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Abstract 
Machine-type communication (MTC) devices provide a broad range of data 
collection especially on the massive data generated environments such as ur-
ban, industrials and event-enabled areas. In dense deployments, the data col-
lected at the closest locations between the MTC devices are spatially corre-
lated. In this paper, we propose a k-means grouping technique to combine all 
MTC devices based on spatially correlated. The MTC devices collect the data 
on the event-based area and then transmit to the centralized aggregator for 
processing and computing. With the limitation of computational resources at 
the centralized aggregator, some grouped MTC devices data offloaded to the 
nearby base station collocated with the mobile edge-computing server. As a 
sensing capability adopted on MTC devices, we use a power exponential 
function model to compute a correlation coefficient existing between the 
MTC devices. Based on this framework, we compare the energy consumption 
when all data processed locally at centralized aggregator or offloaded at mo-
bile edge computing server with optimal solution obtained by the brute force 
method. Then, the simulation results revealed that the proposed k-means 
grouping technique reduce the energy consumption at centralized aggregator 
while satisfying the required completion time.  
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1. Introduction 

Market trends of Machine-Type Communication (MTC) devices deployments 
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are exponential increases. This is determined by many applications and services 
discovered such automatic industries monitoring, smart metering, surveillance 
cameras, environment monitoring and trace devices [1]. Additionally, according 
to a broadly used report by Cisco VNI in 2016 up to 2020 the traffic generated 
from MTC devices expected to reach 49 exabytes [2]. MTC usually includes a 
large number of devices deployed randomly in a hostile and highly dynamic en-
vironment. Since the data collected coverage and network coverage (communi-
cation range) are normally constant at randomly allocated, a high density of the 
redundancy devices is used to conserve the preferred level of network coverage 
in order to accomplish enough data collection. Addition, MTC devices are nor-
mally the event-driven systems where various devices try to send data at any 
event of interest occurred [3]. Since the MTC devices are densely deployed, then 
the data transmitted from devices to the aggregator (sink) or base station for 
computational are spatially correlated.  

Therefore, the wasted of the computational resources occurred at CA when 
the data collected from different MTC devices are processing independently. The 
significant amount of computational resources can be saved by considering the 
advantages of existence of a spatial correlation.  

However, the growth of the data traffic collected by MTC devices increase the 
pressure on the mobile operators specifically for the delay-sensitive applications, 
which requires a very short time to be processed. Several approaches are pro-
posed to deal with that challenge such as edge computing, data offloading and 
data caching [4] [5] [6], where the data computation and terminal requests move 
very close to the data source. Besides, it attempts to reduce the pressure on the 
mobile operators regarding with the limits of data generated from the terminal 
devices such as MTC devices, but still encounters the problem of data overload-
ing when the amount of data generated are increases. That amount of data re-
quired to be analyzed. Recently, the big data analysis implemented in cloud or 
enterprises centralized data centers to analyze the data generated from terminal 
devices. Moreover, data aggregation technique proposed in [7] where the net-
work congestion originated from the massive data generated by MTC devices 
reduced. In addition, the data aggregator act as intermediate nodes on the cellu-
lar networks can further help minimize the power consumed and transmission 
delay by MTC devices while transmitting data to the networks [8]. 

Generally, the MTC devices are deployed to perform specific tasks collectively; 
the data collected from each device are not completely independent rather cor-
related. Thus, in such case to avoid the resource wasted for the individual device 
processing at the aggregator, the CA combines the correlated devices together to 
form a group [9]. In this paper, we use the centralized aggregator (CA) as a sink 
or nearby devices computing the data collected from MTC devices in the 
event-based area. By examining the existence of correlated between the MTC 
device we propose k-means grouping technique to combine all the spatial corre-
lated devices together. With the limited computational resources at CA, some 
data will be offloaded to the nearby server allocated to the base station called 
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mobile edge computing server. We investigate the energy consumption at the 
CA by computing the optimal solution using the brute force method. The main 
contributions of this paper described on the following: 
 We define the correlation model to compute the correlation coefficient be-

tween the MTC devices by considering the device coordinate points on the 
hyperplane. 

 We propose device k-means grouping technique to groups MTC devices 
based on spatial correlation around the data collected coverage. 

 We use the differential entropy framework to compute the size of the data in 
each group. 

 Based on the size of the data we introduce the concepts of the data offloading 
and we define the optimization problem for minimizing the energy consump-
tion on CA for processing the data collected from MTC devices. 

 We use the brute force method to find the optimal solution for total energy 
consumption on the centralized aggregator. 

The remaining part of this structured as follows. Related work discussed in 
Section 2. In Section 3, we discuss the network model that includes the network 
model together with details of the correlation model and the proposed k-means 
grouping technique. The Section 4 present the theoretical concepts of computa-
tion together with the optimization problem used to minimize the energy con-
sumption and Section 5 discuss the results used to verify our context and lastly 
we conclude by summarizing the idea presented on whole paper. 

2. Related Work 

There are many emerging works exist in MTC communication and wireless 
networks. In [10] authors proposed the medium access control (MAC) protocol 
with low latency and energy for hierarchical structured of M2M networks. It 
permits the effective data originated from the terminal nodes transmitted to a 
sink node via a cluster head. The cloud based lightweight for mobile core net-
works investigated by [11] that improve the challenges MTC occurred from sys-
tem overload and network congestion .Similarly extended access barring (EAB) 
in the LTE-A studied in [12] to deals with the problem of overloaded that origi-
nated from a massive number of MTC devices that compete to access networks 
in a limited burst. The efficiency of data aggregation for M2M network discussed 
in [13] with the goal of reducing the total energy expenditure together with cov-
erage probability. 

Conventionally, to describe the concept of computational capability, a mobile 
cloud computing (MCC) have been widely introduced [14]. However, a cloud 
allocated far away from terminal devices cannot offer an extensive solution for 
the low latency services (emergence applications), real-time applications and 
regular data transmission such as location updates. Therefore, to allow terminal 
devices communicate directly with cloud will not be feasible and cost-effective 
because it needs more resources allocation and complex routing protocol design. 
To deal with these challenges a mobile edge computing technique proposed in 
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[15]. In MEC, the computation resources allocated near to the terminal devices 
in wireless cellular networks that helps reduce the delay and energy consump-
tion especially for the delay-sensitive applications [16]. Then, the energy con-
sumption and computation defined as jointly optimization problem in [17]. 
MTC devices use the virtual networks to handle the computing tasks and other 
tasks are offloaded to the MEC server through wireless cellular networks. A co-
operative data aggregation algorithm developed in [18] for MTC data offloading 
with help of the multiple trusted mobile relays. The result shows the proposed 
algorithm prolong the lifetime of MTC devices battery. 

Besides the MTC devices have sensing capability, implied the correlation be-
tween adopted as in wireless sensor networks. In [19] authors propose clustered 
aggregation technique to reduce the number of transmission from the sensor by 
utilizing the existing of the spatial correlation. Similarly the correlation charac-
teristic of the spatial information is taken as advantages to eliminate the network 
redundancy [20]. Furthermore, the compression between the correlation MTC 
sources based on distributed source coding discussed in [21]. The three clustering 
algorithms such as grid dividing alorithm, Weighted Pair Group Method with 
Arithmetic Mean and K-medoids proposed to balance the tradeoff between com-
pression ratio and decoding delay. In this paper, we study the existence of the cor-
relation when the MTC devices are spatial distributed in the events-based area 
collects the data and then transmit to the Centralized Aggregator for computation. 

3. Network Model and Descriptions 

In this section, we describe the details about the network model together with 
theoretical part of used correlation model and proposed k-means grouping tech-
nique. 

3.1. Network Model 

We consider the network model having the set of MTC devices  
{ }1 2, , , MD d d d=   that consists of sensing ability shown in Figure 1. The 

MTC devices are randomly distributed on the region to collects the data and 
then send to nearby Centralized Aggregator (CA) for the computing. Due to the 
limits of computational resources on the CA can’t save all the data sends from 
nearby MTC devices, then some required computation data are offloaded to the 
Base Station that collocated with mobile edge computing server (MEC) for more 
processing. After the computation to either CA or MEC, the results will be feed-
back to the corresponding MTC device for future action. From the physical na-
ture of the MTC devices are randomly located on the plane; then the data col-
lected by proximally devices can have higher degree of the correlation. With that 
case we analysis the presence of MTC devices correlation on the next subsection. 

3.2. Description of Correlation Model 

The idea of a data correlation in computing is to reduce the size of data collected  
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Figure 1. Network model for MTC devices data sensing. 
 
by MTC devices by evaluating the existence of data similarity or data dependen-
cy. Since the CA wastes the computational resources for processing the individ-
ual device that contains the same data independently, therefore we adapt the da-
ta correlation model used on the Wireless Sensor Networks to evaluate the 
presence of correlation between the spatial correlated MTC devices. The correla-
tion model verified by using the covariance function that decreases with Eucli-
dean distance for 0 at l = ∞  and 1 at 0l = , where l represents the Euclidean 
distance between the locations of MTC devices. Additionally, we assume the da-
ta collected from the MTC devices denoted as { }1 2, , , MY y y y=   have nature 
of the multivate Gaussian distribution having mean of µ  and variance of σ . 
Hence, the covariance existence between the MTC device 1d  and 2d  calcu-
lated as on [22] using the pair coordinated points corresponding to the devices 

1P  and 2P  as 

( ) ( )cov , ,i j i j i jd d corr d dσ σ=                  (1) 

where iσ  and jσ  denotes to variance of devices id  and jd  respectively. 
We can further improve the expression as  

( ) ( ) ( ) ( ),

,
, i j

i j i j i j
i j

E d d
corr d d K P P K lφ φσ σ

= = − =          (2) 

where ( ).Kφ  denotes a correlation function with given correlation parameter 
of φ  and ,i jl  represents the existence distance between the device id  and 
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jd . Furthermore, we assume, the value of ( ).Kφ  related with data collected 
from MTC device id  and jd  as iy  and jy  respectively. To determine the 
value of ( ).Kφ  covariance function models proposed such as Rational Qua-
dratic, Spherical, Power Exponential and Matern based on the structure of the 
correlation [23]. In this paper, we choose the Power Exponential model to ex-
press the correlation function existed between the MTC devices that expressed as 

( )
2

,
,

1

exp i j
i j

l
K l

θ

φ θ

   = −  
   

                   (3) 

where 1 0θ >  and ( ]2 0, 2θ ∈  represents the control parameters for a given 
correlation and the smoothness at given random region. For simplicity we use 

2 2θ =  and the correlation coefficient between the device id  and jd  in short 
represented as ,i jξ  becomes 

( ) ( ){ }2
, , ,expi j i j i jK l lφ ξ η= = −                   (4) 

where 2
1η θ −=  represents the exponent that control correlation that exist be-

tween the devices. Hence, we can determine the correlation matrix of M MTC 
devices as 

1,1 1,2 1,

2,1 2,2 2,

,

,1 ,2 ,

N

N

corr
i j

N N N N

K

ξ ξ ξ
ξ ξ ξ

ξ

ξ ξ ξ

 
 
 
 

=  
 
 
  
 





   

  

   



                 (5) 

The above correlation matrix provides overall existed correlation between the 
devices with the value between 0 and 1. That’s mean when the value of , 0i jξ =  
the devices are located very far not correlated and similarly when , 1i jξ =  the 
devices are very near to each other have highly data correlation. 

3.3. Device Grouping Technique 

In utilizing the limited computational resources at CA, we use the grouping 
technique to groups all the MTC devices based on the coordinate points. Since 
all MTC devices in each group assume to be very close, then data collected by the 
individual device may be identical. Hence, the computation resources reduced 
on the CA by processing together the MTC in one group in either to the CA or 
MEC. 

The proposed grouping technique of MTC devices consist of two part; the first 
we need to compute the distance or similarities existing between the two devices 
and then grouping the MTC devices using the clustering technique. In this paper, 
we compute the distance between the two devices according to the equations on 
the previous section and using the k-means clustering algorithm to group the 
MTC devices. 
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The k-means algorithm frequently used to partition set data automatically in-
to K disjoint clusters or groups as described in [24]. With the given the MTC 
devices that are randomly distributed, the aim is to group into different clusters 
which are near to initialized centroids. We randomly deciding the number of 
groups as K and then we analyze the k-means technique according to Euclidean 
distance expressed as 

( ) 2
c i g i gl P Pµ µ− = −                       (6) 

where iP  represents the coordinate point of device id  and gµ  denotes the 
initialized coordinate point of centroid cluster. Then, the centroid cluster up-
dated iteratively with associated devices as expressed on 

1

g
g j

jg

Pµ
∈Ω

=
Ω

∑                         (7) 

where gΩ  is the set of number of the MTC devices contained on group or 
cluster. The Algorithm 1 explain in details. 
 
Algorithm 1. K-means grouping technique. 

1 Input: Number of group; K 

 Coordinate points of device; 1 2, , , NP P P  

2 Output: Number of devices in each group; gS  

3 Random initialization for k-means group centroids; 1 2, , , Kµ µ µ  

4 gΩ =∅  

5 repeat 

6 for 1:i M=  do 

7 for 1:g K=  do 

8 evaluate ( ) 2
,c i g i gl P Pµ µ= −  

9 ( ) ( ){ }: , , , ,g i g i hU i l P l P h g iµ µ= ≤ ≠  

10 end for 

11 g g gUΩ = Ω   

12 end for 

13 for 1:g K=  do 

14 
1

g
g jj

g

Pµ
∈Ω

=
Ω ∑  

15 end for 

16 until I iterations 
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4. Computation and Problem Formulation 

In the section, we describe the theoretical details of computational model and we 
define the energy consumption optimization problem regardless with the data 
processing decision which either locally at CA or offloaded to the remote at 
MEC server. 

4.1. Computation Model for CA and MEC 

The CA collocated near to the MTC devices that receive all the data collected 
from them. As we assume the MTC devices are randomly distributed, the CA 
uses the correlation framework to check whether the correlation between the de-
vices existed. After that the devices grouping occurred. Then, the correlation 
matrix corresponding to the member of each group determined according to the 
Equation (5). With the data collected by each MTC device follows a mul-
ti-variate Gaussian distribution, then we can use the idea of information entropy 
to find the size of data on each group. Therefore, we adopt the differential en-
tropy as explained in [25] with assumption that the data collected by MTC de-
vices are quantized with the identical quantization size as { }1 2, , , M∆ = ∆ ∆ ∆ . 
Then, the entropy from the multi-variate Gaussian distribution model expressed 
as 

( ) ( )1 log 2π
2

S
Sh Y e K =                       (8) 

where SK  represents the correlation matrix of any group with S number 
MTC devices. Then, the size data in each group based on correlation matrix  
modeled as entropy ( )gH ∆  corresponding to the data set  

{ }1 2
1 2, , , Sgg

gSY y y y
∆∆ ∆ ∆=   on each group evaluated as 

( )
( )2

1

1 2πlog
2

g

gg

S

g SS
jj

eH K
=

  
  ∆ =    ∆   ∏

               (9) 

where gS  represents number of MTC devices presented in the group g. With 
the above expression, we obtain size of the input data for each group. 

4.1.1. Local Execution Analysis 
In the local computing, we consider the computation time and energy consump-
tion for processing each group. For the computing process requires the compu-
tation capability of CA denoted by lC  and CPU clock frequency represented as 

lf  [26]. Then the computation time for processing group i expressed as i
lT  

given by 

( )li
l i

l

C i
T

f
χ

=                          (10) 

where ( )iχ  represents the size of the input data on the group i that obtained 
from Equation (9). Furthermore, the energy consumption per each group i given 
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by 

( )i i i
l l lE f T

τ
κ=                        (11) 

where ( )i
lf

τ
κ  represents the power coefficient at CA and κ  is a constant that 

determined by architecture of capacity of the chip. The parameter τ  represent 
frequency exponent with constant value of 2τ ≥ . The frequently parameter 
used is approximate equal to 3 as illustrated by [27], in this paper we define 

3τ = .  

4.1.2. MEC Execution Analysis 
As we assume the CA has limits of the computational resources, then some 
groups are offloaded to MEC server for processing. In this scenario the compu-
tation time on MEC obtained by considering the transmission time of uplink, 
downlink and execution time to the MEC. In this paper, we ignore the transmis-
sion time of downlink because the data size remained after processing too small 
[28]. Then, the transmission time of uplink evaluated as  

( )i
tr

i
T

R
χ

=                           (12) 

where R represents the transmission rate between the CA and MEC which ob-
tained as  

( )log 1 trR W Pλ= +                       (13) 

where W denotes the channel bandwidth reserved for CA and trP  is the trans-
mission power of CA consumed to offloads to MEC and λ  is the channel gains 
that normalized by the power of white Gaussian noise. Then, we can evaluate the 
energy consumption used for transmission as 

i i
tr tr trE P T=                           (14) 

In addition, we evaluate the computation time at MEC as 

( )si
s

s

C i
T

f
χ

=                          (15) 

where sC  and sf  represents the CPU capability and clock frequency of the 
MEC server respectively and ( )iχ  is the size of input data of the group i. 
Therefore, the total offloading time for CA, i

oT  obtained as 
i i i

o tr sT T T= +                          (16) 

4.2. Problem Formulation 

From the Equations obtained from previous section we formulate the optimiza-
tion problem for total energy consumption at CA by considering the energy 
consumed when groups processed at CA plus the transmission energy when the 
groups offloaded to the MEC formulated as 

( )( )
1

min 1
i

K
i i i i

l tr
z i

z E z E
=

− +∑  
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s.t 

( ) max
1

1: 1
K

i i
tr

i
C z T T

=

− ≤∑  

max
1

2 :
K

i i
o

i
C z T T

=

≤∑  

{ }3 : 0,1 , 1,2, ,iC z i K∈ =                   (17) 

where the constraints C1 and C2 represents limits of the completion time for 
processing the whole group and C3 denotes the decision computing variable for 
processing on each group either at CA or at MEC. maxT  is a maximum comple-
tion time to process all the MTC devices based on number of groups. 

The optimization problem formulated above is an integer-programming 
problem, which we can solve using various heuristic approaches such as generic 
programming, dynamic programming, brute force or exhaustive search method 
and variable relaxation approaches (linear and semidefinite relaxation pro-
gramming). Based on analyzing the performance of the proposed grouping 
technique we present the brute force approach to determine the optimal solution 
obtained from the finite number of iterations. 

5. Performance Analysis and Evaluation 

This section describes performance and results for the proposed scheme. To 
evaluate the performance of proposed scheme we use the parameters referred in 
[29] and the devices are randomly distributed at a 150 × 150 cm region. We as-
sume the CA is N900 as smartphone device CPU frequency of 600 × 106 Cycle/sec, 
CPU capability equal to 650 × 106 Cycle/bytes, computing power of 0.9 W and 
the value of κ  obtained as 

( )
27

36

0.9 4.1667 10 J cyc
600 10

−= ×
×

 

Then, the value of a transmitted power of CA equal 1.012 W, normalized 
channel gain equal to 17 dB and the transmission bandwidth is 0.185 MHz. Ad-
dition, the CPU frequency and capability of MEC equal to 600 × 107 Cycle/sec 
and 960 × 107 Cycle/sec respectively. The values of quantization level range be-
tween minimum and maximum of 1/2 (1 bit) and 1/256 (8 bits) respectively with 
a degree of the correlation equal to 0.05. We evaluate the performance of the 
system by comparing the energy consumption when the data processed on the 
three different implementation scenario in terms of a number of MTC devices 
and the energy consumption comprises of both energy consumption for com-
putation and for transmission. We simply choose the number of group or cluster 
equal to 4 and 8 to verify our proposed grouping technique.  

5.1. Comparison Based on Computation Decision 

The energy consumption succeeded by the proposed grouping technique as the 
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number of MTC devices increases as illustrated in Figure 2(a) and Figure 2(b). 
With the different number of a group, the energy consumption obtained from 
optimal BFM outperforms the local computation (CA) at delay constraints while 
at the remote computing (MEC) performed better without satisfy the delay 
constraints. From the two figures as number group increases the energy con-
sumption increases, which influenced by increases of the data size in the case of 
optimal BFM energy consumption almost 18% of the total energy increases be-
tween the two groups. Similarly in Figure 3(a) and Figure 3(b) compared the 
computation time with the number of MTC devices as illustrated the 
computation time achieved by the proposed technique as the number of MTC 
devices increases. Shown that, the computation time at the local computing 
(CA) was much small compared to the other two because the CA is very near to 
MTC devices. In addition, as the number of a group increases the optimal BFM 
approaches to remote computing (MEC). This implied that much number of 
groups are offloaded compared to the groups that processed at the local. We 
further investigate the tradeoff between energy consumption and computation 
time as shown in Figure 4(a) and Figure 4(b). From, the curves demonstrated 
that the data processing at the MEC consumed the small amount of energy 
compared to the CA but it consumes much time compare to processing at CA. 
With our applications that required the computing time becomes small, then the  
 

   
(a)                                       (b) 

Figure 2. Energy consumption for MTC devices groupped at (a) K = 4 and (b) K = 8. 
 

  
(a)                                        (b) 

Figure 3. Computaion time for MTC devices groupped at (a) K = 4 and (b) K = 8. 
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(a)                                        (b) 

Figure 4. Trade-off between the energy consumption and computaion time for MTC de-
vices grouped at (a) K = 4 and (b) K = 8. 
 
local computing more favorable compared to offloading to remotely computing 
(MEC). Moreover as illustrated in a small number of groups the size of data 
processing is much small compared to a larger number of groups. The optimal 
BFM solution approaches at CA computing for grouping MTC devices into a 
small number of groups and at larger number of groups it approaches at MEC 
computing. 

5.2. Impact of Grouping Technique 

Figure 5(a) and Figure 5(b) illustrate the benefit of grouping technique based 
on the number of MTC devices. The result shows that when the number of the 
group increases the energy consumption and the computation time is increased, 
which means the size of the data processed increases and then, the optimal BFM 
solution for grouping technique outperforms compared with to processes 
un-grouping devices in which the each MTC device considered the individual. 

6. Conclusion and Future Work 

In this paper, we investigate the problem of data correlated in MTC devices 
based on the resource-constrained allocated at Centralized Aggregator for com-
puting and processing. We propose k-means grouping technique to group MTC 
devices corresponding to a spatial correlation on the event-based area. With 
combining the MTC devices, we reduced the data redundancy caused by similar 
data processing and saving the computation resources at CA. Then, we use the 
differential entropy to measure the size of data contents in each group. Through 
the extensive simulations, we illustrated the benefits of our proposed grouping 
technique compared with the individual MTC device computation. Our simula-
tion results indicate that the optimal BFM solutions performance is very close 
between the computation at CA and MEC in terms of energy consumption and 
the trade-off in computation time. In the future, we will investigate more 
grouping techniques together with multiple aggregators. 
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(a)                                        (b) 

Figure 5. Benefits of grouping technique in different number of groups. 
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