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Abstract 
Software complexity crisis brings huge obstacle to further progress in IT in-
dustry. To alleviate this problem, researchers are asked to build systems 
which can benefit from automation. With autonomic behavior, the real-time 
reactive systems can be more self-managed and adaptive to their environ-
ment. However, most of current formal approaches fail to specify such kind 
of system. In this paper, we proposed an approach to formally specify reactive 
autonomic systems. First, we used category theory to formalize reactive au-
tonomic systems; then we focused on the categorization of self-configurations 
and work flows of reactive autonomic systems, and finally we used XML to 
specify the categorical models. In doing so, it can help to build the foundation 
of reactive autonomic systems with autonomic features and verify emergent 
behaviors. 
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1. Introduction 

Real-time reactive systems can be very complex, and difficult to test and er-
ror-finding. Race conditions in real-time reactive systems are hard to be found 
by only inputting sample data and checking the results, as certain errors are 
time-based and only occur when processes send or receive data at particular 
time, in particular in sequence or after learning. In order to find those errors, all 
possible state combinations of the processes have to be executed, which are ex-
ponential in the number of states [1]. Formal method could provide systems 
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with known safety properties since a formal specification can be used to check 
for particular types of errors and as inputs for model checking. Category theory 
has been proposed as a framework to offer specification structure. It has a rich 
body of theory to reason objects and their relations. Moreover, category theory 
adopts a correct by construction approach by which components can be speci-
fied, proved and composed in the way of preserving their properties. Unfortu-
nately, most of current formal approaches fail to specify Reactive Autonomic 
System (RAS) and do not address well on verifying emergent behaviors, which is 
an important characteristic for the RAS. 

To handle above mentioned problem, as a continuation of research [2] [3] [4], 
we first discuss how to model RAS and its configurations in category theory; 
then, we show how to transform the self-configuration properties to the cate-
gorical representations, and we use XML to specify the representations. The rest 
of this paper is organized as follows: Section 2 gives an overview of the related 
work. Section 3 introduces background knowledge required to understand the 
remaining content of the paper. Section 4 introduces categories that represent 
RAS model and its configurations respectively. Section 5 shows how to trans-
form the categorical self-configuration and the properties into categories, and 
uses XML to specify the categories. Finally, Section 6 concludes the work. 

2. Related Work 

In this section, research work related to this paper is introduced. 

2.1. Real-Time Reactive Systems 

Seshia proposes an architecture for automatically recovering a class of reactive 
systems from run-time failures [5]. The system comprises executions which can 
be divided into several rounds and each round performs a new unit of work. The 
framework leverages parallelism to proactively explore the space of repairs be-
fore a failure is occurred. Paper [6] presents a self-adapting loop according to 
system-specific adaptation knowledge that includes the types and properties of 
autonomic components, behavior constraints as well as strategies for adaptation. 
This system is an integral part of a real-time system which controls the behavior 
of computing environment and evaluates its global behavior. 

2.2. Formal Methods 

For modeling concurrency, category theory is used to model, analyze, and com-
pare Transition System, Trace Language, Event Structure, Petri nets, and other 
classical models of concurrency [7] [8] [9]. Mackworth and Zhang describe a 
Constraint-Based Agent (CBA) design approach which includes two formal 
models: Constraint Nets and Timed ∀-automata [10]. A constraint net can mod-
el agents and their environment symmetrically as dynamical systems; timed 
∀-automata can specify desired real-time dynamic behaviors of those situated 
agents. Paper [11] introduces a formal language model which formalizes agent- 
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environment interaction in a multi-agent framework called Conversational 
Grammar Systems (CGS). This system provides a model with a high degree of 
flexibility. Based on eco-grammar systems, the formal model used in this paper 
can be defined as an evolutionary multi-agent system. Category theory is applied 
to study relationships between geometrical models for concurrency and classical 
models [12]. 

3. Background 

In this section, background and work related to our research are introduced. 

3.1. Reactive Autonomic Systems (RAS) 

The Reactive Autonomic Systems (RAS) architecture model (Figure 1) is a 
four-layer architecture that consists of Reactive Autonomic Objects (RAO), Reac-
tive Autonomic Components (RAC), Reactive Autonomic Component Groups 
(RACG) as well as the RAS. The autonomic features are implemented by RAO 
Leaders (RAOL), RAC Supervisors (RACS) and RACG Managers (RACGM) at the 
RAC, RACG as well as RAS layer respectively [2]. In this layered architecture 
model, each tier communicates only with the tier immediately above or below it. 
Thus, the independence of those tiers makes their modularity, encapsulation, 
hierarchical decomposition and reuse possible. 

1) RAO is modeled as a labeled transition system augmented with ports, re-
sources, attributes and the logical assertion on those attributes as well as time 
constraints [13]. More specifically, it is modeled as a 9-tuple (P, ε, Θ, X, L, Φ, Λ, 
γ, R) where P, ε, Θ, X, L, Φ, Λ, γ are specified as in [14]: 
• P is a finite set of ports associated with each port-type and the null-type P0 

whose only port is the null port P0. 
• ε is a finite set of events and includes the silent-event tick. 
• Θ is a finite set of states where Θ0: Θ, is the initial state; there is no final state. 
• X is a finite set of typed attributes: abstract data types and port reference 

types. 
• L is a finite set of LSL traits for the abstract data type used in X. 
 

 
Figure 1. RASF architecture model. 

Reactive Autonomic Systems (RAS)

Reactive Autonomic Component Groups (RACG)

Reactive Autonomic Components (RAC)

Reactive Autonomic Objects (RAO)
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• Φ is a function-vector (Φs, Φat) which Φs associates with each state Θ a set of 
sub states and Φat associates with each state Θ a set of attributes. 

• Λ is a finite set of transition specifications. 
• γ is a finite set of time-constraints. 
• R models the set of resources available locally for the object to support its 

functionality. 
2) RAC is a set of synch. 
Ronously communicating RAO, where one of the RAO is assigned as a leader 

(RAOL) of the rest (workers). The workers are responsible for reactive tasks, while 
the RAOL works on autonomic tasks such as coordinating the self-monitoring at 
component level. Thus, the RAOL has a different set of states from the workers, 
which states are autonomic behavior related instead of reactive behavior related. 
The reactive and autonomic natures of formal specifications for the RAOL ena-
ble them to implement autonomic functionalities in a real-time reactive system. 
In order to coordinate the work as well as communication between the RAO, a 
RAC specification consists of Members, Configure, Leader, Supervisor, Neigh-
bors and Repository. The RAC is the minimum centralized Reactive Autonomic 
Element (RAE) that has the ability of self-management in RAS. 

Similarly to the RAO, the reactive behavior of a RAC consists of n collaborat-
ing. RAO is specified as a 9-tuple (Psyn, εsyn, Θsyn, Xsyn, Lsyn, Φsyn, Λsyn, γsyn, Rsyn) 
[13]: 
• Psyn is a set of port-types allowing for a synchronous communication between 

the RAO. 
• εsyn is a union of all εi where i: [1 ... n]. 
• Θsyn is a finite set of reachable and valid Synchronous Production Machine 

(SPM) state. 
• Xsyn is a union of the finite sets syn

1X , …, syn
nX . 

• Lsyn is a union of the finite sets of Larch Specification Language (LSL) traits 
for Abstract Data Type (ADT) used in the RAO. 

• Φsyn is a function-vector ( syn
sΦ , syn

atΦ , syn
γΦ ) that syn

sΦ  associates with each 
SPM state Θsyn a set of sub states and syn

atΦ  associates with each SPM state 
Θsyn the uniton of the set of attributes a set of attributes Φat1( syn

1Θ ), …, 
Φatn( syn

nΘ ): syn
γΦ  associates each SPM state Θsyn with a subset of Rsyn. 

• Λsyn is a finite set of transition specifications. 
• γsyn is a finite set of time-constraints. 
• Rsyn is a set of resources available in the RAO; it is defined as a union of all Ri: 

i: [1 ... n]. 
3) RACG is a set of centralized or distributed RAC that cooperate in fulfill-

ment of group tasks by synchronous communications. It is the minimum RAE 
which can independently accomplish complete real-time reactive tasks in RASF. 
The autonomic behavior at group level is coordinated by a supervisor (RACS). 

4) RAS is made up of centralized or distributed RACG with asynchronous 
communication. It provides an integrated interface for users to delegate compu-
ting tasks, monitor systems and manage repositories. A manager (RACGM) is 
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responsible for coordinating autonomic behavior at system level. 

3.2. Self-Configuration in Reactive Autonomic Systems 

Self-configuration is an essence of RAS. Components in RAS are able to confi-
gure themselves automatically according to high level policies (business level 
objectives), which specify what is required instead of how they are implemented. 
The self-configuration work flows of RAC, RACG and RAS are represented in 
sequence diagrams are illustrated in Figures 2-4 respectively. 

3.3. Category Theory 

Category theory has a rich body of theory to reason objects as well as their rela-
tions, and it is abstract enough for a wide range of different specification lan-
guages [15]. Categorytheory for the software specification has adopted a correct 
by construction approach by which components are specified, proved and com-
posed in the way of preserving their properties [15]. Moreover, category theory 
can provide techniques to manipulate and reason diagrams for building hierar-
chies of system complexity, allowing systems to be used as components of more 
complex systems and inferring properties of the systems from their configura-
tions [12]. 

As there is no such kind of formalization for self-configurations of RAS, we 
propose to use category theory to formalize the self-configurations. To under-
stand this paper, we introduce the definition of category.  

Definition 1: A category consists of objects and morphisms. A morphism f: A 
→ B has object A as its domain and object B as its codomain, respectively. If 
there are morphisms f: A → B and g: B → C, then there is also a morphism g f: A  
 

 
Figure 2. RAC self-configuration work flow. 
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Lunch Investigation()

Conform
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Figure 3. RACG self-configuration work flow. 

 

 
Figure 4. RAS self-configuration work flow. 

 
→ C called their composition. Composition is associative: (h ◦ g) ◦ f = h ◦ (g ◦ f). 
Every object X has an identity morphism IdX. For every morphism f: A → B, IdB 
◦f = f = f ◦ IdA. 

4. Categorical Representations of RAS Model 

In order to categorize the self-configuration of RAS, we need to formalize RAS 
model by using category theory first. In this section, we build categorical repre-
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sentations of RAS model including RAC, RACG, and RAS. 
Proposition 1: RAC can be specified as a category RAC with a set of objects 

|RAC| and morphisms so that for each RAOi, RAOj ∈ |RAC|, there is a set of 
morphisms f: RAC (RAOi, RAOj) mapping the RAOi to RAOj which indicate the 
communication between them as f: i RAOi → RAOj。 

Proof: All what we need is to prove: 1) the existence of composition and iden-
tity morphism, and 2) prove associativity. Let RAO1, RAO2 and RAO3 be three 
RAO such that RAO1 can interact with RAO2, which can interact with RAO3. 
Then RAO1 can communicate with RAO3 (indirectly through RAO2), which 
means the existence of a composition of morphisms between RAO1 and RAO3. 
The identity morphism does exist as a natural representation of internal com-
munications. Let f, g and h be the morphisms such that f: RAO1 → RAO2, g: 
RAO2 → RAO3 and h: RAO3 → RAO4. It is clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f. 

Proposition 2: The RACG may also be specified as a category RACG with a 
set of objects |RACG| and morphisms such that for each RACm, RACn ∈ 
|RACG|, there is a set of morphisms f: RACG (RACm, RACn) mapping the RACm 
to the RACn that indicate the communication between them as f: RACm → RACn. 

Proof: All what we need is to prove: 1) the existence of composition and iden-
tity morphism, and 2) prove associativity. Let RAC1, RAC2 and RAC3 be three 
RAC such thatRAC1 can interact with RAC2, which can interact with RAC3. 
Then RAC1 can communicate with RAC3 (indirectly through RAC2), which 
means the existence of a composition of morphisms between RAC1 and RAC3. 
The identity morphism does exist as a natural representation of internal com-
munications. Let f, g and h be the morphisms such that f: RAC1 → RAC2, g: RAC2 
→ RAC3 and h: RAC3 → RAC4. It is clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f. 

Proposition 3: The RAS may also be specified as a category RAS with a set of 
objects |RAS| and morphisms such that for each RACGx, RACGy ∈ |RAS|, there 
is a set of morphisms f: RAS (RACGx, RACGy) mapping the RACGx to the 
RACGy that indicate their communications as f: RACGx → RACGy. 

Proof: All what we need is to prove: 1) the existence of composition and iden-
tity morphism, and 2) prove associativity. Let RACG1, RACG2 and RACG3 be 
three RACG such that RACG1 can communicate with RACG2, which can inte-
ract with RACG3. Then RACG1 can interact with RACG3 (indirectly through 
RACG2), which means the existence of a composition of morphisms between 
RACG1 and RACG3. The identity morphism does exist as a natural representa-
tion of internal communications. Let f, g and h be the morphisms such that f: 
RACG1 → RACG2, g: RACG2 → RACG3 and h: RACG3 → RACG4. It is clear that h 
◦ (g ◦ f) = (h ◦ g) ◦ f. 

Figure 5 illustrates the categorical representations and the corresponding 
proofs in Proposition 1 - 3. 

5. Categorical Representations of Self-Configurations of RAS  
Model 

Based on the categorical representations of RAS model in Section 3, in this section,  
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Figure 5. Categorical representations of RAS model. 
 
we build categorical representations of self-configurations of RAS model, and 
use xml to specify the categories. 

Proposition 4: The configuration of a RAC is a category denoted as CONFIG 
(RAC), where objects are RAO and morphisms are connections between those 
RAO as CONFIG (RAOi, RAOj) or CONFIG (RAOj, RAOi). 

Proof: The proof of Proposition 4 is similar to the proof of Proposition 1, 
where the morphism connection in Proposition 4 is similar to the morphism 
communication in Proposition 1. 

The XML specification of the category CONFIG (RAC) can be described as 
follows: 

<CATEGORY name = “RAC-Configuration”> 
<OBJECT> 
<OBJECT name = “RAOi” type = “RAO-Typei”/> 
<OBJECT name = “RAOj” type = “RAO-Typej”/> 
</OBJECT> 
<MORPHISM> 
<MORPHISM name = “Connectionm” type = “Connection-Typem”/> 
<FROM-OBJECT name = “RAOi” type = “RAO-Typei”/> 
<TO-OBJECT name = “RAOj” type = “RAO-Typej”/> 
</MORPHISM> 
</CATEGORY> 
Proposition 5: The configuration of a RACG is the category denoted as 

CONFIG (RACG), where objects are RAC and morphisms are connections be-
tween those RAC as CONFIG (RACi, RACj) or CONFIG (RACj, RACi). 

Proof: The proof of Proposition 5 is similar to the proof of Proposition 2, 
where the morphism connection in Proposition 5 is similar to the morphism 
communication in Proposition 2. 

The XML specification of the category CONFIG (RACG) can be described as 
follows: 

<CATEGORY name = “RACG-Configuration”> 
<OBJECT> 
<OBJECT name = “RACi” type = “RAC-Typei”/> 
<OBJECT name = “RACj” type = “RAC-Typej”/> 

RACG1 RACG2

RACG3RACG4

f

g
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Id1 Id2

Id4 Id3

RAC1 RAC2

RAC3RAC4

f

g

h

g ◦ f

h ◦ g

Id1 Id2

Id4 Id3

RAO1 RAO2

RAO3RAO4

f

g

h

g ◦ f

h ◦ g

Id1 Id2

Id4 Id3

Category RAC Category RACG Category RAS
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</OBJECT> 
<MORPHISM> 
<MORPHISM name = “Connectionm” type = “Connection-Typem”/> 
<FROM-OBJECT name = “RACi” type = “RAC-Typei”/> 
<TO-OBJECT name = “RACj” type = “RAC-Typej”/> 
</MORPHISM> 
</CATEGORY> 
Proposition 6: The configuration of a RAS is a category denoted as CONFIG 

(RAS), where objects are RACG and morphisms are the connections between 
those RACG as CONFIG (RACGi, RACGj) or CONFIG (RACGj, RACGi). 

Proof: The proof of Proposition 6 is similar to the proof of Proposition 3, 
where the morphism connection in Proposition 6 is similar to the morphism 
communication in Proposition 3. 

The XML specification of the category CONFIG (RAS) can be described as 
follows: 

<CATEGORY name = “RAS-Configuration”> 
<OBJECT> 
<OBJECT name = “RACGi” type = “RACG-Typei”/> 
<OBJECT name = “RACGj” type = “RACG-Typej”/> 
</OBJECT> 
<MORPHISM> 
<MORPHISM name = “Connectionm” type = “Connection-Typem”/> 
<FROM-OBJECT name = “RACGi” type = “RACG-Typei”/> 
<TO-OBJECT name = “RACGj” type = “RACG-Typej”/> 
<MORPHISM> 
</CATEGORY> 
As introduced in Section 1, the self-configurations of RAC, RACG, and RAS 

follows the work flow illustrated in Figures 2-4. For each work flow, we can 
build a category for it, and use XML to specify the corresponding category.  

Proposition 7: The self-configuration work flow of RAC is a category denoted 
as CONWORKFLOW (RAC), where its objects are messages Validate RAOL, 
ValicateRAO, LunchInvestigation, ValidateRAOCommunication, Conform, 
NotConform, and the morphisms denote the relationship before between the 
occurrences of objects before1: ValidateRAOL → Conform, before2: Validate-
RAOL → NotConform, before3: ValidateRAO → Conform, before4: ValicateRAO 
→ NotConform, before3: ValidateRAOCommunication → Conform, before6: Va-
licateRAOCommunication → NotConform, before7: NotConform → LunchIn-
vestigation. 

Proof: All what we need is to prove: 1) the existence of composition and iden-
tity morphism, and 2) prove associativity. Let Obj1, Obj2 and Obj3 be three mes-
sages such that Obj1 occurs before Obj2, which occurs before Obj3. Then Obj1 
occurs before Obj3 (indirectly through Obj2), which means the existence of a 
composition of morphisms between Obj1 and Obj3. The identity morphism does 
exist as a natural representation of interactions with occurrence. Let f, g and h be 
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the morphisms such that f: Obj1 → Obj2, g: Obj2 → Obj2 and h: Obj3 → Obj4. It is 
clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f. 

The XML specification of the category CONWORKFLOW (RAC) can be de-
scribed as follows: 

<CATEGORY name = “Self-Configuration-Work-Flow-RAC”> 
<OBJECT> 
<OBJECT name = “ValidateRAOL” type = “Work-Flow-Action”/> 
<OBJECT name = “ValicateRAO” type = “Work-Flow-Action”/> 
<OBJECT name = “LaunchInvestigation” type = “Work-Flow-Action”/> 
<OBJECT name = “ValidateRAOCommunication” 
type = “Work-Flow-Action”/> 
<OBJECT name = “Conform” type = “Work-Flow-Action”/> 
<OBJECT name = “NotConform” type = “Work-Flow-Action”/> 
</OBJECT> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValidateRAOL” 
type = “Work-Flow-Action”/> 
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValidateRAOL” 
type = “Work-Flow-Action”/> 
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValicateRAO” 
type = “Work-Flow-Action”/> 
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValicateRAO” 
type = “Work-Flow-Action”/> 
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValidateRAOcommunication” 
type = “Work-Flow-Action”/> 
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValidateRAOcommunication” 
type = “Work-Flow-Action”/> 
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/> 
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<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “NotConform” type = “Work-Flow-Action”/> 
<TO-OBJECT name = “LaunchInvestigation” 
type = “Work-Flow-Action”/> 
</MORPHISM> 
</CATEGORY> 
Proposition 8: The self-configuration work flow of RACG is a category de-

noted as CONWORKFLOW (RACG), where its objects are messages Validate-
RAC, ValicateRAOL, LunchInvestigation, ValidateRAOLCommunication, Con-
form, NotConform, and the morphisms denote the relationship before between 
the occurrences of objects before1: ValidateRAC → Conform, before2: Validate-
RAC → NotConform, before3: ValicateRAOL → Conform, before4: ValicateRAOL 
→ NotConform, before3: ValidateRAOLCommunication → Conform, before6: 
ValidateRAOLCommunication → NotConform, before7: NotConform → Lun-
chInvestigation. 

Proof: The proof of Proposition 8 is omitted, as it is similar to the proof of 
Proposition 7. 

The XML specification of the category CONWORKFLOW (RACG) can be 
described as follows: 

<CATEGORY name = “Self-Configuration-Work-Flow-RACG”> 
<OBJECT> 
<OBJECT name = “ValidateRAC” type = “Work-Flow-Action”/> 
<OBJECT name = “ValicateRAOL” type = “Work-Flow-Action”/> 
<OBJECT name = “LaunchInvestigation” type = “Work-Flow-Action”/> 
<OBJECT name = “ValidateRAOLCommunication” 
type = “Work-Flow-Action”/> 
<OBJECT name = “Conform” type = “Work-Flow-Action”/> 
<OBJECT name = “NotConform” type = “Work-Flow-Action”/> 
</OBJECT> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValidateRAC” 
type = “Work-Flow-Action”/> 
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValidateRAC” 
type = “Work-Flow-Action”/> 
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValicateRAOL” 
type = “Work-Flow-Action”/> 

https://doi.org/10.4236/jcc.2018.612003


M. Zhu et al. 
 

 

DOI: 10.4236/jcc.2018.612003 45 Journal of Computer and Communications 
 

<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValicateRAOL” 
type = “Work-Flow-Action”/> 
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValidateRAOLCommunication” 
type = “Work-Flow-Action”/> 
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValidateRAOLCommunication” 
type = “Work-Flow-Action”/> 
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “NotConform” type = “Work-Flow-Action”/> 
<TO-OBJECT name = “LaunchInvestigation” 
type = “Work-Flow-Action”/> 
</MORPHISM> 
</CATEGORY> 
Proposition 9: The self-configuration work flow of RAS is a category denoted 

as CONWORKFLOW(RAS), where its objects are messages ValidateRACG, Va-
licateRAC, LunchInvestigation, ValidateRACCommunication, Conform, Not-
Conform, and the morphisms denote the relationship before between the occur-
rences of objects before1: ValidateRACG → Conform, before2: ValidateRACG → 
NotConform, before3: ValidateRAC → Conform, before4: ValicateRAC → Not-
Conform, before3: ValidateRACCommunication → Conform, before6: Validate-
RACCommunication → NotConform, before7: NotConform → LunchInvestiga-
tion. 

Proof: The proof of Proposition 9 is omitted, as it is similar to the proof of 
Proposition 7. 

The XML specification of the category CONWORKFLOW (RACG) can be 
described as follows: 

<CATEGORY name = “Self-Configuration-Work-Flow-RACG”> 
<OBJECT> 
<OBJECT name = “ValidateRACG” type = “Work-Flow-Action”/> 
<OBJECT name = “ValicateRAC” type = “Work-Flow-Action”/> 
<OBJECT name = “LaunchInvestigation” type = “Work-Flow-Action”/> 
<OBJECT name = “ValidateRACCommunication” 
type = “Work-Flow-Action”/> 
<OBJECT name = “Conform” type = “Work-Flow-Action”/> 
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<OBJECT name = “NotConform” type = “Work-Flow-Action”/> 
</OBJECT> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValidateRACG” 
type = “Work-Flow-Action”/> 
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValidateRACG” 
type = “Work-Flow-Action”/> 
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValicateRAC” 
type = “Work-Flow-Action”/> 
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValicateRAC” 
type = “Work-Flow-Action”/> 
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValidateRACCommunication” 
type = “Work-Flow-Action”/> 
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “ValidateRACCommunication” 
type = “Work-Flow-Action”/> 
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/> 
<MORPHISM> 
<MORPHISM name = “Before” type = “Preorder”/> 
<FROM-OBJECT name = “NotConform” type = “Work-Flow-Action”/> 
<TO-OBJECT name = “LaunchInvestigation” 
type = “Work-Flow-Action”/> 
</MORPHISM> 
</CATEGORY> 

6. Conclusion 

Due to the difficulties of test and error-finding in real-time reactive systems, in 
this paper, we proposed an categorical approach to formally specify reactive au-
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tonomic systems and the self-configuration work flows, which can help to check 
for particular types of errors and as inputs for model checking. Moreover, we 
used XML to specify the constructed categorical models, which can help to build 
the foundation of reactive autonomic systems. By adopting the categorical ap-
proach, the construction of reactive autonomic systems and the self-configuration 
work flows can be specified, proved and composed formally with preserving 
their properties. In future, we will work toward building a categorical framework 
to verify the correctness of the construction of reactive autonomic systems, 
based on the proposed categorical specification. 
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