
Journal of Computer and Communications, 2018, 6, 34-48
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2018.612003 Dec. 20, 2018 34 Journal of Computer and Communications

Representation of Categorical Specification of
Self-Configurations in Reactive Autonomic
Systems Framework

Ming Zhu1, Heng Kuang2, Jing Li1

1College of Computer Science and Technology, Shandong University of Technology, Zibo, China
2Huawei Canada, Markham, Canada

Abstract
Software complexity crisis brings huge obstacle to further progress in IT in-
dustry. To alleviate this problem, researchers are asked to build systems
which can benefit from automation. With autonomic behavior, the real-time
reactive systems can be more self-managed and adaptive to their environ-
ment. However, most of current formal approaches fail to specify such kind
of system. In this paper, we proposed an approach to formally specify reactive
autonomic systems. First, we used category theory to formalize reactive au-
tonomic systems; then we focused on the categorization of self-configurations
and work flows of reactive autonomic systems, and finally we used XML to
specify the categorical models. In doing so, it can help to build the foundation
of reactive autonomic systems with autonomic features and verify emergent
behaviors.

Keywords
Reactive Autonomic System, Category Theory, XML, Self-Configuration

1. Introduction

Real-time reactive systems can be very complex, and difficult to test and er-
ror-finding. Race conditions in real-time reactive systems are hard to be found
by only inputting sample data and checking the results, as certain errors are
time-based and only occur when processes send or receive data at particular
time, in particular in sequence or after learning. In order to find those errors, all
possible state combinations of the processes have to be executed, which are ex-
ponential in the number of states [1]. Formal method could provide systems

How to cite this paper: Zhu, M., Kuang,
H. and Li, J. (2018) Representation of Ca-
tegorical Specification of Self-Configurations
in Reactive Autonomic Systems Frame-
work. Journal of Computer and Commu-
nications, 6, 34-48.
https://doi.org/10.4236/jcc.2018.612003

Received: November 27, 2018
Accepted: December 17, 2018
Published: December 20, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2018.612003
http://www.scirp.org
https://doi.org/10.4236/jcc.2018.612003
http://creativecommons.org/licenses/by/4.0/

M. Zhu et al.

DOI: 10.4236/jcc.2018.612003 35 Journal of Computer and Communications

with known safety properties since a formal specification can be used to check
for particular types of errors and as inputs for model checking. Category theory
has been proposed as a framework to offer specification structure. It has a rich
body of theory to reason objects and their relations. Moreover, category theory
adopts a correct by construction approach by which components can be speci-
fied, proved and composed in the way of preserving their properties. Unfortu-
nately, most of current formal approaches fail to specify Reactive Autonomic
System (RAS) and do not address well on verifying emergent behaviors, which is
an important characteristic for the RAS.

To handle above mentioned problem, as a continuation of research [2] [3] [4],
we first discuss how to model RAS and its configurations in category theory;
then, we show how to transform the self-configuration properties to the cate-
gorical representations, and we use XML to specify the representations. The rest
of this paper is organized as follows: Section 2 gives an overview of the related
work. Section 3 introduces background knowledge required to understand the
remaining content of the paper. Section 4 introduces categories that represent
RAS model and its configurations respectively. Section 5 shows how to trans-
form the categorical self-configuration and the properties into categories, and
uses XML to specify the categories. Finally, Section 6 concludes the work.

2. Related Work

In this section, research work related to this paper is introduced.

2.1. Real-Time Reactive Systems

Seshia proposes an architecture for automatically recovering a class of reactive
systems from run-time failures [5]. The system comprises executions which can
be divided into several rounds and each round performs a new unit of work. The
framework leverages parallelism to proactively explore the space of repairs be-
fore a failure is occurred. Paper [6] presents a self-adapting loop according to
system-specific adaptation knowledge that includes the types and properties of
autonomic components, behavior constraints as well as strategies for adaptation.
This system is an integral part of a real-time system which controls the behavior
of computing environment and evaluates its global behavior.

2.2. Formal Methods

For modeling concurrency, category theory is used to model, analyze, and com-
pare Transition System, Trace Language, Event Structure, Petri nets, and other
classical models of concurrency [7] [8] [9]. Mackworth and Zhang describe a
Constraint-Based Agent (CBA) design approach which includes two formal
models: Constraint Nets and Timed ∀-automata [10]. A constraint net can mod-
el agents and their environment symmetrically as dynamical systems; timed
∀-automata can specify desired real-time dynamic behaviors of those situated
agents. Paper [11] introduces a formal language model which formalizes agent-

https://doi.org/10.4236/jcc.2018.612003

M. Zhu et al.

DOI: 10.4236/jcc.2018.612003 36 Journal of Computer and Communications

environment interaction in a multi-agent framework called Conversational
Grammar Systems (CGS). This system provides a model with a high degree of
flexibility. Based on eco-grammar systems, the formal model used in this paper
can be defined as an evolutionary multi-agent system. Category theory is applied
to study relationships between geometrical models for concurrency and classical
models [12].

3. Background

In this section, background and work related to our research are introduced.

3.1. Reactive Autonomic Systems (RAS)

The Reactive Autonomic Systems (RAS) architecture model (Figure 1) is a
four-layer architecture that consists of Reactive Autonomic Objects (RAO), Reac-
tive Autonomic Components (RAC), Reactive Autonomic Component Groups
(RACG) as well as the RAS. The autonomic features are implemented by RAO
Leaders (RAOL), RAC Supervisors (RACS) and RACG Managers (RACGM) at the
RAC, RACG as well as RAS layer respectively [2]. In this layered architecture
model, each tier communicates only with the tier immediately above or below it.
Thus, the independence of those tiers makes their modularity, encapsulation,
hierarchical decomposition and reuse possible.

1) RAO is modeled as a labeled transition system augmented with ports, re-
sources, attributes and the logical assertion on those attributes as well as time
constraints [13]. More specifically, it is modeled as a 9-tuple (P, ε, Θ, X, L, Φ, Λ,
γ, R) where P, ε, Θ, X, L, Φ, Λ, γ are specified as in [14]:
• P is a finite set of ports associated with each port-type and the null-type P0

whose only port is the null port P0.
• ε is a finite set of events and includes the silent-event tick.
• Θ is a finite set of states where Θ0: Θ, is the initial state; there is no final state.
• X is a finite set of typed attributes: abstract data types and port reference

types.
• L is a finite set of LSL traits for the abstract data type used in X.

Figure 1. RASF architecture model.

Reactive Autonomic Systems (RAS)

Reactive Autonomic Component Groups (RACG)

Reactive Autonomic Components (RAC)

Reactive Autonomic Objects (RAO)

https://doi.org/10.4236/jcc.2018.612003

M. Zhu et al.

DOI: 10.4236/jcc.2018.612003 37 Journal of Computer and Communications

• Φ is a function-vector (Φs, Φat) which Φs associates with each state Θ a set of
sub states and Φat associates with each state Θ a set of attributes.

• Λ is a finite set of transition specifications.
• γ is a finite set of time-constraints.
• R models the set of resources available locally for the object to support its

functionality.
2) RAC is a set of synch.
Ronously communicating RAO, where one of the RAO is assigned as a leader

(RAOL) of the rest (workers). The workers are responsible for reactive tasks, while
the RAOL works on autonomic tasks such as coordinating the self-monitoring at
component level. Thus, the RAOL has a different set of states from the workers,
which states are autonomic behavior related instead of reactive behavior related.
The reactive and autonomic natures of formal specifications for the RAOL ena-
ble them to implement autonomic functionalities in a real-time reactive system.
In order to coordinate the work as well as communication between the RAO, a
RAC specification consists of Members, Configure, Leader, Supervisor, Neigh-
bors and Repository. The RAC is the minimum centralized Reactive Autonomic
Element (RAE) that has the ability of self-management in RAS.

Similarly to the RAO, the reactive behavior of a RAC consists of n collaborat-
ing. RAO is specified as a 9-tuple (Psyn, εsyn, Θsyn, Xsyn, Lsyn, Φsyn, Λsyn, γsyn, Rsyn)
[13]:
• Psyn is a set of port-types allowing for a synchronous communication between

the RAO.
• εsyn is a union of all εi where i: [1 ... n].
• Θsyn is a finite set of reachable and valid Synchronous Production Machine

(SPM) state.
• Xsyn is a union of the finite sets syn

1X , …, syn
nX .

• Lsyn is a union of the finite sets of Larch Specification Language (LSL) traits
for Abstract Data Type (ADT) used in the RAO.

• Φsyn is a function-vector (syn
sΦ , syn

atΦ , syn
γΦ) that syn

sΦ associates with each
SPM state Θsyn a set of sub states and syn

atΦ associates with each SPM state
Θsyn the uniton of the set of attributes a set of attributes Φat1(syn

1Θ), …,
Φatn(syn

nΘ): syn
γΦ associates each SPM state Θsyn with a subset of Rsyn.

• Λsyn is a finite set of transition specifications.
• γsyn is a finite set of time-constraints.
• Rsyn is a set of resources available in the RAO; it is defined as a union of all Ri:

i: [1 ... n].
3) RACG is a set of centralized or distributed RAC that cooperate in fulfill-

ment of group tasks by synchronous communications. It is the minimum RAE
which can independently accomplish complete real-time reactive tasks in RASF.
The autonomic behavior at group level is coordinated by a supervisor (RACS).

4) RAS is made up of centralized or distributed RACG with asynchronous
communication. It provides an integrated interface for users to delegate compu-
ting tasks, monitor systems and manage repositories. A manager (RACGM) is

https://doi.org/10.4236/jcc.2018.612003

M. Zhu et al.

DOI: 10.4236/jcc.2018.612003 38 Journal of Computer and Communications

responsible for coordinating autonomic behavior at system level.

3.2. Self-Configuration in Reactive Autonomic Systems

Self-configuration is an essence of RAS. Components in RAS are able to confi-
gure themselves automatically according to high level policies (business level
objectives), which specify what is required instead of how they are implemented.
The self-configuration work flows of RAC, RACG and RAS are represented in
sequence diagrams are illustrated in Figures 2-4 respectively.

3.3. Category Theory

Category theory has a rich body of theory to reason objects as well as their rela-
tions, and it is abstract enough for a wide range of different specification lan-
guages [15]. Categorytheory for the software specification has adopted a correct
by construction approach by which components are specified, proved and com-
posed in the way of preserving their properties [15]. Moreover, category theory
can provide techniques to manipulate and reason diagrams for building hierar-
chies of system complexity, allowing systems to be used as components of more
complex systems and inferring properties of the systems from their configura-
tions [12].

As there is no such kind of formalization for self-configurations of RAS, we
propose to use category theory to formalize the self-configurations. To under-
stand this paper, we introduce the definition of category.

Definition 1: A category consists of objects and morphisms. A morphism f: A
→ B has object A as its domain and object B as its codomain, respectively. If
there are morphisms f: A → B and g: B → C, then there is also a morphism g f: A

Figure 2. RAC self-configuration work flow.

RAO Worker3 RAO Worker2 RAO Worker1 RAOL1 RAC1

ValidateRAOL()

ConformValidateRAO()

Conform

ValidateRAO()

Not Conform

Lunch Investigation()

Conform

ValidateRAOCommunication()

Not Conform

Lunch Investigation()

Conform

https://doi.org/10.4236/jcc.2018.612003

M. Zhu et al.

DOI: 10.4236/jcc.2018.612003 39 Journal of Computer and Communications

Figure 3. RACG self-configuration work flow.

Figure 4. RAS self-configuration work flow.

→ C called their composition. Composition is associative: (h ◦ g) ◦ f = h ◦ (g ◦ f).
Every object X has an identity morphism IdX. For every morphism f: A → B, IdB
◦f = f = f ◦ IdA.

4. Categorical Representations of RAS Model

In order to categorize the self-configuration of RAS, we need to formalize RAS
model by using category theory first. In this section, we build categorical repre-

RAOL3 RAOL2 RAOL1 RAC1 RACG1

ValidateRAC()

ConformValidateRAOL()

Conform

ValidateRAOL()

Not Conform

Lunch Investigation()

Conform

ValidateRAOLCommunication()

Not Conform

Lunch Investigation()

Conform

RAC3 RAC2 RAC1 RACG1 User Console

ValidateRACG()

ConformValidateRAC()

Conform

ValidateRAC()

Not Conform

Lunch Investigation()

Conform

ValidateRACCommunication()

Not Conform

Lunch Investigation()

Conform

https://doi.org/10.4236/jcc.2018.612003

M. Zhu et al.

DOI: 10.4236/jcc.2018.612003 40 Journal of Computer and Communications

sentations of RAS model including RAC, RACG, and RAS.
Proposition 1: RAC can be specified as a category RAC with a set of objects

|RAC| and morphisms so that for each RAOi, RAOj ∈ |RAC|, there is a set of
morphisms f: RAC (RAOi, RAOj) mapping the RAOi to RAOj which indicate the
communication between them as f: i RAOi → RAOj。

Proof: All what we need is to prove: 1) the existence of composition and iden-
tity morphism, and 2) prove associativity. Let RAO1, RAO2 and RAO3 be three
RAO such that RAO1 can interact with RAO2, which can interact with RAO3.
Then RAO1 can communicate with RAO3 (indirectly through RAO2), which
means the existence of a composition of morphisms between RAO1 and RAO3.
The identity morphism does exist as a natural representation of internal com-
munications. Let f, g and h be the morphisms such that f: RAO1 → RAO2, g:
RAO2 → RAO3 and h: RAO3 → RAO4. It is clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Proposition 2: The RACG may also be specified as a category RACG with a
set of objects |RACG| and morphisms such that for each RACm, RACn ∈
|RACG|, there is a set of morphisms f: RACG (RACm, RACn) mapping the RACm
to the RACn that indicate the communication between them as f: RACm → RACn.

Proof: All what we need is to prove: 1) the existence of composition and iden-
tity morphism, and 2) prove associativity. Let RAC1, RAC2 and RAC3 be three
RAC such thatRAC1 can interact with RAC2, which can interact with RAC3.
Then RAC1 can communicate with RAC3 (indirectly through RAC2), which
means the existence of a composition of morphisms between RAC1 and RAC3.
The identity morphism does exist as a natural representation of internal com-
munications. Let f, g and h be the morphisms such that f: RAC1 → RAC2, g: RAC2
→ RAC3 and h: RAC3 → RAC4. It is clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Proposition 3: The RAS may also be specified as a category RAS with a set of
objects |RAS| and morphisms such that for each RACGx, RACGy ∈ |RAS|, there
is a set of morphisms f: RAS (RACGx, RACGy) mapping the RACGx to the
RACGy that indicate their communications as f: RACGx → RACGy.

Proof: All what we need is to prove: 1) the existence of composition and iden-
tity morphism, and 2) prove associativity. Let RACG1, RACG2 and RACG3 be
three RACG such that RACG1 can communicate with RACG2, which can inte-
ract with RACG3. Then RACG1 can interact with RACG3 (indirectly through
RACG2), which means the existence of a composition of morphisms between
RACG1 and RACG3. The identity morphism does exist as a natural representa-
tion of internal communications. Let f, g and h be the morphisms such that f:
RACG1 → RACG2, g: RACG2 → RACG3 and h: RACG3 → RACG4. It is clear that h
◦ (g ◦ f) = (h ◦ g) ◦ f.

Figure 5 illustrates the categorical representations and the corresponding
proofs in Proposition 1 - 3.

5. Categorical Representations of Self-Configurations of RAS
Model

Based on the categorical representations of RAS model in Section 3, in this section,

https://doi.org/10.4236/jcc.2018.612003

M. Zhu et al.

DOI: 10.4236/jcc.2018.612003 41 Journal of Computer and Communications

Figure 5. Categorical representations of RAS model.

we build categorical representations of self-configurations of RAS model, and
use xml to specify the categories.

Proposition 4: The configuration of a RAC is a category denoted as CONFIG
(RAC), where objects are RAO and morphisms are connections between those
RAO as CONFIG (RAOi, RAOj) or CONFIG (RAOj, RAOi).

Proof: The proof of Proposition 4 is similar to the proof of Proposition 1,
where the morphism connection in Proposition 4 is similar to the morphism
communication in Proposition 1.

The XML specification of the category CONFIG (RAC) can be described as
follows:

<CATEGORY name = “RAC-Configuration”>
<OBJECT>
<OBJECT name = “RAOi” type = “RAO-Typei”/>
<OBJECT name = “RAOj” type = “RAO-Typej”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Connectionm” type = “Connection-Typem”/>
<FROM-OBJECT name = “RAOi” type = “RAO-Typei”/>
<TO-OBJECT name = “RAOj” type = “RAO-Typej”/>
</MORPHISM>
</CATEGORY>
Proposition 5: The configuration of a RACG is the category denoted as

CONFIG (RACG), where objects are RAC and morphisms are connections be-
tween those RAC as CONFIG (RACi, RACj) or CONFIG (RACj, RACi).

Proof: The proof of Proposition 5 is similar to the proof of Proposition 2,
where the morphism connection in Proposition 5 is similar to the morphism
communication in Proposition 2.

The XML specification of the category CONFIG (RACG) can be described as
follows:

<CATEGORY name = “RACG-Configuration”>
<OBJECT>
<OBJECT name = “RACi” type = “RAC-Typei”/>
<OBJECT name = “RACj” type = “RAC-Typej”/>

RACG1 RACG2

RACG3RACG4

f

g

h

g ◦ f

h ◦ g

Id1 Id2

Id4 Id3

RAC1 RAC2

RAC3RAC4

f

g

h

g ◦ f

h ◦ g

Id1 Id2

Id4 Id3

RAO1 RAO2

RAO3RAO4

f

g

h

g ◦ f

h ◦ g

Id1 Id2

Id4 Id3

Category RAC Category RACG Category RAS

https://doi.org/10.4236/jcc.2018.612003

M. Zhu et al.

DOI: 10.4236/jcc.2018.612003 42 Journal of Computer and Communications

</OBJECT>
<MORPHISM>
<MORPHISM name = “Connectionm” type = “Connection-Typem”/>
<FROM-OBJECT name = “RACi” type = “RAC-Typei”/>
<TO-OBJECT name = “RACj” type = “RAC-Typej”/>
</MORPHISM>
</CATEGORY>
Proposition 6: The configuration of a RAS is a category denoted as CONFIG

(RAS), where objects are RACG and morphisms are the connections between
those RACG as CONFIG (RACGi, RACGj) or CONFIG (RACGj, RACGi).

Proof: The proof of Proposition 6 is similar to the proof of Proposition 3,
where the morphism connection in Proposition 6 is similar to the morphism
communication in Proposition 3.

The XML specification of the category CONFIG (RAS) can be described as
follows:

<CATEGORY name = “RAS-Configuration”>
<OBJECT>
<OBJECT name = “RACGi” type = “RACG-Typei”/>
<OBJECT name = “RACGj” type = “RACG-Typej”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Connectionm” type = “Connection-Typem”/>
<FROM-OBJECT name = “RACGi” type = “RACG-Typei”/>
<TO-OBJECT name = “RACGj” type = “RACG-Typej”/>
<MORPHISM>
</CATEGORY>
As introduced in Section 1, the self-configurations of RAC, RACG, and RAS

follows the work flow illustrated in Figures 2-4. For each work flow, we can
build a category for it, and use XML to specify the corresponding category.

Proposition 7: The self-configuration work flow of RAC is a category denoted
as CONWORKFLOW (RAC), where its objects are messages Validate RAOL,
ValicateRAO, LunchInvestigation, ValidateRAOCommunication, Conform,
NotConform, and the morphisms denote the relationship before between the
occurrences of objects before1: ValidateRAOL → Conform, before2: Validate-
RAOL → NotConform, before3: ValidateRAO → Conform, before4: ValicateRAO
→ NotConform, before3: ValidateRAOCommunication → Conform, before6: Va-
licateRAOCommunication → NotConform, before7: NotConform → LunchIn-
vestigation.

Proof: All what we need is to prove: 1) the existence of composition and iden-
tity morphism, and 2) prove associativity. Let Obj1, Obj2 and Obj3 be three mes-
sages such that Obj1 occurs before Obj2, which occurs before Obj3. Then Obj1
occurs before Obj3 (indirectly through Obj2), which means the existence of a
composition of morphisms between Obj1 and Obj3. The identity morphism does
exist as a natural representation of interactions with occurrence. Let f, g and h be

https://doi.org/10.4236/jcc.2018.612003

M. Zhu et al.

DOI: 10.4236/jcc.2018.612003 43 Journal of Computer and Communications

the morphisms such that f: Obj1 → Obj2, g: Obj2 → Obj2 and h: Obj3 → Obj4. It is
clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f.

The XML specification of the category CONWORKFLOW (RAC) can be de-
scribed as follows:

<CATEGORY name = “Self-Configuration-Work-Flow-RAC”>
<OBJECT>
<OBJECT name = “ValidateRAOL” type = “Work-Flow-Action”/>
<OBJECT name = “ValicateRAO” type = “Work-Flow-Action”/>
<OBJECT name = “LaunchInvestigation” type = “Work-Flow-Action”/>
<OBJECT name = “ValidateRAOCommunication”
type = “Work-Flow-Action”/>
<OBJECT name = “Conform” type = “Work-Flow-Action”/>
<OBJECT name = “NotConform” type = “Work-Flow-Action”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValidateRAOL”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValidateRAOL”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValicateRAO”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValicateRAO”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValidateRAOcommunication”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValidateRAOcommunication”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/>

https://doi.org/10.4236/jcc.2018.612003

M. Zhu et al.

DOI: 10.4236/jcc.2018.612003 44 Journal of Computer and Communications

<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<TO-OBJECT name = “LaunchInvestigation”
type = “Work-Flow-Action”/>
</MORPHISM>
</CATEGORY>
Proposition 8: The self-configuration work flow of RACG is a category de-

noted as CONWORKFLOW (RACG), where its objects are messages Validate-
RAC, ValicateRAOL, LunchInvestigation, ValidateRAOLCommunication, Con-
form, NotConform, and the morphisms denote the relationship before between
the occurrences of objects before1: ValidateRAC → Conform, before2: Validate-
RAC → NotConform, before3: ValicateRAOL → Conform, before4: ValicateRAOL
→ NotConform, before3: ValidateRAOLCommunication → Conform, before6:
ValidateRAOLCommunication → NotConform, before7: NotConform → Lun-
chInvestigation.

Proof: The proof of Proposition 8 is omitted, as it is similar to the proof of
Proposition 7.

The XML specification of the category CONWORKFLOW (RACG) can be
described as follows:

<CATEGORY name = “Self-Configuration-Work-Flow-RACG”>
<OBJECT>
<OBJECT name = “ValidateRAC” type = “Work-Flow-Action”/>
<OBJECT name = “ValicateRAOL” type = “Work-Flow-Action”/>
<OBJECT name = “LaunchInvestigation” type = “Work-Flow-Action”/>
<OBJECT name = “ValidateRAOLCommunication”
type = “Work-Flow-Action”/>
<OBJECT name = “Conform” type = “Work-Flow-Action”/>
<OBJECT name = “NotConform” type = “Work-Flow-Action”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValidateRAC”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValidateRAC”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValicateRAOL”
type = “Work-Flow-Action”/>

https://doi.org/10.4236/jcc.2018.612003

M. Zhu et al.

DOI: 10.4236/jcc.2018.612003 45 Journal of Computer and Communications

<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValicateRAOL”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValidateRAOLCommunication”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValidateRAOLCommunication”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<TO-OBJECT name = “LaunchInvestigation”
type = “Work-Flow-Action”/>
</MORPHISM>
</CATEGORY>
Proposition 9: The self-configuration work flow of RAS is a category denoted

as CONWORKFLOW(RAS), where its objects are messages ValidateRACG, Va-
licateRAC, LunchInvestigation, ValidateRACCommunication, Conform, Not-
Conform, and the morphisms denote the relationship before between the occur-
rences of objects before1: ValidateRACG → Conform, before2: ValidateRACG →
NotConform, before3: ValidateRAC → Conform, before4: ValicateRAC → Not-
Conform, before3: ValidateRACCommunication → Conform, before6: Validate-
RACCommunication → NotConform, before7: NotConform → LunchInvestiga-
tion.

Proof: The proof of Proposition 9 is omitted, as it is similar to the proof of
Proposition 7.

The XML specification of the category CONWORKFLOW (RACG) can be
described as follows:

<CATEGORY name = “Self-Configuration-Work-Flow-RACG”>
<OBJECT>
<OBJECT name = “ValidateRACG” type = “Work-Flow-Action”/>
<OBJECT name = “ValicateRAC” type = “Work-Flow-Action”/>
<OBJECT name = “LaunchInvestigation” type = “Work-Flow-Action”/>
<OBJECT name = “ValidateRACCommunication”
type = “Work-Flow-Action”/>
<OBJECT name = “Conform” type = “Work-Flow-Action”/>

https://doi.org/10.4236/jcc.2018.612003

M. Zhu et al.

DOI: 10.4236/jcc.2018.612003 46 Journal of Computer and Communications

<OBJECT name = “NotConform” type = “Work-Flow-Action”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValidateRACG”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValidateRACG”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValicateRAC”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValicateRAC”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValidateRACCommunication”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “ValidateRACCommunication”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type = “Preorder”/>
<FROM-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<TO-OBJECT name = “LaunchInvestigation”
type = “Work-Flow-Action”/>
</MORPHISM>
</CATEGORY>

6. Conclusion

Due to the difficulties of test and error-finding in real-time reactive systems, in
this paper, we proposed an categorical approach to formally specify reactive au-

https://doi.org/10.4236/jcc.2018.612003

M. Zhu et al.

DOI: 10.4236/jcc.2018.612003 47 Journal of Computer and Communications

tonomic systems and the self-configuration work flows, which can help to check
for particular types of errors and as inputs for model checking. Moreover, we
used XML to specify the constructed categorical models, which can help to build
the foundation of reactive autonomic systems. By adopting the categorical ap-
proach, the construction of reactive autonomic systems and the self-configuration
work flows can be specified, proved and composed formally with preserving
their properties. In future, we will work toward building a categorical framework
to verify the correctness of the construction of reactive autonomic systems,
based on the proposed categorical specification.

Acknowledgements

We thank the Editor and the referee for their comments. Research of M. Zhu
and J. Li is funded by the Shandong University of Technology grants 4041-416069
and 4041-417010. The support is greatly appreciated.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Carvalho, G., Cavalcanti, A. and Sampaio, A. (2016) Modelling Timed Reactive

Systems from Natural-Language Requirements. Formal Aspects of Computing, 5,
1-41.

[2] Kuang, H., Ormandjieva, O., Klasa, S. and Bentahar, J. (2010) A Formal Specifica-
tion of Fault-Tolerance in Prospecting Asteroid Mission with Reactive Autonomie
Systems Framework. Proceedings of the 21st IEEE International Conference on Ap-
plication-Specific Systems, Architectures and Processors, Rennes, 7-9 July 2010,
99-106. https://doi.org/10.1109/ASAP.2010.5540769

[3] Zhu, M., Grogono, P. and Ormandjieva, O. (2017) Exploring Relationships between
Syntax and Semantics of a Process-Oriented Language by Category Theory. Pro-
ceedings of the 8th International Conference on Ambient Systems, Networks and
Technologies, Madeira, 16-19 May 2017, 241-248.
https://doi.org/10.1016/j.procs.2017.05.342

[4] Zhu, M., Li, J., Fan, G.D. and Zhao, K.S. (2018) Modeling and Verification of Re-
sponse Time of QoS-Aware Web Service Composition by Timed CSP. Proceedings
of the 9th International Conference on Emerging Ubiquitous Systems and Pervasive
Networks, Leuven, 5-8 November 2018, 48-55.
https://doi.org/10.1016/j.procs.2018.10.148

[5] Seshia, S.A. (2007) Autonomic Reactive Systems via Online Learning. Proceedings
of the 4th International Conference on Autonomic Computing, Florida, 11-15 June
2007, 30-39. https://doi.org/10.1109/ICAC.2007.10

[6] Litoiu, M., Solomon, B., Ionescu, D. and Mihaescu, M. (2007) A Real-Time Adap-
tive Control of Autonomic Computing Environments. Proceedings of the Confe-
rence of the Centre for Advanced Studies on Collaborative Research, Richmond
Hill, 22-25 October 2007, 124-136.

[7] Winskel, G. and Nielsen, M. (1995) Models for Concurrency. Handbook of Logic in

https://doi.org/10.4236/jcc.2018.612003
https://doi.org/10.1109/ASAP.2010.5540769
https://doi.org/10.1016/j.procs.2017.05.342
https://doi.org/10.1016/j.procs.2018.10.148
https://doi.org/10.1109/ICAC.2007.10

M. Zhu et al.

DOI: 10.4236/jcc.2018.612003 48 Journal of Computer and Communications

Computer Science, 4, 1-148.

[8] Nielsen, M., Sassone, V. and Winskel, G. (1996) Models for Concurrency: Towards
a Classification. Theoretical Computer Science, 170, 297-348.
https://doi.org/10.1016/S0304-3975(96)80710-9

[9] Hildebrandt, T.T. (2000) Categorical Models for Fairness: Completion vs Delay.
Proceedings of the First Irish Conference on the Mathematical Foundations of
Computer Science and Information Technology, Cork, 20-21 July 2000, 188.

[10] Mackworth, A.K. and Zhang, Y. (2003) A Formal Approach to Agent Design: Ano-
verview of Constraint-Based Agents. Constraints, 8, 229-242.
https://doi.org/10.1023/A:1025697810124

[11] Enguix, G.B. and Lopez, M.D.J. (2007) Agent-Environment Interaction in a Mul-
ti-Agent System: A Formal Model. Proceedings of the GECCO Conference on Ge-
netic and Evolutionary Computation, London, 7-11 July 2007, 2607-2612.

[12] Goubault, E. and Mimram, S. (2010) Formal Relationships between Geometrical
and Classical Models for Concurrency. Proceedings of the Workshop on Geometric
and Topological Methods in Computer Science, Denmark, 11-15 January 2010,
77-109. https://doi.org/10.1016/j.entcs.2012.05.007

[13] Ormandjieva, O. and Quiroz, J. (2008) Methodology for Automatic Generation of
Exhaustive Behavioral Models in Reactive Autonomic Systems. Proceedings of the
International Conference on Software Engineering Theory and Practice, Florid,
7-10 July 2008, 95-104.

[14] Quiroz, J. (2007) Methodology for Automatic Generation of Behavioral Specifica-
tion in Reactive Autonomic Systems. Master’s Thesis, Concordia University, Mon-
treal.

[15] Barr, M. and Wells, C. (2012) Category Theory for Computing Science. Pren-
tice-Hall, Upper Saddle River.

https://doi.org/10.4236/jcc.2018.612003
https://doi.org/10.1016/S0304-3975(96)80710-9
https://doi.org/10.1023/A:1025697810124
https://doi.org/10.1016/j.entcs.2012.05.007

	Representation of Categorical Specification of Self-Configurations in Reactive Autonomic Systems Framework
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	2.1. Real-Time Reactive Systems
	2.2. Formal Methods

	3. Background
	3.1. Reactive Autonomic Systems (RAS)
	3.2. Self-Configuration in Reactive Autonomic Systems
	3.3. Category Theory

	4. Categorical Representations of RAS Model
	5. Categorical Representations of Self-Configurations of RAS Model
	6. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

