
Journal of Computer and Communications, 2018, 6, 184-201
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2018.612018 Dec. 29, 2018 184 Journal of Computer and Communications

Core and Uncore Joint Frequency Scaling
Strategy

Vaibhav Sundriyal1, Masha Sosonkina1, Bryce Westheimer2, Mark Gordon2

1Old Dominion University, Norfolk, VA, USA
2Department of Chemistry, Iowa State University, Ames Laboratory, Ames, IA, USA

Abstract
Energy-proportional computing is one of the foremost constraints in the de-
sign of next generation exascale systems. These systems must have a very high
FLOP-per-watt ratio to be sustainable, which requires tremendous improve-
ments in power efficiency for modern computing systems. This paper focuses
on the processor—as still the biggest contributor to the power usage—by
considering both its core and uncore power subsystems. The uncore describes
those processor functions that are not handled by the core, such as L3 cache
and on-chip interconnect, and contributes significantly to the total system
power. The uncore frequency scaling (UFS) capability has been available to
the user since the Intel Haswell processor generation. In this paper, perfor-
mance and power models are proposed to use both the UFS and dynamic
voltage and frequency scaling (DVFS) to reduce the energy consumption in
parallel applications. Then, these models are incorporated into a runtime
strategy that performs processor frequency scaling during parallel application
execution. The strategy can be implemented at the kernel/firmware level,
which makes it suitable for improving the energy efficiency of exascale de-
sign. Experiments on a 20-core Haswell-EP machine using the quantum
chemistry application GAMESS and NAS benchmark resulted in up to 24%
energy savings with as little as 2% performance loss.

Keywords
Uncore Frequency Scaling (UFS), Dynamic Voltage and Frequency Scaling
(DVFS), Power, GAMESS, Energy Savings, NAS Benchmarks

1. Introduction

Power is one of the critical constraints for the design of next generation exascale
systems and commercial data centers. This constraint is evidenced by the 20

How to cite this paper: Sundriyal, V.,
Sosonkina, M., Westheimer, B. and Gor-
don, M. (2018) Core and Uncore Joint
Frequency Scaling Strategy. Journal of
Computer and Communications, 6,
184-201.
https://doi.org/10.4236/jcc.2018.612018

Received: August 17, 2018
Accepted: December 26, 2018
Published: December 29, 2018

Copyright © 2018 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2018.612018
http://www.scirp.org
https://doi.org/10.4236/jcc.2018.612018
http://creativecommons.org/licenses/by/4.0/

V. Sundriyal et al.

DOI: 10.4236/jcc.2018.612018 185 Journal of Computer and Communications

MW power budget set by the US Department of Energy for exascale computing.
Such a reality forces the HPC community to transform its goal from maximizing
the performance without a power limit to improving performance within similar
power budgets. In this scenario, the power consumption growth rate must slow
down and deliver more calculations per unit of power.

To be able to operate a system under a given power budget, it is imperative
that it is comprised of components which have the necessary capability to limit
their power consumption. Previous Intel processor generations used either a
fixed uncore frequency or a common frequency for the core and uncore. The
uncore describes the functions of a processor that are not handled by the core,
such as the L3 cache and on-chip interconnect. Starting from the Intel Haswell
microarchitecture, the core and uncore frequency domains have been decoupled,
so that the uncore frequency can be modified independently of the core fre-
quency. The uncore frequency has a significant impact on the on-die cache-line
transfer rates as well as on the memory bandwidth. By default, the uncore fre-
quency is set by the hardware and can be specified via the model-specific register
(MSR) UNCORE_RATIO_LIMIT [1]. The latest Intel CPUs work with at least
two clock speed domains: one for the core (or even individual cores) and one for
the uncore, which includes the L3 cache and the memory controllers.

In the authors’ previous work [2], the efficacy of UFS (uncore frequency scal-
ing) was explored in terms of its energy-saving potential and its effect on the
DRAM and L3 cache access latency. Experiments depicted that larger energy
savings can be achieved when UFS and DVFS (dynamic voltage and frequency
scaling) are used jointly. In addition, joint and simultaneous DVFS of the pro-
cessor and DRAM was explored in [3], where novel power and performance
models were proposed.

This paper considers the experimental observations explored in [2] and ad-
justs the performance and power modeling devised in [3] so it can be considered
as an extension of both.

In this paper, a runtime strategy is developed that applies frequency scaling to
both the core and uncore, for which performance and power models are pro-
posed here as well. In a nutshell, the contributions of this work include
• Discovering opportunities for core and uncore frequency-scaling based on

the proposed performance model for out-of-order (OOO) processors.
• Modeling power consumption by using the Intel Running Average Power

Limit (RAPL), which determines dynamically the power consumption at
various core and uncore frequencies.

• Developing a runtime strategy that uses the proposed power and perfor-
mance models to determine a pair of core and uncore frequencies yielding
the maximum energy savings.

The rest of paper is organized as follows. Section 2 provides the related work.
Section 3 describes the proposed performance and power models that accurately
determine the effect of core and uncore frequency scaling on the application
performance and system power. Section 4 describes the runtime system that uses

https://doi.org/10.4236/jcc.2018.612018

V. Sundriyal et al.

DOI: 10.4236/jcc.2018.612018 186 Journal of Computer and Communications

the proposed models to save energy due to the core and uncore frequency scal-
ing. Section 5 discusses the experiments with the real-world application GAMESS
and NAS NPB benchmarks, while Section 6 provides conclusions.

2. Related Work

Power is one of the most important design constraints for the next generation of
exascale systems forcing the research community to continuously evaluate and
redefine the objectives of HPC power management. There have been two general
approaches to obtaining energy savings during parallel application execution.
The first approach is to focus on identifying stalls during execution by measur-
ing architectural parameters from performance counters as proposed in [4] [5]
[6]. Rountree et al. [7], apart from using the performance counters, do a critical
path analysis to determine which tasks may be slowed down to minimize the
performance loss in the parallel execution. Besides communications, Adagio also
monitors the computational parts of the application to determine suitable op-
portunities to apply DVFS. The second approach determines the communication
phases to apply DVFS as, for example, in [8] and [9].

As a 20 MW power limit has been set for the next generation exascale systems,
many power limiting strategies have been proposed to operate a computing sys-
tem under a given power budget. The work in [10] emphasizes conductor, which
is a runtime system that dynamically distributes available power to the different
compute nodes and cores based on the available slack to maximize performance.
The work in [11] explores the coordinated power allocation between different
components within a node and based on their observations, an optimal power
allocation strategy is proposed. The authors in [12] present results of a study
where a power control functionality in PAPI [13] was employed to limit the
power consumption in a set of benchmarks on the Intel KNL (Knights Landing)
computing platform. The work in [14] studies different strategies for analyzing
the data center power and operating system counter based on the utilization
logs. A feedback-based hierarchical solution for managing the power of a job on
a power-constrained cluster, PShifter, was proposed in [15]. The energy-efficiency
of the Intel KNL architecture for Lattice Boltzmann applications was explored in
[16]. As the cache sizes and memory density increase, the uncore power con-
sumption becomes quite significant considering the total processor power con-
sumption [17]. The authors in [18] study the uncore power consumption in he-
terogeneous platforms consisting of both high and low power cores using client
device workloads and determine that potential energy savings are very much af-
fected by the uncore component. The work in [19] builds on the READEX (Run-
time Exploitation of Application Dynamism for Energy-efficient Exascale com-
puting) tool to enable automatic tuning of both the core and uncore frequency
for an application. In addition to the mostly experimental existing work, the
present paper focuses on theoretical underpinnings by proposing the perfor-
mance and power models that link the uncore frequency with the application
throughput.

https://doi.org/10.4236/jcc.2018.612018

V. Sundriyal et al.

DOI: 10.4236/jcc.2018.612018 187 Journal of Computer and Communications

3. Performance and Power Modeling

To effectively map the variation in frequency to the application performance, a
model is needed, such that it is valid for modern OOO processors. The extent of
the effect of frequency scaling on the application execution time is usually de-
termined through memory accesses and the MIPS rate. The proposed perfor-
mance model predicts the micro-operations retired at the different core and un-
core frequencies depending on several system parameters.

3.1. Performance Variation with Frequency Scaling

The uncore frequency scaling primarily affects the performance of three com-
ponents in a computing system, namely, L3 cache, DRAM, and Quick Path In-
terconnect (QPI). Figure 1 depicts the variation in the execution time and the
power consumption of four NAS class C benchmarks (EP, CG, MG, and FT).
These benchmarks represent a diverse set of real-world computational kernels:

EP: Embarrassingly parallel, which requires virtually no interprocessor com-
munication.

CG: Conjugate gradient method, which estimates the smallest eigenvalue of a
large sparse symmetric positive-definite matrix.

MG: Multigrid method, which approximates the solution of a Poisson equa-
tion.

FT: Fast Fourier transform used to solve a 3D partial differential equation.
The experiments were performed on a 20 core Haswell-EP platform and the
power consumption was measured by the authors by using a Wattsup1 meter. It
can be observed from Figure 1 that the execution time for each of the four NAS
benchmarks barely changes with the change in the link bandwidth. Therefore,
QPI performance monitoring is not considered in the proposed performance
model. On the other hand, the power consumption decreases by an average of
2% when the link bandwidth is changed from 9.6 GB/s (maximum) to 6.4 GB/s
(minimum).

3.2. Performance Modeling

Assume n levels of the core frequency and m levels of the uncore frequency
denoted ()cf i 1, ,i n= and ()uf j 1, ,j m= , respectively, on a given
processor. On the Haswell-EP platform used in this work, the core frequency
ranged from 1.2 GHz to 2.4 GHz and the uncore frequency ranged from 0.8 GHz
to 2.9 GHz. It was determined in [2] that the variation in uncore frequency
primarily affects the L3 cache and DRAM access latency. Therefore, the effect of
the core and uncore frequency on the micro-operations retired is identified by
employing a modified version of the cycle accounting equation in [3] as

() () ()
() ()exe, CPM L3APM MAPM ,
1

c
c j j

c

f i
f i i j

f
µτ θ γ α β

= + × × + × ×

 (1)

1https://www.powermeterstore.com/p1206/watts_up_pro.php.

https://doi.org/10.4236/jcc.2018.612018
https://www.powermeterstore.com/p1206/watts_up_pro.php

V. Sundriyal et al.

DOI: 10.4236/jcc.2018.612018 188 Journal of Computer and Communications

Figure 1. Variation in the execution time and power consumption of four NAS bench-
marks EP, CG, FT, and MG with change in the QPI link bandwidth.

where
• (),i jµτ is the actual number of micro-operations retired per second at core

frequency ()cf i and uncore frequency ()uf j .
• exeCPM is the number of cycles per micro-operation retired barring the

memory accesses in a second.
• α and θ (0 , 1α θ≤ ≤) are the OOO overlap factors, which determine the

extent of the memory and L3 cache access stalls, respectively, overlapped
with the execution cycles.

• MAPM and L3APM are the number of memory and L3 cache accesses,
respectively, per micro operation retired in a second.

• jβ and jγ are the number of cycles corresponding to the memory and L3
cache access latency, respectively, at the uncore frequency ()uf j .

The base cycle accounting equation in [3] relates the operating core frequency
with the throughput (micro-operations retired), the memory frequency, and the
memory intensity of an application. eq:model modifies that base equation, such
that it estimates the effect of uncore frequency scaling on both the L3 cache and
memory access latencies. By rearranging eq: model, the number (),i jµτ of
micro-operations retired at a core frequency ()cf i and an uncore frequency

()uf j can be expressed as

() ()
()
() ()exe

, .
CPM L3APM MAPM

1

c

c
j j

c

f i
i j

f i
f

µτ
θ γ α β

=
+ × × + × ×

 (2)

Moreover, the performance loss of an application when executed on a core
frequency ()cf i and memory frequency ()uf j can be estimated as

() ()() () ()
()

1,1 ,
, .

1,1c u

i j
f i f j

µτ µτ
δ

µτ
−

= (3)

The values of MAPM and L3APM during runtime are obtained through the

https://doi.org/10.4236/jcc.2018.612018

V. Sundriyal et al.

DOI: 10.4236/jcc.2018.612018 189 Journal of Computer and Communications

processor performance counters and the value of β and γ for varying uncore
frequencies are determined through LMbench2 (the lat_mem_rd API).

Determining Out of Order Overlap Factors
The values of the overlap factors α and θ are critical for the accuracy of the
performance model described in Equation (1) Too low a value may overestimate
the effect of the memory and L3 cache access latency and vice versa.

Determining the overlap factors through the architectural pipeline method
described in [3] can be complicated and inaccurate since it does not consider the
relative positioning of the memory accesses in the application execution and for
the effect of memory-level parallelism (MLP). Therefore, a regression-based
experimental method, described in [3], was used here to determine the values of
α and θ .

Class C NAS benchmarks [20] were executed on a single core and their
average micro-operations retired, average memory accesses, and exeCPM were
recorded on different core frequencies for the whole execution, while keeping
the uncore frequency constant. Then, Equation (4) was used for the regression
analysis in the form:

1 2 ,y a b x c x= + × + × (4)

where for 1, ,15i = and 1j = ,

() ()
()

() ()
()

() ()

1

2

exe

, MAPM ,
1

, L3APM ,
1

, CPM ,
and .

c
j

c

c
j

c

c

f i
x i j

f

f i
x i j

f

y f i i j
b c

µτ β

µτ γ

µτ
α θ

= × × ×

= × × ×

= − ×

= =

The analysis resulted in a value of 0a ≈ , 0.49α = , and 0θ ≈ with R2 of
0.994. The experimentally obtained value of θ indicates that the OOO
execution completely masks the L3 cache access delay. Therefore, only the
variation in the memory access latency is considered for a change in the uncore
frequency for this work. Consequently, Equation (2) is modified as

() ()
()
()exe

, .
CPM MAPM

1

c

c
j

c

f i
i j

f i
f

µτ
α β

=
+ × × ×

 (5)

3.3. Performance Model Validation

To validate the proposed performance model for variation in the core and the
uncore frequencies (Equation (1)), several class C benchmarks from the NAS
suite (namely, EP, CG, MG, BT, SP and FT) were executed on a single core at the
highest and lowest core frequencies with the uncore frequency remaining the
same. The average number of micro-operations retired, MAPM, and L3APM
were recorded for each benchmark individually for the entire execution. Then,

2LMBench web-site: http://www.bitmover.com/lmbench/.

https://doi.org/10.4236/jcc.2018.612018
http://www.bitmover.com/lmbench/

V. Sundriyal et al.

DOI: 10.4236/jcc.2018.612018 190 Journal of Computer and Communications

exeCPM was calculated for the execution with the highest core frequency, and
eq:model was used to predict the number of micro-operations retired at the
lowest core frequency. The predicted number of micro-operations retired was
compared to the experimentally determined value with the prediction error
ranging from 0.5% to 5.8% and averaging 2.1% for the variation in the core
frequency.

To validate the model for variation in the uncore frequency, similar experiments
were conducted such that the uncore frequency was varied from 2.9 GHz to 0.8
GHz while the core frequency remained at its maximum value of 2.3 GHz. The
prediction error ranged from 0.2% (for EP) to 4.7% (for CG) and averaged at
2.8%. Hence, the proposed performance model appears accurate for variation in
both the core and uncore frequencies.

3.4. Power Modeling

To introduce the instantaneous power consumption into the proposed runtime
system and select the core and uncore frequencies that minimize the system
energy under a performance constraint, the Intel RAPL tool is used, which
provides instantaneous processor power consumption. In particular, the processor
power consumption can be denoted (),pP i j at the core and uncore frequencies

()cf i and ()uf j , respectively. The instantaneous power consumption, obtained
from RAPL, is DC in nature and it may be converted to the corresponding AC
power by an appropriate scaling factor s, which was determined experimentally
for the platform in this work through regression analysis [3].

The power consumption of the processor varies as ()3
cf i for the core

frequency (see, e.g. [3]). To determine whether or not a similar relationship
exists between the uncore frequency and the processor power consumption, a set
of experiments were performed. Figure 2 depicts the variation in the RAPL
processor (PKG) and DRAM power consumption with variation in the uncore
frequency for the class C CG benchmark executing on 16 cores of the Haswell-EP
platform. In Figure 2, the minor peak observed between the uncore frequencies 2
and 2.5 GHz for DRAM that only the PKG power increases/decreases with a
corresponding change in the uncore frequency whereas the DRAM power does
not change by much. It can be noted here that the PKG power consumption, which
appears to be varying in a linear fashion with the change in the uncore frequency
in Figure 2, also includes the PKG static power consumption. Let t and z be the
PKG power consumption and ()3

uf j for different values of uncore frequency,
respectively. To confirm that the processor power consumption varies as ()3

uf j ,
a regression analysis was done on

,t e d z= + × (6)

which yielded R2 of 0.991. Similar values of R2 were observed when the same
regression analysis was performed for the other NAS benchmarks. Consequently,
the value (),pP i j can be expressed as

() () ()3 3
1 2, ,p c uP i j k f i k f j= × + × (7)

https://doi.org/10.4236/jcc.2018.612018

V. Sundriyal et al.

DOI: 10.4236/jcc.2018.612018 191 Journal of Computer and Communications

Figure 2. Variation in the PKG and DRAM power consumption with the uncore fre-
quency for the CG benchmark execution on the Haswell-EP platform.

where 1k and 2k are constants and ()cf i and ()uf j are the core and
uncore frequencies, respectively. Parameters 1k and 2k are determined through
a regression analysis using Equation (6) by getting the processor power through
the RAPL registers at different core and uncore frequencies and then performing
regressions on those obtained values. Then, the total power consumption (),TP i j
of a compute node at core frequency ()cf i and uncore frequency ()uf j may
be expressed as

() ()() static, , ,T p mP i j P i j P s P= + × + (8)

where s is the scaling factor as in [3] used to convert DC power values to AC
ones, mP is the memory power consumption, and staticP is the static power
consumption of the compute node, determined to be 50 Watts through the
Wattsup meter.

3.5. Power Model Validation

Since the proposed power model was verified for the variation in the core
frequency in [3], the change in the power consumption with respect to the
uncore frequency only is being validated here. Figure 3 depicts the measured (by
Wattsup) and model-predicted power consumption of the EP benchmark when
the uncore frequency was varied from 2.9 GHz to 0.8 GHz. It can be observed
from Figure 3 that the proposed power model accurately predicts the system
power consumption because the average prediction error is ~2.4% for the
experiments in Figure 3. The particular pattern of the predicted power remaining
below the measured power at nearly all the uncore frequencies is mainly due the
value of the scaling factor s used in these experiments, which primarily depends
on the efficiency of the underlying power supply and was determined in [3].

3.6. Fine-Grained Timeslice Approach

The values of exeCPM and MAPM, which can change during the application

https://doi.org/10.4236/jcc.2018.612018

V. Sundriyal et al.

DOI: 10.4236/jcc.2018.612018 192 Journal of Computer and Communications

Figure 3. Measured and predicted power consumption of the EP benchmark with varia-
tion in the uncore frequency.

execution, are necessary for the prediction of the micro-operations retired at
different core and uncore frequencies. Furthermore, an application cannot be
entirely considered either CPU or memory intensive especially when frequency
scaling is considered since the workload behavior can change in any small
timeslice. A coarse-grained approach, such as [21], will not necessarily provide
the maximum energy savings, hence the need for a fine-grained timeslice based
approach. Each such timeslice needs to be individually assessed, so that its
particular compute or memory intensity can be determined and used in the
proposed performance and power models. In addition, the frequency of the
core/uncore needs to be adjusted accordingly before the next timeslice begins,
which requires a workload predicting mechanism.

4. Algorithmic Scheme for Runtime System

The proposed runtime strategy is based on the history-window predictor [3],
which employs a window of previous sample L values and predicts the next value
as some function g of these L values. To implement this prediction mechanism,
two registers—denoted CPR and MPR—of length L are maintained in the
runtime system to record the values of exeCPM and MAPM, respectively. If the
register is not filled, then the corresponding quantity is considered unchanged
from the previous prediction.

Runtime Energy-Saving Algorithm

Figure 4 displays the steps of the algorithm underlying the proposed runtime
system. Step 1 profiles the application for duration τ and obtains the relevant
parameter values from the performance counters. Next, Step 2 initializes the
micro-operations retired ()1,1µτ and the total power ()1,1TP at the highest
core and uncore frequencies for the first timeslice of the application execution;

https://doi.org/10.4236/jcc.2018.612018

V. Sundriyal et al.

DOI: 10.4236/jcc.2018.612018 193 Journal of Computer and Communications

Figure 4. Joint core and uncore frequency scaling strategy.

these values are obtained from the performance counters. The corresponding

exeCPM is calculated from Equation (5) as

()
()exe 1

1
CPM MAPM ,

1,1
cf α β

µτ
= − × × (9)

and MAPM is obtained directly from the processor performance counters. Step
3 determines the values of exeCPM and MAPM through the history-window
prediction mechanism by using a simple averaging function, which predicts the
future value as an average of the past values. If the registers CPR and MPR have
not been completely filled, then the last values of exeCPM and MAPM are used
as the next values.

In Step 4, (),i jµτ and (),TP i j are determined at all of the available core
and uncore frequencies using the values of exeCPM and MAPM obtained in
Step 3. Next (Step 5), a set of all of the core-uncore frequency pairs is determined
such that the predicted performance loss does not exceed the performance-loss
constraint γ . The threshold value of γ is provided by the user; the resulting

https://doi.org/10.4236/jcc.2018.612018

V. Sundriyal et al.

DOI: 10.4236/jcc.2018.612018 194 Journal of Computer and Communications

γ is measured using the number micro-operations retired at the end of a
timeslice. In Step 6, the energy consumption for the core-uncore frequency
combinations found in Step 5 is obtained by multiplying the respective power
consumptions and the execution times, and a frequency pair is chosen that
minimizes the system energy consumption. Note that the uncore frequency
operates at the socket level instead of individual core level. Therefore, if a
difference is observed among the chosen uncore frequencies of the threads
executing on different cores, their maximum uncore frequency is selected for all
the threads on the socket. In Step 7, if the CPR and MPR registers are completely
filled, they are shifted left by one to discard the old values. In Step 8, the
application executes the current timeslice r at the chosen core-uncore operating
frequency pair. In Step 9, the values depending on this frequency pair are
updated for the next timeslice.

5. Experimental Evaluation
5.1. GAMESS Overview

GAMESS is one of the most representative freely available quantum chemistry
applications used worldwide to do ab initio electronic structure calculations. A
wide range of quantum chemistry computations may be accomplished using
GAMESS, ranging from basic Hartree-Fock and Density Functional Theory
computations to high-accuracy multi-reference and coupled-cluster computa-
tions.

The central task of quantum chemistry is to find an (approximate) solution of
the Schrödinger equation for a given molecular system. An approximate (un-
correlated) solution is initially found using the Hartree-Fock (HF) method via
an iterative self-consistent field (SCF) approach, and then improved by various
electron-correlated methods, such as second-order Møller-Plesset perturbation
theory (MP2). The SCF-HF and MP2 methods are implemented in two forms,
namely direct and conventional, which differ in the handling of electron repul-
sion integrals (ERI, also known as 2-electron integrals). Specifically, in the con-
ventional mode all ERIs are calculated once at the beginning of the interactions
and stored on disk for subsequent reuse whereas in the direct mode ERIs are re-
calculated for each iteration as necessary. The SCF-HF iterations and the subse-
quent MP2 correction find the energy of the molecular system, followed by
evaluation of energy gradients.

Data Server Communication Model
The parallel model used in GAMESS was initially based on replicated-data

message passing and later moved to MPI-1. Fletcher et al. [22] developed the
Distributed Data Interface (DDI) in 1999, which has been the parallel commu-
nication interface for GAMESS ever since. Later [23], DDI has been adapted to
symmetric-multiprocessor (SMP) environments featuring shared memory
communications within a node, and was generalized in [24] to form groups out
of the available nodes and schedule tasks to these groups. In essence, DDI im-

https://doi.org/10.4236/jcc.2018.612018

V. Sundriyal et al.

DOI: 10.4236/jcc.2018.612018 195 Journal of Computer and Communications

plements a PGAS programming model by employing a data-server concept.
Specifically, two processes are usually created in each PE (processing element)

to which GAMESS is mapped, such that one process does the computational
tasks while the other, called the data server, just stores and services requests for
the data associated with the distributed arrays. Depending on the configuration,
the communications between the compute and data server processes occur ei-
ther via TCP/IP or MPI. A data server responds to the data requests initiated by
the corresponding compute process, for which it constantly waits. If this waiting
is implemented with MPI, then the PE is polled continuously for the incoming
message, thereby being always busy. Hence, it is preferred that a compute
process and data server do not share a PE to avoid significant performance de-
gradation. When executing on an 2N-processor machine, the compute C and
data server D process ranks are assigned as follows: []0, 1iC N∈ − and

[], 2 1iD N N∈ − , where ()0, , 1i N= − . Thus, the data server iD associated
with the ith compute process iC is N i+ .

5.2. Experiment Setup

The experiments were performed on a compute node having two Intel Xeon
E5-2630 v3 10 core Haswell-EP processors with 32 GB (4 × 8 GB) of DDR4. The
core and uncore frequency ranges are 1.2 - 2.3 GHz and 0.8 - 2.9 GHz, respec-
tively. To measure the node power and energy consumption, a Wattsup power
meter is used with a sampling rate of 1 Hz. The user-defined performance-loss
tolerance γ is taken as 10%, which is a typical value to allow for energy savings
(see, e.g. [25]).

NAS benchmarks (NPB) and GAMESS were used for evaluating the efficacy of
the proposed runtime system and to validate the modeling effort as NPB pro-
vides a good mix of compute- and memory-intensive benchmarks to test both
core and uncore frequency scaling addressed in this work. The first GAMESS
input was constructed to perform the third order Fragmental Molecular Orbital
(FMO) [26] calculation—in the conventional mode—for a cluster of 64 water
molecules at the RHF/6-31G level of theory. As such, it involves calculations of
fragment monomers, dimers, and trimers. The system is partitioned into 64
fragments such that each fragment is a unique water monomer. The input is re-
ferred to as h2o-64 in the rest of the paper. The second input to the GAMESS
program was constructed to perform the second order perturbation theory
(MP2) energy and gradient calculation—in the direct mode—of substituted sila-
trane, the 1-trichloromethylsilatrane (TCMS) molecule. MP2 computations were
performed on the Haswell-EP node with 6-31G(d) basis set (265 basis functions)
which is referred to as silatrane-265 in the rest of the paper.

5.3. Performance and Energy Savings

Figure 5 shows the performance degradation for the four NAS and the two
GAMESS inputs when operated under the proposed runtime strategy on the 20

https://doi.org/10.4236/jcc.2018.612018

V. Sundriyal et al.

DOI: 10.4236/jcc.2018.612018 196 Journal of Computer and Communications

Figure 5. Performance loss for the four NAS and the two GAMESS inputs when operated
under the proposed runtime strategy on a 20 core Haswell-EP node.

core Haswell-EP node used in this work. The NAS benchmarks have been de-
picted as “xx.yy.zz”, where “xx”, “yy”, and “zz” denote benchmark name, class,
and number of processes used, respectively. The performance degradation values
in Figure 5 have been normalized to the scenario where both the core and un-
core frequency levels remain at their maximum.

The EP benchmark is thoroughly CPU intensive throughout the execution
with its performance degrading in a linear manner with the reduction in the core
frequency. Therefore, the runtime strategy executes EP at the lowest uncore fre-
quency all the time. While the CG and FT benchmarks are rather memory in-
tensive, the strategy still does not apply any core frequency scaling to them. In-
stead, CG and FT are operated at 1.8 GHz and 1.4 GHz uncore frequencies, re-
spectively, during their executions. Although the MAPM values for the FT and
CG benchmarks are much higher compared with the EP benchmark, the high
bandwidth DDR4 is able to significantly overlap computational work with
memory accesses, thereby prompting the runtime strategy to keep the highest
core frequency for FT and CG. Note also that, in Equation (5), the decrease in
the uncore frequency does not degrade the value of micro-operations retired to a
large extent. In particular, the uncore frequency scaling targets only the memory
controller operation, meaning that the memory-access latency is relatively unaf-
fected, contrary to the power limiting approach in which the memory modules
are powered down directly. The SP benchmark is moderately CPU intensive.
Therefore, the runtime strategy executes it at 1.9 GHz uncore frequency and the
highest core frequency.

For the two GAMESS inputs, the compute processes are kept at the highest
core frequency and the lowest uncore frequency since they are extremely CPU
intensive. The data servers, on the other hand, primarily facilitate communica-
tion functions for the compute processes while not doing much useful work and
therefore, they are executed only at the minimum core and uncore frequencies.
The difference in the performance degradation observed between the two
GAMESS inputs may be explained by the large difference in the execution times

https://doi.org/10.4236/jcc.2018.612018

V. Sundriyal et al.

DOI: 10.4236/jcc.2018.612018 197 Journal of Computer and Communications

of consecutive runs of the same input during the experiments. Specifically, a
standard deviation of 4.2% was observed during five different runs of sila-
trane-265. Overall, the average performance degradation for all of the inputs
when operated under the runtime strategy stood at 5.4% which is under the user
defined performance loss value of 10% chosen for the experiments.

Figure 6 depicts the energy savings obtained for the four NPB and two
GAMESS inputs when operated under the proposed strategy colorblue. The un-
core frequency scaling achieved energy savings of 14% and 10.1% for the EP and
SP benchmarks, respectively, by itself without the application of core frequency
scaling. Both these benchmarks largely remain CPU bound during their execu-
tion with minimal L3 cache and memory accesses, depicting that UFS is suitable
for such workload behavior. The maximum energy savings (~24%) among all of
the inputs are obtained for GAMESS inputs h2o-64 and silatrane-265, when both
core and uncore frequency scalings were applied during their execution. This
was not the case for the NAS benchmarks. Hence for them, the highest energy
savings were obtained for the EP benchmark (14.1%) since it was executed
throughout at the lowest uncore frequency (0.8 GHz) with minimal performance
degradation. Overall, average energy savings of 15.3% were obtained for the six
inputs used in the experiments.

6. Conclusions and Future Work

In this paper, a joint frequency scaling strategy employing both DVFS and UFS
was proposed. Detailed power and performance models were devised, which
were deployed in a runtime algorithm to dynamically apply UFS and DVFS
during application execution in a transparent manner. Experiments on a 20 core
Haswell-EP platform with the NPB and GAMESS inputs showed that the strate-
gy provided significant energy savings with minimal performance degradation.
Specifically, for a GAMESS input, 24% energy savings were achieved with a

Figure 6. Energy savings for the four NAS and the two GAMESS inputs when operated
under the proposed runtime strategy on a 20 core Haswell-EP node.

https://doi.org/10.4236/jcc.2018.612018

V. Sundriyal et al.

DOI: 10.4236/jcc.2018.612018 198 Journal of Computer and Communications

minuscule 2% performance loss. Overall, the average energy savings and per-
formance loss were found to be 15.3% and 5.1%, respectively, for all of the ap-
plications tested. It was also observed that UFS was more potent than DVFS in
terms of its potential applicability during the runtime.

Future work will focus on developing runtime power-limiting strategies that
will maximize performance under a given power budget by dynamically allocat-
ing power to core, uncore, and memory components. The efficacy of DVFS will
be investigated for both the DDR3- and DDR4-based platforms as to how DVFS
is affected by the memory latency and bandwidth of the underlying memory
technology on novel multicore architectures.

While inter-process communications were explicitly targeted in some of the
previous works to extract energy savings [27] [28], the future plan also includes
adapting and testing the proposed strategy on a distributed system.

Acknowledgements

This work was supported in part by the Air Force Office of Scientific Research
under the AFOSR award FA9550-12-1-0476, by the US Department of Energy
(DOE) Office of Advanced Scientific Computing Research under the grant
DE-SC-0016564 and the Exascale Computing Project (ECP) through the Ames
Laboratory, operated by Iowa State University under contract No.
DE-AC00-07CH11358, by the U.S. Department of Defense High Performance
Computing Modernization Program, through a HASI grant. The authors would
also like to thank the reviewers for providing insightful comments which helped
in improving the contributions of this paper.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Lento, G. (2014) Optimizing Performance with Intel Advanced Vector Extensions.

https://computing.llnl.gov/tutorials/linux_clusters/intelAVXperformanceWhitePap
er.pdf

[2] Sundriyal, V., Sosonkina, M., Westheimer, B.M. and Gordon, M. (2018) Compari-
sons of Core and Uncore Frequency Scaling Modes in Quantum Chemistry Appli-
cation GAMESS. Proceedings of the High Performance Computing Symposium,
HPC’18, Baltimore, 1-18, April 2018, 13:1-13:11.

[3] Sundriyal, V. and Sosonkina, M. (2016) Joint Frequency Scaling of Processor and
DRAM. The Journal of Supercomputing, 72, 1549-1569.
https://doi.org/10.1007/s11227-016-1680-4

[4] Ge, R., Feng, X., Feng, W. and Cameron, K.W. (2007) CPU MISER: A Perfor-
mance-Directed, Run-Time System for Power-Aware Clusters. 2007 International
Conference on Parallel Processing (ICPP 2007), Xi’an, 10-14 September 2007, 18.
https://doi.org/10.1109/ICPP.2007.29

[5] Hsu, C.H. and Feng, W. (2005) A Power-Aware Run-Time System for High Per-

https://doi.org/10.4236/jcc.2018.612018
https://computing.llnl.gov/tutorials/linux_clusters/intelAVXperformanceWhitePaper.pdf
https://computing.llnl.gov/tutorials/linux_clusters/intelAVXperformanceWhitePaper.pdf
https://doi.org/10.1007/s11227-016-1680-4
https://doi.org/10.1109/ICPP.2007.29

V. Sundriyal et al.

DOI: 10.4236/jcc.2018.612018 199 Journal of Computer and Communications

formance Computing. Proceedings of the 2005 ACM/IEEE Conference on Super-
computing, Seattle, 12-18 November. 2005, 1.

[6] Huang, S. and Feng, W. (2009) Energy-Efficient Cluster Computing via Accurate
Workload Characterization. In Cluster Computing and the Grid, 2009. 2009 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid, Shang-
hai, 18-21 May 2009, 68-75. https://doi.org/10.1109/CCGRID.2009.88

[7] Rountree, B., Lownenthal, D.K., de Supinski, B.R., Schulz, M., Freeh, V.W. and
Bletsch, T. (2009) Adagio: Making DVS Practical for Complex HPC Applications.
Proceedings of the 23rd international conference on Supercomputing, ICS’09, New
York, 8-12 June 2009, 460-469. https://doi.org/10.1145/1542275.1542340

[8] Lim, M.Y., Freeh, V.W. and Lowenthal, D.K. (2006) Adaptive, Transparent Fre-
quency and Voltage Scaling of Communication Phases in MPI Programs. Proceed-
ings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, 11-17 No-
vember 2006, 14. https://doi.org/10.1109/SC.2006.11

[9] Freeh, V.W. and Lowenthal, D.K. (2005) Using Multiple Energy Gears in MPI Pro-
grams on a Power-Scalable Cluster. Proceedings of the Tenth ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, Chicago, 15-17
June 2005, 164-173. https://doi.org/10.1145/1065944.1065967

[10] Marathe, A., Bailey, P.E., Lowenthal, D.K., Rountree, B., Schulz, M. and de Supinski,
B.R. (2015) A Run-Time System for Power-Constrained HPC Applications. Sprin-
ger International Publishing, Cham, 394-408.

[11] Ge, R., Feng, X., He, Y. and Zou, P. (2016) The Case for Cross-Component Power
Coordination on Power Bounded Systems. 2016 45th International Conference on
Parallel Processing (ICPP), Philadelphia, 16-19 August 2016, 516-525.

[12] Azzam, H., Heike, J., Phil, V., Asim, Y., Stanimire, T. and Jack, D. (2018) Investi-
gating Power Capping toward Energy Efficient Scientific Applications. Concurrency
and Computation: Practice and Experience, e4485.

[13] Browne, S., Dongarra, J., Garner, N., Ho, G. and Mucci, P. (2000) A Portable Pro-
gramming Interface for Performance Evaluation on Modern Processors. The Inter-
national Journal of High Performance Computing Applications, 14, 189-204.
https://doi.org/10.1177/109434200001400303

[14] Khan, K.N., Scepanovic, S., Niemi, T., Nurminen, J.K., Von Alfthan, S. and Lehto,
O.-P. (2018) Analyzing the Power Consumption Behavior of a Large Scale Data
Center. Computer Science-Research and Development.

[15] Gholkar, N., Mueller, F., Rountree, B. and Marathe, A. (2018) Pshifter: Feed-
back-Based Dynamic Power Shifting within HPC Jobs for Performance. Proceed-
ings of the 27th International Symposium on High-Performance Parallel and Dis-
tributed Computing, Tempe, 11-15 June 2018, 106-117.

[16] Calore, E., Gabbana, A., Schifano, S.F. and Tripiccione, R. (2018) Software and
DVFS Tuning for Performance and Energy-Efficiency on Intel KNL Processors.
Journal of Low Power Electronics and Applications, 8, 18.

[17] Loh, G.H. (2008) The Cost of Uncore in Throughput-Oriented Many-Core Proces-
sors. Proceedings of the Workshop on Architectures and Languages for Throughput
Applications, Beijing, June 2008.

[18] Gupta, V., Brett, P., Koufaty, D., Reddy, D., Hahn, S., Schwan, K. and Srinivasa, G.
(2012) The Forgotten “Uncore”: On the Energy-Efficiency of Heterogeneous Cores.
Proceedings of the 2012 USENIX Conference on Annual Technical Conference,
Boston, MA, 13-15 June 2012, 34.

[19] Kumaraswamy, M. and Gerndt, M. (2018) Leveraging Inter-Phase Application Dy-

https://doi.org/10.4236/jcc.2018.612018
https://doi.org/10.1109/CCGRID.2009.88
https://doi.org/10.1145/1542275.1542340
https://doi.org/10.1109/SC.2006.11
https://doi.org/10.1145/1065944.1065967
https://doi.org/10.1177/109434200001400303

V. Sundriyal et al.

DOI: 10.4236/jcc.2018.612018 200 Journal of Computer and Communications

namism for Energy-Efficiency Auto-Tuning. International Conference on Parallel
and Distributed Processing Techniques and Applications, Las Vegas, 30 July 2018,
132-138.

[20] Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L., Fa-
toohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D., Venka-
takrishnan, V. and Weeratunga, S.K. (1991) The NAS Parallel Benchmarks—Summary
and Preliminary Results. Proceedings of the 1991 ACM/IEEE conference on Super-
computing, Albuquerque, New Mexico, 18-22 November 1991, 158-165.
https://doi.org/10.1145/125826.125925

[21] Sundriyal, V. and Sosonkina, M. (2018) Modeling of the CPU Frequency to Minim-
ize Energy Consumption in Parallel Applications. Sustainable Computing: Infor-
matics and Systems, 17, 1-8. https://doi.org/10.1016/j.suscom.2017.12.002

[22] Fletcher, G.D., Schmidt, M.W., Bode, B.M. and Gordon, M.S. (2000) The Distri-
buted Data Interface in GAMESS. Computer Physics Communications, 128,
190-200. https://doi.org/10.1016/S0010-4655(00)00073-4

[23] Olson, R.M., Schmidt, M.W., Gordon, M.S. and Rendell, A.P. (2003) Enabling the
Efficient Use of SMP Clusters: The GAMESS/DDI Model. Proceedings of the 2003
ACM/IEEE Conference on Supercomputing, Phoenix, AZ, 15-21 November 2003,
41.

[24] Fedorov, D.G., Olson, R.M., Kitaura, K., Gordon, M.S. and Koseki, S. (2004) A New
Hierarchical Parallelization Scheme: Generalized Distributed Data Interface
(GDDI), and an Application to the Fragment Molecular Orbital Method (FMO).
Journal of Computational Chemistry, 25, 872-880. https://doi.org/10.1002/jcc.20018

[25] Ioannou, N., Kauschke, M., Gries, M. and Cintra, M. (2011) Phase-Based Applica-
tion-Driven Hierarchical Power Management on the Single-Chip Cloud Computer.
2011 International Conference on Parallel Architectures and Compilation Tech-
niques (PACT), Galveston, TX, 10-14 October 2011, 131-142.
https://doi.org/10.1109/PACT.2011.19

[26] Fedorov, D.G. and Kitaura, K. (2004) The Importance of Three-Body Terms in the
Fragment Molecular Orbital Method. The Journal of Chemical Physics, 120,
6832-6840. https://doi.org/10.1063/1.1687334

[27] Sundriyal, V. and Sosonkina, M. (2011) Per-Call Energy Saving Strategies in
All-to-All Communications. Proceedings of the 18th European MPI Users’ Group
Conference on Recent Advances in the Message Passing Interface, EuroMPI’11,
Santorini, 18 September 2011, 188-197.

[28] Sundriyal, V., Sosonkina, M. and Gaenko, A. (2012) Runtime Procedure for Energy
savings in Applications with Point-to-Point Communications. 2012 IEEE 24th In-
ternational Symposium on Computer Architecture and High Performance Compu-
ting (SBAC-PAD), New York, NY, 24-26 October 2012, 155-162.
https://doi.org/10.1109/SBAC-PAD.2012.20

https://doi.org/10.4236/jcc.2018.612018
https://doi.org/10.1145/125826.125925
https://doi.org/10.1016/j.suscom.2017.12.002
https://doi.org/10.1016/S0010-4655(00)00073-4
https://doi.org/10.1002/jcc.20018
https://doi.org/10.1109/PACT.2011.19
https://doi.org/10.1063/1.1687334
https://doi.org/10.1109/SBAC-PAD.2012.20

V. Sundriyal et al.

DOI: 10.4236/jcc.2018.612018 201 Journal of Computer and Communications

Appendices
List of abbreviations used.

AC Alternating current

CG Conjugate gradient

CPMexe
Cycles per micro-operations retired excluding the memory

accesses in a second

CPU Central processing unit

DC Direct current

DDI Distributed data interface

DRAM Dynamic random access memory

DVFS Dynamic voltage and frequency scaling

EP Embarrassingly parallel

ERI Electron repulsion integrals

FLOPs Floating point operations per second

FMO Fragmental molecular orbital

FT Fast Fourier transform

GAMESS General atomic and molecular electronic structure system

L3APM L3 cache accesses per micro-operation retired

MAPM Memory accesses per micro-operation retired

MIPS Million instructions per second

MPI Message passing interface

MSR Model specific register

OOO Out-of-order

PE Processing element

QPI Quick path interconnect

RAPL Running average power limit

SCF-HF Self consistent field hartree fock

SP Scalar pentadiagonal

TCP/IP Transport control protocol/Internet protocol

UFS Uncore frequency scaling

https://doi.org/10.4236/jcc.2018.612018

	Core and Uncore Joint Frequency Scaling Strategy
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Performance and Power Modeling
	3.1. Performance Variation with Frequency Scaling
	3.2. Performance Modeling
	Determining Out of Order Overlap Factors

	3.3. Performance Model Validation
	3.4. Power Modeling
	3.5. Power Model Validation
	3.6. Fine-Grained Timeslice Approach

	4. Algorithmic Scheme for Runtime System
	Runtime Energy-Saving Algorithm

	5. Experimental Evaluation
	5.1. GAMESS Overview
	5.2. Experiment Setup
	5.3. Performance and Energy Savings

	6. Conclusions and Future Work
	Acknowledgements
	Conflicts of Interest
	References
	Appendices

