcc.2019.74001
http://creativecommons.org/licenses/by/4.0/

F. Hu

DOI: 10.4236/jcc.2019.74001 2 Journal of Computer and Communications

vided by ASP.NET: the HttpHandler, which is significantly time-saving and
could transfer relatively larger data. And it should be noted that in this article,
the application programming and operation are both carried out under IIS 6.0.

2. Page Request and Response in ASP.NET
2.1. IIS Processing

Suppose the browser sends a request to the web server to retrieve the contents of
an ASP.NET site. When the request arrives at the web server, it is received by the
HTTP.SYS. HTTP.SYS processes the information about this HTTP request and
distributes it to the appropriate application pool based on its URL. Once the ap-
plication pool receives the request and passes it to the worker process
(w3wp.exe), w3wp.exe checks the URL suffix of the request to determine the
most proper ISAPI extension. The process of selecting the ISAPI extension is
called “program mapping”, and the ISAPI extension responding to a HTTP re-
quest is called a “HTTP Handler” [1] [2].

IIS specifies that the request for the ASP.NET page, whose extension is .aspx,
will be handled by aspnet_isapi.dll (for generic handlers, the request with the
extension .ashx is also handled by aspnet_isapi.dll). When the worker process
(w3wp.exe) loads aspnet_isapi.dll, it will create an HttpRuntime class, which is
the entry for the application, and reacts to the request through the ProcessRe-
quest method. Once the ProcessRequest method is called, an instance of the
HttpContext is generated, followed by the HttpRuntime loads an HttpApplica-
tion object via the HttpApplicationFactory class. Multiple HttpModules are con-
figured in HttpApplication. These HttpModules preprocess the request and then
reach the HttpHandler.

All requests go through the HttpModule to the corresponding HttpHandler,
and the HttpHandler starts processing the request. At this point, the ASP.NET
page life cycle begins. At the end of the processing, results were further modified
and returned by HttpHandler to HTTP.SYS. HTTP.SYS stores it in the buffer
and forwards the result back to the requesting browser. Eventually, we get the
content of the server response. The process flow is illustrated in Figure 1.

2.2. The ASP.NET Page Life Cycle

The definition of the ASP.NET page is as follows:

Judging from the definition, all pages inherit from the Page class, whose defi-
nition is as follows:

public class Page: System.Web.UI.TemplateControl, System.Web.IHttp
Handler

https://doi.org/10.4236/jcc.2019.74001

F. Hu

DOI: 10.4236/jcc.2019.74001 3 Journal of Computer and Communications

Figure 1. The IIS workflow of processing requests.

The life cycle of a general ASP.Net page goes through the following stages:
1) The initialization of the page framework. This step raises the Init event for

this page.
2) Loading the server control onto the Page object.
3) Handling the Postback event defined by the control in this page.
4) Generating corresponding HTML codes and render the Page object.
5) The page is unloaded from memory, triggering the Unload event.
At this point, the browser receives the HTML code of the entire page returned

by the server and forwards it to the user. When the page is loading, the events
executed from the Page class are summarized in Table 1 [3] [4].

https://doi.org/10.4236/jcc.2019.74001

F. Hu

DOI: 10.4236/jcc.2019.74001 4 Journal of Computer and Communications

Table 1. The method execution sequence when the page is loaded.

Sequence Method Notes

1 On Pre Init Triggering Pre Init event in the initialization stage

2 OnInit Triggering Init event

3 On Init Complete
Triggering Init Complete event once the initialization
stage comes to an end

4 On Pre Load
Triggering On Load (Event Args) event at the point when
the Post Back Data has been loaded unto the page serve
controls yet the PreLoad event has not been activated

5 Page_Load

6 On Load Triggering Load event

7 Button_Click Triggering Postback event

8 On Load Complete
Triggering Load Complete event when the page
loading has been accomplished

9 On Pre Render Triggering Pre Render event

10 Pre Render Complete
Triggering On Pre Render Complete event after the Pre
Render Complete event yet the final page has
not been presented

11 On Save State Complete
Triggering Save State Complete event after the
page state has been restored

12 On Unload Triggering Unload event

3. The HttpHandler

The HttpHandler is the fundamental core of the ASP.NETAs one of the .NET
Web components. It is a class that contains the IHttpHandler special interface.
Any class that contains this interface can be used as a target program for the ex-
ternal request.

Generally, the HttpHandler could match classes in terms of most tasks. The
workflow is as follows: a HttpHandler will obtain the client's request submitted
to the server, accessing the server's file system and database, and form a
non-HTML response content which will be returned to the client after the
processing is completed. The definition of a HttpHandler is illustrated as fol-
lows:

https://doi.org/10.4236/jcc.2019.74001

F. Hu

DOI: 10.4236/jcc.2019.74001 5 Journal of Computer and Communications

Several explanations are presented here for better comprehension:
Property IsReusable: Acquiring a value indicating whether another request

can use an IHttphandler instance.
Method ProcessRequest: Processing request using this method.
Class HttpContext provides access to the internal Request, Response, and

Server properties of the request.

4. Asynchronous Javascript and XML

As stated before, when any part of the web page needs updating, the entire page
will be automatically overloaded. Ajax (Asynchronous JavaScript and XML)
enables asynchronous updates of web pages by performing small amounts of da-
ta exchange with the server backstage. This feature allows users to update the
local content of a web page without reloading the entire web page.

The core of Ajax technology is the XMLHttpRequest object, which offers a
way to communicate with the server even after the page is loaded. Some func-
tions include:

1) Updating the page without reloading the page;
2) Requesting data from the server after the page has been loaded;
3) Receiving data from the server after the page has been loaded;
4) Sending data to the server backstage.
Some further properties are introduced as follows.
1) The major properties of the XMLHttpRequest object are explained as fol-

lows:
readyState: state description which displays the state of the XMLHttpRequest.

Its value changes from 0 to 4 and corresponds to different states:
0: Request not initialized
1: Server connection is established
2: Request has been received
3: Request is in processing
4: The request has been completed and the response is ready. The data can be

retrieved via the corresponding attribute of the XMLHttpRequest object.
Status: Status attribute contributes to returning the server status code. When it

equals 200, it represents the situation that the server has successfully accepted
the client request.

Event handle on ready state change: The event handle on ready state change
will be activated when the state of the XMLHttpRequest object changes. Its value
is the name of this function.

responseText: Returns a response as a string.
The methods provided by the XMLHttpRequest object:
Open(method, url, async): method corresponds to request type, which is

POST or GET; url corresponds to the location of the file on the server; async
corresponds to true (asynchronous) or false (synchronous).

Send(): Send the request to the server.
2) The basic working flow of AJAX is shown in Figure 2.

https://doi.org/10.4236/jcc.2019.74001

F. Hu

DOI: 10.4236/jcc.2019.74001 6 Journal of Computer and Communications

Figure 2. The basic working flow of AJAX.

3) JSON (JavaScript Object Notation)
JSON is a syntax for storing and exchanging text information. It is a

lightweight text data-interchange format that is easy for people to read and
write, which is also true for machine parsing and generation. It is smaller and
faster than XML and uses the built-in JavaScript eval() method for parsing.
AJAX technology makes each request faster and returns only the data it needs
for each request. Overall speaking, for AJAX applications, JSON is faster and
easier than XML [5] [6].

5. Application

In the discrete element modelling, which is a kind of numerical simulation espe-
cially suitable for soil mechanics research, it simulates soil as particle assemblage
and the soil is assumed to be composed of quantities of small particles. In order
to conduct more comprehensive qualitative and quantitative analysis, it is often
necessary to smoothly display the information such as the motion trajectory,
force chain and velocity of the soil particles during the loading process. This ap-
plication works as follows. At the application server back end, based on the cal-
culated response of the sample data under different conditions and under dif-
ferent stress states, we continuously generate a large number of soil sample par-
ticle distribution maps and present them on the browser front end.

This application needs to continuously obtain the particle distribution map
from the server, display it in the browser, and present various types of simulated
motion trajectories. The front end adopts Ajax asynchronous request to avoid
the “flashing” of the picture due to the refresh of the whole page when the pic-
ture is displayed on the screen; the back end is processing efficiently drawing
upon the general processing program. Together, the combination of these two
parts realizes the continuous and smooth illustration of the graphic.

https://doi.org/10.4236/jcc.2019.74001

F. Hu

DOI: 10.4236/jcc.2019.74001 7 Journal of Computer and Communications

Basic front-end code is as follows:

1) The client sends a request to the server every 500 milliseconds.
2) Instantiate the XMLHttpRequest object:var request = new XMLHttpRe-

quest();
3) Send the request to the server:request.open(“GET”, “Handler1.ashx?” + da-

ta, true);
request.send(null); where the parameter true means that the request is

processed asynchronously, and it could continue without waiting. When the re-
sponse is ready, the response is processed.

4) When the readyState property changes, the on ready state change event is
triggered, and the state_Change() response function is executed. When the re-
quest is finished, the information returned from the server is obtained. The key
statement in the response function state_Change() is as follows:

var data = eval('('+ request .responseText + ')'); document.getElementById
('Image1').src = unescape (data.addr);

Where request.responseText is used to set the response data obtained from
the server as a string.

After utilizing the eval() method to convert the JSON string returned from the
server into a JSON object and assigning the image address in the JSON object to
the page picture control, the image is displayed in the control.

Basic back-end code is as follows:

https://doi.org/10.4236/jcc.2019.74001

F. Hu

DOI: 10.4236/jcc.2019.74001 8 Journal of Computer and Communications

The server receives the request, executes Handler1.ashx, and processes the re-
ceived Http request via the process Request method where it accesses the server
file system, obtains the image information, and constructs a JSON string. The
string format is: id:value1, addr:value2, all:value3. The server then returns the
JSON string which contains the order that images are stored in the server, the
image storage path, the total number of images, and so on.

Snapshots of results are shown in Figure 3 and Figure 4.

6. Conclusion

In summary, we use HttpHandler in the Server and AJAX technology in the
Client to display a large number of images smoothly and intuitively, which
makes us intuitively observe the simulated trajectory of soil particles. As a very
simple, highly efficient and cost-effective tool, the HttpHandler, combined with
AJAX technology, could play a significant role in handling requests for
non-HTML result return. It could be widely utilized in processing data such as
RSS, feeds, images and files from the server.

https://doi.org/10.4236/jcc.2019.74001

F. Hu

DOI: 10.4236/jcc.2019.74001 9 Journal of Computer and Communications

(a)

(b)

Figure 3. The result of force chain demonstration. Two pictures show different stage in-
dicated by the progress bar.

(a)

(b)

Figure 4. The result of curves demonstration. Two pictures show different stage indicated
by the progress bar.

https://doi.org/10.4236/jcc.2019.74001

F. Hu

DOI: 10.4236/jcc.2019.74001 10 Journal of Computer and Communications

Acknowledgements

This work is supported by Department of Information Science & Technology,
Sichuan Staff University of Science and Technology.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Yang, S. (2012) Page Staticization Based on HttpHandler. Digital Technology and

Application, No. 1, 50-51. (In Chinese)

[2] Paulson, L.D. (2005) Building Rich Web Applications with Ajax. Computer, 38,
14-17.

[3] Mesbah, A. and Van Deursen, A. (2009) Invariant-Based Automatic Testing of
AJAX User Interfaces. 2009 IEEE 31st International Conference on Software Engi-
neering, Vancouver, BC, 16-24 May 2009, 210-220.
https://doi.org/10.1109/ICSE.2009.5070522

[4] Galhardas, H., Florescu, D., Shasha, D. and Simon, E. (2000) AJAX: An Extensible
Data Cleaning Tool. ACM Sigmod Record, 29, 590.
https://doi.org/10.1145/335191.336568

[5] Mesbah, A. and Van Deursen, A. (2007) Migrating Multi-Page Web Applications to
Single-Page Ajax Interfaces. 11th European Conference on Software Maintenance
and Reengineering (CSMR’07), Amsterdam, 21-23 March 2007, 181-190.
https://doi.org/10.1109/CSMR.2007.33

[6] Qun, Y. and Zhang, J.B. (2014) Design of Cloud Services Platform Based on JSON.
2014 9th International Conference on Computer Science & Education, Vancouver,
BC, 22-24 August 2014, 560-565.

https://doi.org/10.4236/jcc.2019.74001
https://doi.org/10.1109/ICSE.2009.5070522
https://doi.org/10.1145/335191.336568
https://doi.org/10.1109/CSMR.2007.33

	The Visualization of Simulated Load-Bearing Soil Particles Using HttpHandler of ASP.NET
	Abstract
	Keywords
	1. Introduction
	2. Page Request and Response in ASP.NET
	2.1. IIS Processing
	2.2. The ASP.NET Page Life Cycle

	3. The HttpHandler
	4. Asynchronous Javascript and XML
	5. Application
	6. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

