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Abstract 

Process-oriented design and implementation of concurrent systems has im-
portant benefits. However, the inherent complexity of concurrent processes’ 
communication imposes challenges such as verifying consistency between the 
process-oriented design and implementation of a concurrent system. To deal 
with such a challenge, we use Galois connections, Failures and Category 
Theory to construct a formal framework for designing, implementing, ana-
lyzing and verifying consistency of concurrent systems. For the purpose of il-
lustrating the framework, a running concurrent system is designed by Com-
municating Sequential Processes, implemented by a process-oriented pro-
gramming language Erasmus. 
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1. Introduction 

A concurrent system involves several executing components. Such a system 
usually allows carrying out multiple tasks at the same time, which can speed up 
the computational work of software substantially. As traditional means to con-
currency conflict with assumptions of human intuition for sequential program-
ming, process-oriented approach is a necessary concept for designing and im-
plementing software systems [1]. This approach is founded on process algebra, 
which considers a concurrent system as a set of interacting processes with messag-
es passing through channels [1] [2]. It has been considered that process-oriented 
design and implementation could provide systems with known safety properties 
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to prevent deadlock, livelock, process starvation [1]. Concurrent systems devel-
oped by process-oriented approach are able to be efficiently distributed across 
multiple processors and clusters of machines [2]. 

However, design and implementation are usually at different levels of abstrac-
tion in Software development process. It is challenging to incorporate knowledge 
and experience to control the consistency between these phases in developing 
concurrent systems [3]. Especially, when many processes communicate simulta-
neously, a concurrent system may exhibit a large number of different behaviors. 
Inconsistencies arising would bring errors to the production of concurrent sys-
tems [4], which would be fatal to the systems in areas with non-tolerance of fail-
ure. To deal with such a challenge, verification plays a crucial role in reducing, 
or even preventing, the introduction of errors in design and implementation of a 
concurrent system [5]. Research [6] [7] used category theory, dataflow and 
Traces in Communicating Sequential Processes (CSP) to explore approaches that 
may address the challenge. This paper is based on Category Theory, Galois con-
nections and Failures in CSP. The aim of this paper is to provide a categorical 
framework for formally verifying consistency of communications between 
process-oriented design and implementation of concurrent systems. 

The rest of the paper is organized as follows. Section 2 provides some back-
ground and related work on the process algebra CSP, the process-oriented pro-
gramming language Erasmus, Galois connections in abstract interpretation, and 
category theory. In this paper, CSP is used to design and analyze concurrent sys-
tems; Erasmus is a CSP-based process-oriented programming language for im-
plementing concurrent systems; Galois connections are used to build abstract 
semantics from concurrent systems, and category theory provides the founda-
tion for verification. In Section 3, the categorical framework is proposed to for-
mally design and implement concurrent systems, and verify consistency of 
communications between design and implementation. Specifically, the frame-
work is illustrated on a running example from Section 4 to Section 10. Section 11 
concludes the paper and suggests directions for future research work. 

2. Background and Related Work 

In this section, background and work related to our research are introduced. 

2.1. Communicating Sequential Processes 

Process algebra has been developed to model concurrent systems by describing 
algebras of communicating processes [8]. CSP is a process algebra that formally 
models concurrent systems by events [9] [10], which might alleviate the problem 
of state-space explosion caused by modeling states [11]. CSP has been widely 
used to specify, design and implement concurrent systems [12]. In CSP, a 
process is defined as (alphabet, failures, divergences) [9] [10]: 
• alphabet: A set of all events a process may engage in, 
• failures: A failure (s, X) means, after engaged in a trace of events s, if any 
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event from the set of events X occurs, the process would stop, 
• divergences: A divergence (s, D) denotes, after engaged in a trace of events s, 

if any event from the set of events D occurs, the process would become chaos. 
Processes can be assembled together as a system, where they can interact with 

each other through channels. Such interactions are called communications, 
which are synchronized. If one process needs to communicate to another 
process, a channel is required between them to receive the input of messages and 
pass the output of messages. To describe the semantics of CSP, several rules are 
defined for calculating failures and divergences of a single process (P), a se-
quences of processes (P; Q), determinism (P □ Q), nondeterminism (P Π Q) and 
communications (P || Q) [9] [10], where P and Q are processes. 

2.2. Erasmus 

Process-oriented programming is predicted to be the next programming para-
digm [1] [13] [14]. The basis of process-oriented programming is process alge-
bra [2]. Erasmus is one of process-oriented programming languages, which is 
based on the idea of CSP but with some differences [13] [15] [16]. An Erasmus 
program consists of cells, processes, ports, protocols and channels. A cell, con-
taining a collection of one or more processes or cells, provides the structuring 
mechanism for an Erasmus program. A process is a self-contained entity which 
performs computations, and communicates with other processes through its 
ports. A port, which is of a type of protocol, usually serves as an interface of a 
process for sending and receiving messages. A protocol specifies the type and the 
orderings of messages that can be sent and received by ports of the type of this 
protocol. A channel, which is of a type of protocol, must be built between two 
ports for two processes to communicate. Erasmus also offers operations for de-
terministic choices and nondeterministic choices by using keywords select and 
case respectively. 

In Erasmus, communication is as important as method invocation in ob-
ject-oriented languages. The requirements of communications between two 
processes p1 and p2 are:  
• p1 must have a port, π1, which is of protocol t1, 
• p2 must have a port, π2, which is of protocol t2, 
• Each protocol may contain several different types of requests, which specifies 

the types of requests the port can send or receive, 
• There exists a channel, x, which is defined with either protocol t1 or t2. A 

channel has two ends, one is channel in for receiving incoming request and 
the other is channel out for sending outgoing request, 

• Requests are sent by a process through its client port (declared with “−”), 
then received at channel in of a channel and sent out by channel out of the 
channel, and finally received by the other process at the server port (declared 
with “+”),  

• Given a client port π1 of protocol t1 and a server port π2 of protocol t2, if π1 
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and π2 can communicate, t2 must satisfy t1. Here, t2 satisfies t1 is defined as 
that the set of types of requests of t1 must be a subset of the set of types of 
requests of t2. 

Some research is proposed to study communications in Erasmus, which in-
cludes constructing a fair protocol that allows arbitrary, nondeterministic com-
munication between processes [17], describing an alternative construct that al-
lows a process to nondeterministcally choose between possible communications 
on several channels [18], and building a static analyzer to detect communication 
errors between processes [19]. In this paper, we are exploring an approach to ve-
rify consistency of communications between design and implementation of 
concurrent systems developed by Erasmus. 

2.3. Galois Connection in Abstraction Interpretation 

Abstraction interpretation is a method for gathering information about the be-
havior of the program from abstract semantics of the program instead of con-
crete semantics of the program [20]. It uses Galois connections to build rela-
tionships between concrete and abstract semantics with providing sound an-
swers to questions about the behaviors of the programs [21]. Specifically, Galois 
connection is a relation between two partially ordered sets in order theory [20]. 
Given 〈C, ⊑〉 and 〈A, ≼〉 are two partially ordered sets, and two monotone func-
tions α: C → A and γ: A → C. Then (α; γ) is a Galois connection of C and A if and 
only if for all x ∊ A and y ∊ C, α(x) ⊑ y ≡ x ≼ γ(y). 

As concurrent systems usually have a large number of different behaviors, di-
rectly analyzing such systems might be difficult [22]. Using Galois connection in 
abstraction interpretation, the concurrent systems could be simplified as abstract 
models with retaining some of the properties of the systems [22]. For concurrent 
systems developed by Erasmus, Galois connection is exploited to build abstract 
semantics of systems in terms of event order vector [19] [22]. In our research, 
Galois connection is used to construct abstract implementation. 

2.4. Category Theory 

Due to its abstractness and generality, category theory has led to its use as a 
conceptual framework in many areas of computer science [23] and software en-
gineering [24]. It is suggested that category theory can be helpful towards disco-
vering and verifying connections in different areas, while preserving structures 
in those areas [25]. In software engineering, category theory is proposed as an 
approach to formalizing refinement from design to implementation that are at 
different level of abstraction [24] [26]. Specifically, for modeling concurrency, 
category theory is used to model, analyze, and compare Transition System, Trace 
Language, Event Structure, Petri nets, and other classical models of concurrency 
[27] [28] [29]. Besides, category theory is applied to study relationships between 
geometrical models for concurrency and classical models [30]. Furthermore, a 
categorical framework RASF has been built to formally model and verify speci-
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fication, design and implementation of Reactive Autonomic System (RAS) [31]. 
As there is no such kind of framework for process-oriented design and imple-
mentation, we propose the categorical framework that is inspired from the con-
cept of RASF. To understand this paper, some of the categorical constructs are 
listed below: 
• A category consists of objects and morphisms. A morphism f: A → B has ob-

ject A as its domain and object B as its codomain, respectively. If there are 
morphisms f: A → B and g: B → C, then there is also a morphism g ◦ f: A → C 
called their composition. Composition is associative: (h ◦ g) ◦ f = h ◦ (g ◦ f). 
Every object X has an identity morphism IdX. For every morphism f: A → B, 
IdB ◦ f = f = f ◦ IdA. 

• A functor F: C → D maps each object of category C onto a corresponding ob-
ject of category D, and maps each morphism of category C onto a corres-
ponding morphism of category D, with preserving structure and composi-
tion. 

3. The Categorical Framework 

In this research, we propose the categorical framework to verify the consistency 
of communications between design and implementation (see Figure 1). 

To build the framework, the necessary steps are listed below: 
• Designing: design concurrent systems by CSP, and analyze processes and 

communications by failures in CSP. 
• Implementing: implement concurrent systems by Erasmus with refining the 

design, 
• Abstracting: abstract processes and communications out of implementation 

with Galois Connection, and analyze them by failures in Erasmus, 
• Categorizing Design: construct categorical models of design with preserving 

structures of communications, 
• Categorizing Abstraction of Implementation: construct categorical models of 

abstraction of implementation with preserving structures of communica-
tions, and 

• Verifying: construct functors to verify categorical models from design against 
categorical models from implementation. 

To present our research activities, a vending machine example is created to il-
lustrate the framework. 

4. Specification of a Vending Machine Example 

In this example, a person orders a drink from a vending machine. The vending 
machine can offer coke and pepsi only, and operates according to the following 
process: (1). it accepts a one-dollar coin from the person, and (2). it accepts a 
choice of drink from the person with dispensing the drink. The vending machine 
can repeat this process indefinitely. The person can use the vending machine 
only once to order coke or pepsi. This example is illustrated in Figure 2. 
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Figure 1. The categorical framework. 
 

 
Figure 2. The vending machine example. 

 
In the following sections, we verify the design and implementation of this 

example according to the steps specified in the proposed framework. 

5. Designing 

This section introduces how to design and analyze processes and communica-
tions from the specification of the example. Firstly, the approach to describing 
processes and communications in CSP is described. Secondly, details related to 
modeling and analyzing the example are presented. 

5.1. Describing Processes and Communications 

In CSP, a process can be represented as (alphabet, failures, divergences), along 
with several rules for calculating failures and divergences [9] [10]. In our re-
search, processes are assumed not to become chaos, so neither divergences nor 
chaos is discussed. A process in design is described as (alphabet, failures). 
Processes can communicate with each other in parallel operation ||. To generate 
and analyze failures, the following rules are used for our research based on CSP. 

1) Let P be a process, and let a be an event occurring before P. There is a → P 
with the failures FLS(a → P) = {(〈〉, X)|a ∉ X} ∪ {(〈a〉⌒s, Y)|(s, Y) ∊ FLS(P)}. It 
means that if event a doesn’t occur first, any other event in the set of events X 
would cause a → P stops; if event a occurs first, and then the failures FLS(a → P) 
depend on FLS(P) = {(s, Y)}. Function FLS() calculates the failures of a 
processes. This rule is as same as the corresponding rule in CSP [9]. FLS() 
represent the set of failures of a process. 

2) Let P and Q be two processes, and let P execute before Q. There is P; Q with 
the failures FLS(P; Q) = {(s, X)|(s, X) ∊ FLS(P)} ∪ {(ss⌒t, Y)|ss ∊ STRCS(P) ⋀ (t, 
Y) ∊ FLS(Q)}. This rule is derived from FLS(a → P). It means that the failures 
FLS(P; Q) become FLS(P) first, as P executes before Q; after P accomplishing its 
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execution with trace ss successfully, the failures FLS(P; Q) depend on FLS(Q). 
STRCS(P) represents a set of all the longest traces of events the process P en-
gaged in when it finished execution successfully. 

3) Let P be a process iterating n times in a loop, and let Pi represent P in the 
ith iteration. There is P1; …; Pn with the failures FLS(P1; …; Pn) = {(s, X) | (s, X) ∊ 
FLS(P)} ∪ {(s1⌒s, X)|s1 ∊ STRCS(P) ⋀ (s, X) ∊ FLS(P)} ∪ … ∪ {(s1⌒s2⌒…⌒sn−1⌒s, 
X)|si ∊ STRCS(P) 〈〉 1 ≤ i ≤ n − 1 ⋀ (s, X) ∊ FLS(P)}. This rule is derived from 
FLS(P; Q). It means that if P iterates once, the failures FLS(P1; …; Pn) become 
FLS(P); if P iterates twice, P accomplishes its execution in the first iteration suc-
cessfully with trace s1, and then the failures FLS(P1; …; Pn) depends on the fail-
ures FLS(P) in the second iteration; if P iterates n times, and P accomplishes its 
execution from 1st iteration to (n − 1)th iteration successfully with trace 
s1⌒s2⌒…⌒sn−1, and then the failures FLS(P1; …; Pn) depend on the failures FLS(P) 
in the nth iteration. 

4) Let P and Q be two processes executing nondeterministically. There is P Π 

Q with the failures FLS(P Π Q) = FLS(P) ∪ FLS(Q). Due to the nondeterminism, 
even though the event offered by environment satisfies P or Q, P or Q still may 
not execute. Thus, FLS(P Π Q) depends on either FLS(P) or FLS(Q), which is as 
same as the corresponding rule in CSP [9]. 

5) Let P and Q be two processes executing deterministically. There is P □ Q 
with the failures FLS(P □ Q) = {(s, X)|(s = 〈〉 ⋀ (s, X) ∊ FLS(P) ∩ FLS(Q)) ⋁ (s ≠ 
〈〉 ⋀ (s, X) ∊ FLS(P) ∪ FLS(Q))}. When both processes P and Q wait for the oc-
currence of the first event, FLS(P □ Q) would become the failures of both P and 
Q, FLS(P) ∩ FLS(Q), due to the determinism. When the trace s occurs, it indi-
cates either P or Q executes, so FLS(P □ Q) would become FLS(P) ∪ FLS(Q)). 
This rule differs from CSP, because we are not using divergences [9]. 

6) Let P and Q be two processes communicating with each other. There is P || 
Q with the failures FLS(P || Q) = {(s, X ∪ Y)|((s, X) ∊ FLS(P) ⋁ (s, Y) ∊ FLS(Q)) 
⋀ (s ∊ TRCS(P) ⋀ s ∊ TRCS(Q))}. In this research, two process can communicate 
only when the same event occurs simultaneously in both processes. If there is a 
failure of P || Q, the failure would be from either FLS(P) or FLS(Q) with the oc-
currence of trace s in both processes P and Q. TRCS() is the set of all traces 
which a process may engage in. 

5.2. Modeling and Analyzing the Example 

For the example, vending machine and person can be modeled as processes ven-
dingMachine and person respectively. Both processes communicate two mes-
sages: one is coin, the other is coke or pepsi. From the perspective of person, the 
choice of person can be modeled as a nondeterministic choice, as it depends on 
person only. However, from the perspective of vendingMachine, offering the 
kind of drink can be modeled as a deterministic choice, since the kind of drink 
offered depends on both person and vendingMachine. Process vendingMachine 
can run iteratively to offer drinks. As specified in the textual description of the 
example, process vendingMachine can offer coke or pepsi repeatedly, while 
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process person can order coke or pepsi only once. 
In the design of the example, let APHB() represent the alphabet of a process, 

let ps and vm denote process person and process vendingMachine respectively, 
let X indicate the successful termination of a process, let svm describe process 
vendingMachine executes only once, let svmi represent the process vendingMa-
chine in the ith iteration of a loop, and let communications between processes 
vendingMachine and person be modeled as pskvm. By applying rules in Section 
5.1, processes and communications of the example in the design are modeled 
and analyzed as follows. 

ps =coin→ (coke →Π pepsi →) 
APHB(ps) ={coin,coke,pepsi} 
FLS(ps) ={(〈〉,X) | X⊆ {coke,pepsi}},{(〈coin〉,X) | X⊆ {coin,coke,pepsi}}} 
svm =coin→(coke→□ pepsi →) 
vm =svm1;svm2;...;svmn−1;svmn 
APHB(vm) =APHB(svm) = {coin,coke,pepsi} 
FLS(svm) ={{(〈〉,X) | X⊆ {coke,pepsi}},{(〈coin〉,X) | X⊆ {coin}}} 
STRCS(svm) ={〈coin,coke〉,〈coin,pepsi〉} 
FLS(vm) =FLS(svm1;...;svmn) 
       ={(s,X) | (s,X) ∊ FLS(svm)}∪{ (s1⌒s,X) | s1∊ {〈coin,coke〉,〈coin,pepsi〉} 
        ⋀ (s,X) ∊ FLS(svm)} 
        ∪···∪ {(s1⌒...⌒sn−1⌒s,X) | si∊ {〈coin,coke〉,〈coin,pepsi〉} 
        ⋀1 ≤i≤n − 1 ⋀ (s,X) ∊ FLS(svm)} 
APHB(pskvm) = {coin,coke,pepsi} 
FLS(pskvm) ={{(〈〉,X∪Y )|X⊆ {coke,pepsi} ⋁Y⊆ {coke,pepsi}}, 
             {(〈coin〉,X∪Y )|X⊆ {coin,coke,pepsi} ⋁Y⊆ {coin}}, 
             {(〈coin,coke〉,X∪Y )|X⊆ {} ⋁Y⊆ {coke,pepsi}}, 
             {(〈coin,pepsi〉,X∪Y )|X⊆ {} ⋁Y⊆ {coke,pepsi}}} 

6. Implementing 

This section introduces how to implement and analyze processes and commu-
nications by Erasmus based on the design. In the implementation, processes 
vendingMachine and person are capable to do more than those of design. Spe-
cifically, vendingMachine/person not only can offer/order coke or pepsi, but also 
can provide/get tea that is not included in the design. The Erasmus code of the 
implementation is as follows. 

// define a protocol to accept events 
the order = protocol {coin|coke|pepsi|tea} 
// set-up a port to send an order 
person = process makeOrder:-order { 
   makeOrder.coin; 
   case 
// make nondeterministic choices 
{ 
 || makeOrder.coke 
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 || makeOrder.pepsi 
 || makeOrder.tea 
} 
} 
// set-up a port to receive orders 
vendingMachine = process getOrder: + order { 
loop // set-up indefinite recursion 
{ 
 scrln("Welcome to use the vending machine\n"); 
 scrln("We serve coke, pepsi or tea at one dollar\n"); 
 scrln("Please insert the one-dollar coin\n"); 
 getOrder.coin; 
 scrln("The coin is accepted\n"); 
 select 
 // make deterministic choices 
{ 
  || getOrder.coke; scrln("dispense_coke\n") 
  || getOrder.pepsi; scrln("dispense_pepsi\n") 
  || getOrder.tea; scrln("dispense_pepsi\n") 
 } 
 scrln("Bye\n"); 
} 
} 
// encapsulate processes into a cell 
system = cell { 
// construct a channel to connect ports 
   chnl: order; 
   person(chnl); 
   vendingMachine(chnl) 
} 
The structure of the implementation of the example is illustrated in Figure 3. 
In this implementation, there are two processes person and vendingMachine. 

Process person can send messages like coin, coke, pepsi or tea to port make Or-
der, then the messages are passed through channel chnl, and process vending-
Machine receives the messages from the port get Order. In these messages, tea is 
not specified in the design. To get the drink, process person sends out coin first, 
and then executes case statement to make a nondeterministic choice of drink, 
coke, pepsi or tea. Process vendingMachine not only contains necessary infor-
mation for communications, but also has some “welcoming” messages not speci-
fied in the design. For such “welcoming” messages, person doesn’t need to cor-
respond to. Once process vendingMachine receives coin, it will execute select 
statement to make a deterministic choice to accept coke, pepsi or tea from 
process person, and then print out the corresponding name of the drink to the 
standard output. 

https://doi.org/10.4236/jcc.2018.611022


M. Zhu, J. Li 
 

 

DOI: 10.4236/jcc.2018.611022 236 Journal of Computer and Communications 

 

 
Figure 3. The implemented vending machine. 

7. Abstracting 

This section introduces how to use Galois connection to abstract processes and 
communications from the implementation, and to analyze processes and com-
munications by failures in Erasmus. Firstly, abstraction rules based on Galois 
connection are introduced. Secondly, abstracted implementation of the example 
is presented. Thirdly, rules for generating and analyzing failures in abstracted 
implementation are defined. Fourthly, we model and analyze failures in the ab-
stracted implementation of the Example. 

7.1. Abstraction Rules 

As we are interested only in communications between processes, code not re-
lated to the communications is necessarily to be ruled out, and code relevant to 
the communications needs to be retained. In this paper, Galois Connection is 
used for abstraction. 

Implementation is considered as concrete domain, and abstraction of imple-
mentation is deemed as abstract domain. There are partial-order relationships, 
“execute before or simultaneously”, between statements in concrete domain and 
between statements in abstract domain respectively. There are two partial-order 
sets 〈ConcreteStatements, ⊑〉 and 〈Ab-stractStatements, ≼〉, where ⊑ and ≼ 
represent the “execute before or simultaneously” relationship between state-
ments in concrete domain and abstract domain respectively. 

According to Galois Connection, after abstracting implementation, relation-
ships between statements in abstract domain must be able to be mapped to cor-
responding relationships between statements in concrete domain, and vice versa. 
Thus, there are two monotone mappings, namely α: ConcreteStatements → Ab-
stractStatements, and γ: AbstractStatements → ConcreteStatements. α and γ 
mappings involve communication-related statements only. There are 1). for any 
x, y ∊ ConcreteStatements, if x ⊑ y, then α(x) ≼ α(y); 2). for any a, b ∊ Ab-
stractStatements, if a ≼ b, then γ(a) ⊑ γ(b), and; 3). for all x ∊ ConcreteState-
ments and b ∊ AbstractStatements, a(x) ≼ b ≡ a ⊑ γ(b). 

The details of mapping rules for α and γ are specified in Table 1 and Table 2 
respectively.  

In Table 1 and Table 2, C represents statements related to communications; 
C1; C2 means C1 executes before C2; |ai| Ci (1 ≤ i ≤ n) in select indicates that if 
condition ai is true, then Ci will execute (sometimes, condition ai is not necessar-
ily provided. If Ci is satisfied in the choice, it will be executed); || is the delimiter 
between choices in select or case in concrete statements, while | is the delimiter 
between choices in select or case in abstract statements. 
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Table 1. Mapping rules for α. 

Concrete Statements Abstract Statements 

C 
C1;C2 

select {| a1| C1··· | an| Cn } 
case {|| C1··· || Cn } 

loop {C} 

C 
C1;C2 

select {a1;C1| ··· | an;Cn} 
case {C1| ··· | Cn} 

loop {C} 

 
Table 2. Mapping rules for α. 

Abstract Statements Concrete Statements 

C 
C1;C2 

select {C1 |···|Cn } 
case {C1| ··· | Cn} 

loop {C} 

C 
C1;C2 

select {||C1||···||Cn} 
case {|| C1··· || Cn } 

loop {C} 

7.2. Abstracting the Implementation of the Example 

By following the mapping rules of abstraction, the implementation of the vend-
ing machine example is abstracted as follows. 

person =//process person 
makeOrder.coin;//insert a coin 
case{//nondeterministic choices 
makeOrder.coke 
|makeOrder.pepsi 
|makeOrder.tea 
} 
vendingMachine =//process vendingMachine 
loop{//run into a loop 
getOrder.coin;//get a coin 
select{//deterministic choices 
getOrder.coke 
|getOrder.pepsi 
|makeOrder.tea 
} 
} 
In this example, implementation is considered as concrete domain, and ab-

straction is considered as abstract domain. The relationships “execute before or 
simultaneously” between statements in abstraction are maintained in imple-
mentation, and vice versa. The details of mappings for the example are shown in 
Figure 4. 

7.3. Describing Processes and Communications 

Erasmus is used to implement concurrent systems in this research. Processes 
and communications in design can be implemented by processes, ports, chan-
nels and communications in Erasmus. A process in Erasmus usually has one or  
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Figure 4. Mappings between implementation and abstraction. 

 
more ports for communications, which differs from the process in CSP. A set of 
all messages a port can send or receive is considered as the alphabetport. A set of 
messages of all ports of a process is deemed as the alphabetprocess = {alphabetport1 
∪∙∙∙ ∪ alphabetportn}. To model implementation, a process is represented as {(al-
phabetport1, failuresport1), …, (alphabetportn, failuresportn)}, and a port can be mod-
eled as (alphabetport, failuresport). Semantics of failures in Erasmus are similar to 
those of CSP, while the process in CSP is replaced by port in Erasmus. A failure 
(s, X) in Erasmus means, after engaged in a trace of events s, if any event from 
the set of events X occurs, the port would stop. 

To model and analyze the abstraction of implementation, let FLS() stand for 
generating a set of failures from an Erasmus statement, let APHB() represent the 
alphabet of a port, let C be an Erasmus statement related to communications, let 
STRCS() represent all the longest traces of events the statement engaged in when 
it finished execution successfully, and let traces() denote a set of traces of events 
the statement may produce. A statement C may be a simple statement or com-
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pound statement (see rules below). Based on the rules in section 5.1 and Eras-
mus, the rules for generating and analyzing failures in abstraction of implemen-
tation are defined as follows. 

1) Let P be a process, let p be a port of P, and let m be the first message that 
will be sent/received through prot p. The message can be represented P.p.m. 
P.p.m is a simple statement. If port p is unique in the system, P.p.m can be ab-
breviated as p.m. The failures of port p of process P for sending/receiving mes-
sage m are FLS(P.p.m) = {(〈〉, X)|X ⊆ (APHB(p) − m)}. It means any event oc-
curs on port p other than message m, p stops working. 

2) Let C1 and C2 be two statements, and let C1 execute before C2. There is C1; 
C2, which is a compound statement with the failures FLS(C1; C2) = {(s, X)|(s, X) 
∊ FLS(C1)} ∪ {(ss⌒t, Y)|ss ∊ STRCS(C1) ⋀ (t, Y) ∊ FLS(C2)}. It means that the 
failures FLS(C1; C2) become FLS(C1) first, as C1 executes before C2. after C1 ac-
complishing its execution with trace ss successfully, the failures FLS(C1; C2) de-
pend on FLS(C2). 

3) Let C be a statement iterating n times in a loop, and let Ci represent the ith 
iteration of a loop of C. There is loop{C} = {C1; C2; ∙∙∙; Cn−1; Cn}, which is a com-
pound statement with the failures FLS(loop{C}) = {(s, X)|(s, X) ∊ FLS(C)} ∪ 
{(s1⌒s, X)|s1 ∊ STRCS(C) ⋀ (s, X) ∊ FLS(C)} ∪ ∙∙∙ ∪ {(s1⌒s2⌒∙∙∙⌒sn−1⌒sn, X)|si ∊ 
STRCS(C) ⋀ 1 ≤ i ≤ n − 1 ⋀ (s, X) ∊ (FLS(C))}. It means that if C iterates once, 
the failures FLS(loop{C}) become FLS(C); if C iterates twice, and if the execution 
of the first iteration is accomplished successfully with trace s1, the failures 
FLS(loop{C}) depends on the failures FLS(C) in the second iteration; if C iterates 
n times, and if the execution from 1st iteration to (n − 1)th iteration successfully 
with trace s1⌒s2⌒∙∙∙⌒sn−1, the failures FLS(loop{C}) depend on the failures 
FLS(C) in the nth iteration. 

4) Let Ci be a statement where 1 ≤ i ≤ n, and let case represent nondeterminis-
tic choices. There is case {C1|…|Cn}, which is a compound statement with the 
failures FLS(case{C1|…|Cn}) = {(s, X)|(s, X) ∊ FLS(C1) ∪ … ∪ FLS(Cn)}. This rule 
is derived from the rule 4) in section 5.1 and Erasmus. It means that 
FLS(case{C1|…|Cn}) depends on one of FLS(Ci) where 1 ≤ i ≤ n. 

5) Let Ci be a statement where 1≤ i ≤ n, and let select represent deterministic 
choices. There is select{C1|…|Cn}, which is a compound statement with the fail-
ures FLS (select{C1|…|Cn}) = {(s, X)|(s = 〈〉 ⋀ (s, X) ∊ FLS(C1) ∩ … ∩ FLS(Cn)) ⋁ 
(s ≠ 〈〉 ⋀ (s, X) ∊ FLS(C1) ∪ … ∪ FLS(Cn))}. This rule is derived from the rule 5) 
in section 5.1 and Erasmus. It means that if statements Ci wait for the occurrence 
of the first message, FLS(select{C1|∙∙∙|Cn}) would become FLS(C1) ∩ … ∩ FLS(Cn). 
When the trace s occurs, it indicates one of Ci executes, so FLS(select{C1|∙∙∙|Cn}) 
would become FLS(C1) ∪ … ∪ FLS(Cn).  

6) Let C1 be a statement from a process, let C2 be a statement from another 
process, and let C1 and C2 be able to communicate with each other. There is C1 || 
C2, which is a compound statement with the failures FLS(C1 || C2) = {(s, X 
∪Y)|((s, X) ∊ FLS(C1) ⋁ (s, Y) ∊ FLS(C2)) ⋀ (s ∊ TRCS(C1) ⋀ s ∊ TRCS(C2))}. In-
Erasmus, two ports can communicate only when the same message is sent by a 
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port and received by anotherport simultaneously. If there is a failure of C1||C2, 
the failure would be from either FLS(C1) or FLS(C2) with the occurrence of trace 
s in both C1 and C2. TRCS() is the set of all traces that a process may engage in. 

7.4. Maintaining the Integrity of the Specifications 

In the implementation of the example, process person has only one port ma-
keOrder, and process vendingMachine has only one port getOrder. Thus, person 
can be represented as {(APHB(makeOrder), FLS(makeOrder))}, and vending-
Machine can be represented as {(APHB(getOrder), FLS(getOrder))}. Let GetPort 
describe port getPort executes only once, let GetPorti represent port getPort in 
the ith iteration of a loop, and let communications between processes person 
and vendingMachine be modeled as makeOrder||getOrder. By following the 
rules for generating and analyzing failures in Section 7.3, the abstraction of im-
plementation of the example can be modeled and analyzed as follows. 

makeOrder = makeOrder.coin; 
case{makeOrder.coke | makeOrder.pepsi | makeOrder.tea} 
APHB(makeOrder) ={coin,coke,pepsi,tea} 
FLS(makeOrder) ={(〈〉,X) | X⊆ {coke,pepsi,tea}}, 
{(〈coin〉,X) | X⊆ {coin,coke,pepsi,tea}}} 
getOrder = loop{getOrder.coin;select{getOrder.coke | getOrder.pepsi | ge-

tOrder.tea}} 
GetOrder = getOrder.coin;select{getOrder.coke | getOrder.pepsi | getOrd-

er.tea}} 
APHB(getOrder) = APHB(GetOrder) = {coin,coke,pepsi,tea} 
FLS(GetOrder) ={{(〈〉,X) | X⊆ {coke,pepsi,tea}},{(〈coin〉,X) | X⊆ {coin}}} 
STRCS(GetOrder) ={〈coin,coke〉,〈coin,pepsi〉,〈coin,tea〉} 
FLS(getOrder) =FLS(loop{GetOrder}) 
=FLS(GetOrder1;...;GetOrdern) 
={(s,X) | (s,X) ∊ FLS(GetOrder)} 
∪{(s1⌒s,X) | s1∊{〈coin,coke〉,〈coin,pepsi〉,〈coin,tea〉} 
⋀(s,X) ∊ FLS(GetOrder} 
∪…∪{(s1⌒...⌒sn−1⌒s,X) | si∊ {〈coin,coke〉,〈coin,peps〉,〈coin,tea〉} 
⋀1 ≤i≤n−1 ⋀ (s,X) ∊ FLS(GetOrder)} 
APHB(makeOrderkgetOrder) = {coin,coke,pepsi,tea} 
FLS(makeOrderkgetOrder) = 
{{(〈〉,X∪Y )|X⊆ {coke,pepsi,tea} ⋁Y⊆ {coke,pepsi,tea}}, 
{(〈coin〉,X∪Y )|X ⊆{coin,coke,pepsi,tea} ⋁Y⊆ {coin}}, 
{(〈coin,coke〉,X∪Y )|X ⊆ {} ⋁Y⊆ {coke,pepsi,tea}}, 
{(〈coin,pepsi〉,X∪Y )|X ⊆ {} ⋁Y⊆ {coke,pepsi,tea}}, 
{(〈coin,tea〉,X∪Y )|X ⊆ {} ⋁Y⊆ {coke,pepsi,tea}}} 

8. Categorizing Design 

This section introduces how to construct categories for modeling progress of 
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communications in the design. The progress of communications can be indi-
cated by failures [7]. Firstly, we propose the definition of category of failures. 
Secondly, we use the definition to categorize failures of communications of the 
example. 

8.1. A Category of Failures 

In the design, communications are modeled as processes using operator ||, and a 
process is modeled as (alphabet, failures). As failures contain traces that can in-
dicate the progress of the process, in this paper, failures are modeled as catego-
ries. 

Definition 1. Category of Failures: Each object is a set that has subsets of fail-
ures of a process as elements. A Morphism A ⊆→  B represents A is a subset 
of B, which indicates the progress of the process. 

8.2. Categorizing Failures of Communications of the Example 

By following the Definition 1, failures of processes in the example can be cate-
gorized. As communications are of our interests and communication can be 
modeled as processes, in this paper, communications between both processes 
person and vendingMachine are modeled as a category in terms of failures. 

Proposition 1. CCD is a category modeling design (see Figure 5). Each object 
is a set that has subsets of failures of communications between processes person 
and vendingMachine as elements. The morphism between two objects is the ⊆ 
relationship, which represents the progress of communications. For example, 
{{(〈〉, X ∪ Y )|X ⊆ {coke, pepsi} ⋁ Y ⊆ {coke, pepsi}}} is an object, {{(〈〉, X ∪Y )|X 
⊆ {coke, pepsi} ⋁ Y ⊆ {coke, pepsi}}, {(〈coin〉, X ∪ Y)|X ⊆ {coin, coke, pepsi} ⋁ Y 
⊆ {coin}}} is another object, and there is morphism ⊆ between them to indicate 
the progress of communications from no event to event coin. 

9. Categorizing Abstraction of Implementation 

This section introduces how to construct categories of failures for communica-
tions in the abstraction of implementation. In the implementation, process per-
son communicates with vendingMachine through portmakeOrder and port get 
Order. Thus, the category of communications between both processes is con-
structed based on makeOrder k get Order. 

Proposition 2. CCA is a category modeling abstraction of implementation 
(see Figure 6). Each object is a set that has subsets of failures of communications 
between processes person and vendingMachine as elements. The morphism be-
tween two objects is the ⊆ relationship, which represents the progress of com-
munications. For example, {{(〈〉, X ∪ Y)|X ⊆ {coke, pepsi, tea} ⋁ Y ⊆ {coke, pep-
si, tea}}} is an object, {{(〈〉, X ∪ Y)|X ⊆ {coke, pepsi, tea} ⋁ Y ⊆ {coke, pepsi, 
tea}}, {(〈coin〉, X ∪ Y )|X ⊆ {coin, coke, pepsi, tea} ⋁ Y ⊆ {coin}}} is another ob-
ject, and there is morphism ⊆ between them to indicate the progress of commu-
nications from no event to event coin. 
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Figure 5. Category CCD for failures of communications in design. 

 

 
Figure 6. Category CCA for failures of communications in abstraction. 

10. Verifying Implementation against Design 

This section introduces how to verify implementation against design by con-
structing functors. In the example, communications in the implementation con-
tain more information than communications in the design. That is because the 
implementation offers tea, while tea is not specified in the design. However, in-
cluding tea in implementation should not affect the implementation of designed 
communications for person to obtain coke and pepsi from vendingMachine. 
Functor is used for the verification. By constructing a functor from the category 
of abstraction of implementation to the category of design, it is able to verify 
whether the designed communications are implemented. Successful construc-
tion of such a functor could indicate communications in the design are captured 
in the implementation. Failing to construct such a functor could indicate an in-
consistency between the implemented system and the designed system. 

Proposition 3. FC:CCA → CCD is a functor (see Figure 7). This functor 
maps objects and 1) morphisms of CCA to the corresponding objects and mor-
phisms of CCD as follows: 

1) Let ocd be an object of CCD, and let oca be an object of CCA. When each 
element with the form {(〈td〉; Ed)|td is a trace ⋀ Ed is a set of events} in ocd has a 
corresponding element with the form {(〈ta〉; Ea)|ta is a trace ⋀ Ea is a set of events} 
where td = ta and Ed ⊆ Ea, there exist a mapping from oca to ocd. For every object 
of CCD, it has at least one mapping object of CCA. This indicates that all the  
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Figure 7. Functor FC from the Category CCA to the Category CCD. 

 
communications between processes person and vendingMachine in design are 
captured in implementation. If ocd doesn’t have the mapping object in CCA, it 
means the designed communications are not implemented. In the example, tea is 
implemented in communications, but it is not designed. There still has a map-
ping that maps the object, ocat, of CCA including tea in the trace to the object, 
ocdnt, of CCD.  

2) For every morphism mcd: ocd1 → ocd2 of CCD, there must be at least one 
corresponding morphism mca: oca1 → oca2 of CCA, such that mca can be 
mapped to mcd when oca1 and oca2 can be mapped to ocd1 and ocd2 respectively. 
These mappings indicate that all the progresses of communications between 
process person and vendingMachine in design are captured in implementation. 
If mcd doesn’t have the corresponding morphism in CCA, it means the designed 
progress of communications is not implemented. For the morphism mcat: ocac 
→ ocat of CCA indicating person orders tea, it can be mapped to the identity 
morphism of object ocdnt, which means that the implementation of offering tea 
does not affect the design. A successful construction of the functor FC indicates 
that the designed communications are consistent with the implemented com-
munications. 

A successful construction of the functor FC indicates that the designed com-
munications are consistent with the implemented communications. 

11. Conclusions and Future Work 

This paper introduces the research activities towards constructing the categorical 
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framework for formally verifying consistency of communications between de-
sign and implementation of concurrent systems. To illustrate the framework, a 
concurrent system, the vending machine example, is created. In doing so, the 
design of the system is modeled and analyzed by failures in CSP; the implemen-
tation of the system is developed by Erasmus; the abstraction of the implementa-
tion is analyzed and constructed based on Galois connection; failures of the im-
plementation in Erasmus are analyzed based on abstraction; categories of fail-
ures from the design and implementation are created; by constructing a functor, 
the consistency of communications between the design and the implementation 
is verified. 

Though initiatives towards the categorical framework are presented in this 
paper, there are still some limitations that could be improved in future. First, di-
vergences in CSP and Erasmus are not discussed in this paper. It would be inter-
esting to explore divergences in modeling and analyzing design, implementation 
and verification. Secondly, the vending machine example consists of only two 
processes. More complex examples that can scale up to realistic concurrent sys-
tems need to be analyzed with the framework. In addition, regarding categorical 
modeling, only functors and categories are studied. There are still several cate-
gorical structures, such as product/coproduct, limit/colimit, and natural trans-
formation, which might be useful for verification of communications. 
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