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Abstract 
Energy-proportional computing is one of the foremost constraints in the de-
sign of next generation exascale systems. These systems must have a very high 
FLOP-per-watt ratio to be sustainable, which requires tremendous improve-
ments in power efficiency for modern computing systems. This paper focuses 
on the processor—as still the biggest contributor to the power usage—by 
considering both its core and uncore power subsystems. The uncore describes 
those processor functions that are not handled by the core, such as L3 cache 
and on-chip interconnect, and contributes significantly to the total system 
power. The uncore frequency scaling (UFS) capability has been available to 
the user since the Intel Haswell processor generation. In this paper, perfor-
mance and power models are proposed to use both the UFS and dynamic 
voltage and frequency scaling (DVFS) to reduce the energy consumption in 
parallel applications. Then, these models are incorporated into a runtime 
strategy that performs processor frequency scaling during parallel application 
execution. The strategy can be implemented at the kernel/firmware level, 
which makes it suitable for improving the energy efficiency of exascale de-
sign. Experiments on a 20-core Haswell-EP machine using the quantum 
chemistry application GAMESS and NAS benchmark resulted in up to 24% 
energy savings with as little as 2% performance loss. 
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1. Introduction 

Power is one of the critical constraints for the design of next generation exascale 
systems and commercial data centers. This constraint is evidenced by the 20 
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MW power budget set by the US Department of Energy for exascale computing. 
Such a reality forces the HPC community to transform its goal from maximizing 
the performance without a power limit to improving performance within similar 
power budgets. In this scenario, the power consumption growth rate must slow 
down and deliver more calculations per unit of power. 

To be able to operate a system under a given power budget, it is imperative 
that it is comprised of components which have the necessary capability to limit 
their power consumption. Previous Intel processor generations used either a 
fixed uncore frequency or a common frequency for the core and uncore. The 
uncore describes the functions of a processor that are not handled by the core, 
such as the L3 cache and on-chip interconnect. Starting from the Intel Haswell 
microarchitecture, the core and uncore frequency domains have been decoupled, 
so that the uncore frequency can be modified independently of the core fre-
quency. The uncore frequency has a significant impact on the on-die cache-line 
transfer rates as well as on the memory bandwidth. By default, the uncore fre-
quency is set by the hardware and can be specified via the model-specific register 
(MSR) UNCORE_RATIO_LIMIT [1]. The latest Intel CPUs work with at least 
two clock speed domains: one for the core (or even individual cores) and one for 
the uncore, which includes the L3 cache and the memory controllers. 

In the authors’ previous work [2], the efficacy of UFS (uncore frequency scal-
ing) was explored in terms of its energy-saving potential and its effect on the 
DRAM and L3 cache access latency. Experiments depicted that larger energy 
savings can be achieved when UFS and DVFS (dynamic voltage and frequency 
scaling) are used jointly. In addition, joint and simultaneous DVFS of the pro-
cessor and DRAM was explored in [3], where novel power and performance 
models were proposed. 

This paper considers the experimental observations explored in [2] and ad-
justs the performance and power modeling devised in [3] so it can be considered 
as an extension of both.  

In this paper, a runtime strategy is developed that applies frequency scaling to 
both the core and uncore, for which performance and power models are pro-
posed here as well. In a nutshell, the contributions of this work include  
• Discovering opportunities for core and uncore frequency-scaling based on 

the proposed performance model for out-of-order (OOO) processors.  
• Modeling power consumption by using the Intel Running Average Power 

Limit (RAPL), which determines dynamically the power consumption at 
various core and uncore frequencies.  

• Developing a runtime strategy that uses the proposed power and perfor-
mance models to determine a pair of core and uncore frequencies yielding 
the maximum energy savings.  

The rest of paper is organized as follows. Section 2 provides the related work. 
Section 3 describes the proposed performance and power models that accurately 
determine the effect of core and uncore frequency scaling on the application 
performance and system power. Section 4 describes the runtime system that uses 

https://doi.org/10.4236/jcc.2018.612018


V. Sundriyal et al. 
 

 

DOI: 10.4236/jcc.2018.612018 186 Journal of Computer and Communications 
 

the proposed models to save energy due to the core and uncore frequency scal-
ing. Section 5 discusses the experiments with the real-world application GAMESS 
and NAS NPB benchmarks, while Section 6 provides conclusions. 

2. Related Work 

Power is one of the most important design constraints for the next generation of 
exascale systems forcing the research community to continuously evaluate and 
redefine the objectives of HPC power management. There have been two general 
approaches to obtaining energy savings during parallel application execution. 
The first approach is to focus on identifying stalls during execution by measur-
ing architectural parameters from performance counters as proposed in [4] [5] 
[6]. Rountree et al. [7], apart from using the performance counters, do a critical 
path analysis to determine which tasks may be slowed down to minimize the 
performance loss in the parallel execution. Besides communications, Adagio also 
monitors the computational parts of the application to determine suitable op-
portunities to apply DVFS. The second approach determines the communication 
phases to apply DVFS as, for example, in [8] and [9]. 

As a 20 MW power limit has been set for the next generation exascale systems, 
many power limiting strategies have been proposed to operate a computing sys-
tem under a given power budget. The work in [10] emphasizes conductor, which 
is a runtime system that dynamically distributes available power to the different 
compute nodes and cores based on the available slack to maximize performance. 
The work in [11] explores the coordinated power allocation between different 
components within a node and based on their observations, an optimal power 
allocation strategy is proposed. The authors in [12] present results of a study 
where a power control functionality in PAPI [13] was employed to limit the 
power consumption in a set of benchmarks on the Intel KNL (Knights Landing) 
computing platform. The work in [14] studies different strategies for analyzing 
the data center power and operating system counter based on the utilization 
logs. A feedback-based hierarchical solution for managing the power of a job on 
a power-constrained cluster, PShifter, was proposed in [15]. The energy-efficiency 
of the Intel KNL architecture for Lattice Boltzmann applications was explored in 
[16]. As the cache sizes and memory density increase, the uncore power con-
sumption becomes quite significant considering the total processor power con-
sumption [17]. The authors in [18] study the uncore power consumption in he-
terogeneous platforms consisting of both high and low power cores using client 
device workloads and determine that potential energy savings are very much af-
fected by the uncore component. The work in [19] builds on the READEX (Run-
time Exploitation of Application Dynamism for Energy-efficient Exascale com-
puting) tool to enable automatic tuning of both the core and uncore frequency 
for an application. In addition to the mostly experimental existing work, the 
present paper focuses on theoretical underpinnings by proposing the perfor-
mance and power models that link the uncore frequency with the application 
throughput.  
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3. Performance and Power Modeling  

To effectively map the variation in frequency to the application performance, a 
model is needed, such that it is valid for modern OOO processors. The extent of 
the effect of frequency scaling on the application execution time is usually de-
termined through memory accesses and the MIPS rate. The proposed perfor-
mance model predicts the micro-operations retired at the different core and un-
core frequencies depending on several system parameters. 

3.1. Performance Variation with Frequency Scaling 

The uncore frequency scaling primarily affects the performance of three com-
ponents in a computing system, namely, L3 cache, DRAM, and Quick Path In-
terconnect (QPI). Figure 1 depicts the variation in the execution time and the 
power consumption of four NAS class C benchmarks (EP, CG, MG, and FT). 
These benchmarks represent a diverse set of real-world computational kernels:  

EP: Embarrassingly parallel, which requires virtually no interprocessor com-
munication.  

CG: Conjugate gradient method, which estimates the smallest eigenvalue of a 
large sparse symmetric positive-definite matrix.  

MG: Multigrid method, which approximates the solution of a Poisson equa-
tion.  

FT: Fast Fourier transform used to solve a 3D partial differential equation. 
The experiments were performed on a 20 core Haswell-EP platform and the 
power consumption was measured by the authors by using a Wattsup1 meter. It 
can be observed from Figure 1 that the execution time for each of the four NAS 
benchmarks barely changes with the change in the link bandwidth. Therefore, 
QPI performance monitoring is not considered in the proposed performance 
model. On the other hand, the power consumption decreases by an average of 
2% when the link bandwidth is changed from 9.6 GB/s (maximum) to 6.4 GB/s 
(minimum). 

3.2. Performance Modeling  

Assume n levels of the core frequency and m levels of the uncore frequency 
denoted ( )cf i  1, ,i n=   and ( )uf j  1, ,j m=  , respectively, on a given 
processor. On the Haswell-EP platform used in this work, the core frequency 
ranged from 1.2 GHz to 2.4 GHz and the uncore frequency ranged from 0.8 GHz 
to 2.9 GHz. It was determined in [2] that the variation in uncore frequency 
primarily affects the L3 cache and DRAM access latency. Therefore, the effect of 
the core and uncore frequency on the micro-operations retired is identified by 
employing a modified version of the cycle accounting equation in [3] as  

( ) ( ) ( )
( ) ( )exe, CPM L3APM MAPM ,
1

c
c j j

c

f i
f i i j

f
µτ θ γ α β

 
= + × × + × ×  

 
  (1) 

 

 

1https://www.powermeterstore.com/p1206/watts_up_pro.php.   
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Figure 1. Variation in the execution time and power consumption of four NAS bench-
marks EP, CG, FT, and MG with change in the QPI link bandwidth. 
 
where 
• ( ),i jµτ  is the actual number of micro-operations retired per second at core 

frequency ( )cf i  and uncore frequency ( )uf j .   
• exeCPM  is the number of cycles per micro-operation retired barring the 

memory accesses in a second. 
• α  and θ  ( 0 , 1α θ≤ ≤ ) are the OOO overlap factors, which determine the 

extent of the memory and L3 cache access stalls, respectively, overlapped 
with the execution cycles. 

• MAPM and L3APM are the number of memory and L3 cache accesses, 
respectively, per micro operation retired in a second.  

• jβ  and jγ  are the number of cycles corresponding to the memory and L3 
cache access latency, respectively, at the uncore frequency ( )uf j .  

The base cycle accounting equation in [3] relates the operating core frequency 
with the throughput (micro-operations retired), the memory frequency, and the 
memory intensity of an application. eq:model modifies that base equation, such 
that it estimates the effect of uncore frequency scaling on both the L3 cache and 
memory access latencies. By rearranging eq: model, the number ( ),i jµτ  of 
micro-operations retired at a core frequency ( )cf i  and an uncore frequency 

( )uf j  can be expressed as  

( ) ( )
( )
( ) ( )exe

, .
CPM L3APM MAPM

1

c

c
j j

c

f i
i j

f i
f

µτ
θ γ α β

=
+ × × + × ×

    (2) 

Moreover, the performance loss of an application when executed on a core 
frequency ( )cf i  and memory frequency ( )uf j  can be estimated as  

( ) ( )( ) ( ) ( )
( )

1,1 ,
, .

1,1c u

i j
f i f j

µτ µτ
δ

µτ
−

=                  (3) 

The values of MAPM and L3APM during runtime are obtained through the 
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processor performance counters and the value of β  and γ  for varying uncore 
frequencies are determined through LMbench2 (the lat_mem_rd API). 

Determining Out of Order Overlap Factors 
The values of the overlap factors α  and θ  are critical for the accuracy of the 
performance model described in Equation (1) Too low a value may overestimate 
the effect of the memory and L3 cache access latency and vice versa. 

Determining the overlap factors through the architectural pipeline method 
described in [3] can be complicated and inaccurate since it does not consider the 
relative positioning of the memory accesses in the application execution and for 
the effect of memory-level parallelism (MLP). Therefore, a regression-based 
experimental method, described in [3], was used here to determine the values of 
α  and θ . 

Class C NAS benchmarks [20] were executed on a single core and their 
average micro-operations retired, average memory accesses, and exeCPM  were 
recorded on different core frequencies for the whole execution, while keeping 
the uncore frequency constant. Then, Equation (4) was used for the regression 
analysis in the form:  

1 2 ,y a b x c x= + × + ×                         (4) 

where for 1, ,15i =   and 1j = ,  

( ) ( )
( )

( ) ( )
( )

( ) ( )

1

2

exe

, MAPM ,
1

, L3APM ,
1

, CPM ,
and .

c
j

c

c
j

c

c

f i
x i j

f

f i
x i j

f

y f i i j
b c

µτ β

µτ γ

µτ
α θ

= × × ×

= × × ×

= − ×

= =

 

The analysis resulted in a value of 0a ≈ , 0.49α = , and 0θ ≈  with R2 of 
0.994. The experimentally obtained value of θ  indicates that the OOO 
execution completely masks the L3 cache access delay. Therefore, only the 
variation in the memory access latency is considered for a change in the uncore 
frequency for this work. Consequently, Equation (2) is modified as 

( ) ( )
( )
( )exe

, .
CPM MAPM

1

c

c
j

c

f i
i j

f i
f

µτ
α β

=
+ × × ×

           (5) 

3.3. Performance Model Validation  

To validate the proposed performance model for variation in the core and the 
uncore frequencies (Equation (1)), several class C benchmarks from the NAS 
suite (namely, EP, CG, MG, BT, SP and FT) were executed on a single core at the 
highest and lowest core frequencies with the uncore frequency remaining the 
same. The average number of micro-operations retired, MAPM, and L3APM 
were recorded for each benchmark individually for the entire execution. Then, 

 

 

2LMBench web-site: http://www.bitmover.com/lmbench/. 
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exeCPM  was calculated for the execution with the highest core frequency, and 
eq:model was used to predict the number of micro-operations retired at the 
lowest core frequency. The predicted number of micro-operations retired was 
compared to the experimentally determined value with the prediction error 
ranging from 0.5% to 5.8% and averaging 2.1% for the variation in the core 
frequency. 

To validate the model for variation in the uncore frequency, similar experiments 
were conducted such that the uncore frequency was varied from 2.9 GHz to 0.8 
GHz while the core frequency remained at its maximum value of 2.3 GHz. The 
prediction error ranged from 0.2% (for EP) to 4.7% (for CG) and averaged at 
2.8%. Hence, the proposed performance model appears accurate for variation in 
both the core and uncore frequencies. 

3.4. Power Modeling  

To introduce the instantaneous power consumption into the proposed runtime 
system and select the core and uncore frequencies that minimize the system 
energy under a performance constraint, the Intel RAPL tool is used, which 
provides instantaneous processor power consumption. In particular, the processor 
power consumption can be denoted ( ),pP i j  at the core and uncore frequencies 

( )cf i  and ( )uf j , respectively. The instantaneous power consumption, obtained 
from RAPL, is DC in nature and it may be converted to the corresponding AC 
power by an appropriate scaling factor s, which was determined experimentally 
for the platform in this work through regression analysis [3]. 

The power consumption of the processor varies as ( )3
cf i  for the core 

frequency (see, e.g. [3]). To determine whether or not a similar relationship 
exists between the uncore frequency and the processor power consumption, a set 
of experiments were performed. Figure 2 depicts the variation in the RAPL 
processor (PKG) and DRAM power consumption with variation in the uncore 
frequency for the class C CG benchmark executing on 16 cores of the Haswell-EP 
platform. In Figure 2, the minor peak observed between the uncore frequencies 2 
and 2.5 GHz for DRAM that only the PKG power increases/decreases with a 
corresponding change in the uncore frequency whereas the DRAM power does 
not change by much. It can be noted here that the PKG power consumption, which 
appears to be varying in a linear fashion with the change in the uncore frequency 
in Figure 2, also includes the PKG static power consumption. Let t and z be the 
PKG power consumption and ( )3

uf j  for different values of uncore frequency, 
respectively. To confirm that the processor power consumption varies as ( )3

uf j , 
a regression analysis was done on  

,t e d z= + ×                           (6) 

which yielded R2 of 0.991. Similar values of R2 were observed when the same 
regression analysis was performed for the other NAS benchmarks. Consequently, 
the value ( ),pP i j  can be expressed as  

( ) ( ) ( )3 3
1 2, ,p c uP i j k f i k f j= × + ×                 (7) 

https://doi.org/10.4236/jcc.2018.612018


V. Sundriyal et al. 
 

 

DOI: 10.4236/jcc.2018.612018 191 Journal of Computer and Communications 
 

 
Figure 2. Variation in the PKG and DRAM power consumption with the uncore fre-
quency for the CG benchmark execution on the Haswell-EP platform. 
 
where 1k  and 2k  are constants and ( )cf i  and ( )uf j  are the core and 
uncore frequencies, respectively. Parameters 1k  and 2k  are determined through 
a regression analysis using Equation (6) by getting the processor power through 
the RAPL registers at different core and uncore frequencies and then performing 
regressions on those obtained values. Then, the total power consumption ( ),TP i j  
of a compute node at core frequency ( )cf i  and uncore frequency ( )uf j  may 
be expressed as  

( ) ( )( ) static, , ,T p mP i j P i j P s P= + × +                 (8) 

where s is the scaling factor as in [3] used to convert DC power values to AC 
ones, mP  is the memory power consumption, and staticP  is the static power 
consumption of the compute node, determined to be 50 Watts through the 
Wattsup meter. 

3.5. Power Model Validation  

Since the proposed power model was verified for the variation in the core 
frequency in [3], the change in the power consumption with respect to the 
uncore frequency only is being validated here. Figure 3 depicts the measured (by 
Wattsup) and model-predicted power consumption of the EP benchmark when 
the uncore frequency was varied from 2.9 GHz to 0.8 GHz. It can be observed 
from Figure 3 that the proposed power model accurately predicts the system 
power consumption because the average prediction error is ~2.4% for the 
experiments in Figure 3. The particular pattern of the predicted power remaining 
below the measured power at nearly all the uncore frequencies is mainly due the 
value of the scaling factor s used in these experiments, which primarily depends 
on the efficiency of the underlying power supply and was determined in [3]. 

3.6. Fine-Grained Timeslice Approach  

The values of exeCPM  and MAPM, which can change during the application  
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Figure 3. Measured and predicted power consumption of the EP benchmark with varia-
tion in the uncore frequency.  
 
execution, are necessary for the prediction of the micro-operations retired at 
different core and uncore frequencies. Furthermore, an application cannot be 
entirely considered either CPU or memory intensive especially when frequency 
scaling is considered since the workload behavior can change in any small 
timeslice. A coarse-grained approach, such as [21], will not necessarily provide 
the maximum energy savings, hence the need for a fine-grained timeslice based 
approach. Each such timeslice needs to be individually assessed, so that its 
particular compute or memory intensity can be determined and used in the 
proposed performance and power models. In addition, the frequency of the 
core/uncore needs to be adjusted accordingly before the next timeslice begins, 
which requires a workload predicting mechanism. 

4. Algorithmic Scheme for Runtime System   

The proposed runtime strategy is based on the history-window predictor [3], 
which employs a window of previous sample L values and predicts the next value 
as some function g of these L values. To implement this prediction mechanism, 
two registers—denoted CPR and MPR—of length L are maintained in the 
runtime system to record the values of exeCPM  and MAPM, respectively. If the 
register is not filled, then the corresponding quantity is considered unchanged 
from the previous prediction. 

Runtime Energy-Saving Algorithm 

Figure 4 displays the steps of the algorithm underlying the proposed runtime 
system. Step 1 profiles the application for duration τ  and obtains the relevant 
parameter values from the performance counters. Next, Step 2 initializes the 
micro-operations retired ( )1,1µτ  and the total power ( )1,1TP  at the highest 
core and uncore frequencies for the first timeslice of the application execution;  
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Figure 4. Joint core and uncore frequency scaling strategy. 
 
these values are obtained from the performance counters. The corresponding 

exeCPM  is calculated from Equation (5) as  

( )
( )exe 1

1
CPM MAPM ,

1,1
cf α β

µτ
= − × ×                (9) 

and MAPM is obtained directly from the processor performance counters. Step 
3 determines the values of exeCPM  and MAPM through the history-window 
prediction mechanism by using a simple averaging function, which predicts the 
future value as an average of the past values. If the registers CPR and MPR have 
not been completely filled, then the last values of exeCPM  and MAPM are used 
as the next values. 

In Step 4, ( ),i jµτ  and ( ),TP i j  are determined at all of the available core 
and uncore frequencies using the values of exeCPM  and MAPM obtained in 
Step 3. Next (Step 5), a set of all of the core-uncore frequency pairs is determined 
such that the predicted performance loss does not exceed the performance-loss 
constraint γ . The threshold value of γ  is provided by the user; the resulting 
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γ  is measured using the number micro-operations retired at the end of a 
timeslice. In Step 6, the energy consumption for the core-uncore frequency 
combinations found in Step 5 is obtained by multiplying the respective power 
consumptions and the execution times, and a frequency pair is chosen that 
minimizes the system energy consumption. Note that the uncore frequency 
operates at the socket level instead of individual core level. Therefore, if a 
difference is observed among the chosen uncore frequencies of the threads 
executing on different cores, their maximum uncore frequency is selected for all 
the threads on the socket. In Step 7, if the CPR and MPR registers are completely 
filled, they are shifted left by one to discard the old values. In Step 8, the 
application executes the current timeslice r at the chosen core-uncore operating 
frequency pair. In Step 9, the values depending on this frequency pair are 
updated for the next timeslice. 

5. Experimental Evaluation 
5.1. GAMESS Overview 

GAMESS is one of the most representative freely available quantum chemistry 
applications used worldwide to do ab initio electronic structure calculations. A 
wide range of quantum chemistry computations may be accomplished using 
GAMESS, ranging from basic Hartree-Fock and Density Functional Theory 
computations to high-accuracy multi-reference and coupled-cluster computa-
tions. 

The central task of quantum chemistry is to find an (approximate) solution of 
the Schrödinger equation for a given molecular system. An approximate (un-
correlated) solution is initially found using the Hartree-Fock (HF) method via 
an iterative self-consistent field (SCF) approach, and then improved by various 
electron-correlated methods, such as second-order Møller-Plesset perturbation 
theory (MP2). The SCF-HF and MP2 methods are implemented in two forms, 
namely direct and conventional, which differ in the handling of electron repul-
sion integrals (ERI, also known as 2-electron integrals). Specifically, in the con-
ventional mode all ERIs are calculated once at the beginning of the interactions 
and stored on disk for subsequent reuse whereas in the direct mode ERIs are re-
calculated for each iteration as necessary. The SCF-HF iterations and the subse-
quent MP2 correction find the energy of the molecular system, followed by 
evaluation of energy gradients. 

Data Server Communication Model 
The parallel model used in GAMESS was initially based on replicated-data 

message passing and later moved to MPI-1. Fletcher et al. [22] developed the 
Distributed Data Interface (DDI) in 1999, which has been the parallel commu-
nication interface for GAMESS ever since. Later [23], DDI has been adapted to 
symmetric-multiprocessor (SMP) environments featuring shared memory 
communications within a node, and was generalized in [24] to form groups out 
of the available nodes and schedule tasks to these groups. In essence, DDI im-
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plements a PGAS programming model by employing a data-server concept. 
Specifically, two processes are usually created in each PE (processing element) 

to which GAMESS is mapped, such that one process does the computational 
tasks while the other, called the data server, just stores and services requests for 
the data associated with the distributed arrays. Depending on the configuration, 
the communications between the compute and data server processes occur ei-
ther via TCP/IP or MPI. A data server responds to the data requests initiated by 
the corresponding compute process, for which it constantly waits. If this waiting 
is implemented with MPI, then the PE is polled continuously for the incoming 
message, thereby being always busy. Hence, it is preferred that a compute 
process and data server do not share a PE to avoid significant performance de-
gradation. When executing on an 2N-processor machine, the compute C and 
data server D process ranks are assigned as follows: [ ]0, 1iC N∈ −  and 

[ ], 2 1iD N N∈ − , where ( )0, , 1i N= − . Thus, the data server iD  associated 
with the ith compute process iC  is N i+ . 

5.2. Experiment Setup 

The experiments were performed on a compute node having two Intel Xeon 
E5-2630 v3 10 core Haswell-EP processors with 32 GB (4 × 8 GB) of DDR4. The 
core and uncore frequency ranges are 1.2 - 2.3 GHz and 0.8 - 2.9 GHz, respec-
tively. To measure the node power and energy consumption, a Wattsup power 
meter is used with a sampling rate of 1 Hz. The user-defined performance-loss 
tolerance γ  is taken as 10%, which is a typical value to allow for energy savings 
(see, e.g. [25]). 

NAS benchmarks (NPB) and GAMESS were used for evaluating the efficacy of 
the proposed runtime system and to validate the modeling effort as NPB pro-
vides a good mix of compute- and memory-intensive benchmarks to test both 
core and uncore frequency scaling addressed in this work. The first GAMESS 
input was constructed to perform the third order Fragmental Molecular Orbital 
(FMO) [26] calculation—in the conventional mode—for a cluster of 64 water 
molecules at the RHF/6-31G level of theory. As such, it involves calculations of 
fragment monomers, dimers, and trimers. The system is partitioned into 64 
fragments such that each fragment is a unique water monomer. The input is re-
ferred to as h2o-64 in the rest of the paper. The second input to the GAMESS 
program was constructed to perform the second order perturbation theory 
(MP2) energy and gradient calculation—in the direct mode—of substituted sila-
trane, the 1-trichloromethylsilatrane (TCMS) molecule. MP2 computations were 
performed on the Haswell-EP node with 6-31G(d) basis set (265 basis functions) 
which is referred to as silatrane-265 in the rest of the paper. 

5.3. Performance and Energy Savings 

Figure 5 shows the performance degradation for the four NAS and the two 
GAMESS inputs when operated under the proposed runtime strategy on the 20  
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Figure 5. Performance loss for the four NAS and the two GAMESS inputs when operated 
under the proposed runtime strategy on a 20 core Haswell-EP node. 
 
core Haswell-EP node used in this work. The NAS benchmarks have been de-
picted as “xx.yy.zz”, where “xx”, “yy”, and “zz” denote benchmark name, class, 
and number of processes used, respectively. The performance degradation values 
in Figure 5 have been normalized to the scenario where both the core and un-
core frequency levels remain at their maximum. 

The EP benchmark is thoroughly CPU intensive throughout the execution 
with its performance degrading in a linear manner with the reduction in the core 
frequency. Therefore, the runtime strategy executes EP at the lowest uncore fre-
quency all the time. While the CG and FT benchmarks are rather memory in-
tensive, the strategy still does not apply any core frequency scaling to them. In-
stead, CG and FT are operated at 1.8 GHz and 1.4 GHz uncore frequencies, re-
spectively, during their executions. Although the MAPM values for the FT and 
CG benchmarks are much higher compared with the EP benchmark, the high 
bandwidth DDR4 is able to significantly overlap computational work with 
memory accesses, thereby prompting the runtime strategy to keep the highest 
core frequency for FT and CG. Note also that, in Equation (5), the decrease in 
the uncore frequency does not degrade the value of micro-operations retired to a 
large extent. In particular, the uncore frequency scaling targets only the memory 
controller operation, meaning that the memory-access latency is relatively unaf-
fected, contrary to the power limiting approach in which the memory modules 
are powered down directly. The SP benchmark is moderately CPU intensive. 
Therefore, the runtime strategy executes it at 1.9 GHz uncore frequency and the 
highest core frequency. 

For the two GAMESS inputs, the compute processes are kept at the highest 
core frequency and the lowest uncore frequency since they are extremely CPU 
intensive. The data servers, on the other hand, primarily facilitate communica-
tion functions for the compute processes while not doing much useful work and 
therefore, they are executed only at the minimum core and uncore frequencies. 
The difference in the performance degradation observed between the two 
GAMESS inputs may be explained by the large difference in the execution times 
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of consecutive runs of the same input during the experiments. Specifically, a 
standard deviation of 4.2% was observed during five different runs of sila-
trane-265. Overall, the average performance degradation for all of the inputs 
when operated under the runtime strategy stood at 5.4% which is under the user 
defined performance loss value of 10% chosen for the experiments. 

Figure 6 depicts the energy savings obtained for the four NPB and two 
GAMESS inputs when operated under the proposed strategy colorblue. The un-
core frequency scaling achieved energy savings of 14% and 10.1% for the EP and 
SP benchmarks, respectively, by itself without the application of core frequency 
scaling. Both these benchmarks largely remain CPU bound during their execu-
tion with minimal L3 cache and memory accesses, depicting that UFS is suitable 
for such workload behavior. The maximum energy savings (~24%) among all of 
the inputs are obtained for GAMESS inputs h2o-64 and silatrane-265, when both 
core and uncore frequency scalings were applied during their execution. This 
was not the case for the NAS benchmarks. Hence for them, the highest energy 
savings were obtained for the EP benchmark (14.1%) since it was executed 
throughout at the lowest uncore frequency (0.8 GHz) with minimal performance 
degradation. Overall, average energy savings of 15.3% were obtained for the six 
inputs used in the experiments. 

6. Conclusions and Future Work 

In this paper, a joint frequency scaling strategy employing both DVFS and UFS 
was proposed. Detailed power and performance models were devised, which 
were deployed in a runtime algorithm to dynamically apply UFS and DVFS 
during application execution in a transparent manner. Experiments on a 20 core 
Haswell-EP platform with the NPB and GAMESS inputs showed that the strate-
gy provided significant energy savings with minimal performance degradation. 
Specifically, for a GAMESS input, 24% energy savings were achieved with a  
 

 
Figure 6. Energy savings for the four NAS and the two GAMESS inputs when operated 
under the proposed runtime strategy on a 20 core Haswell-EP node. 
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minuscule 2% performance loss. Overall, the average energy savings and per-
formance loss were found to be 15.3% and 5.1%, respectively, for all of the ap-
plications tested. It was also observed that UFS was more potent than DVFS in 
terms of its potential applicability during the runtime.  

Future work will focus on developing runtime power-limiting strategies that 
will maximize performance under a given power budget by dynamically allocat-
ing power to core, uncore, and memory components. The efficacy of DVFS will 
be investigated for both the DDR3- and DDR4-based platforms as to how DVFS 
is affected by the memory latency and bandwidth of the underlying memory 
technology on novel multicore architectures. 

While inter-process communications were explicitly targeted in some of the 
previous works to extract energy savings [27] [28], the future plan also includes 
adapting and testing the proposed strategy on a distributed system.   
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Appendices 
List of abbreviations used. 

AC Alternating current 

CG Conjugate gradient 

CPMexe 
Cycles per micro-operations retired excluding the memory 

accesses in a second 

CPU Central processing unit 

DC Direct current 

DDI Distributed data interface 

DRAM Dynamic random access memory 

DVFS Dynamic voltage and frequency scaling 

EP Embarrassingly parallel 

ERI Electron repulsion integrals 

FLOPs Floating point operations per second 

FMO Fragmental molecular orbital 

FT Fast Fourier transform 

GAMESS General atomic and molecular electronic structure system 

L3APM L3 cache accesses per micro-operation retired 

MAPM Memory accesses per micro-operation retired 

MIPS Million instructions per second 

MPI Message passing interface 

MSR Model specific register 

OOO Out-of-order 

PE Processing element 

QPI Quick path interconnect 

RAPL Running average power limit 

SCF-HF Self consistent field hartree fock 

SP Scalar pentadiagonal 

TCP/IP Transport control protocol/Internet protocol 

UFS Uncore frequency scaling 
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