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Abstract 
Scene classification of high-resolution remote sensing (HRRS) image is an 
important research topic and has been applied broadly in many fields. Deep 
learning method has shown its high potential to in this domain, owing to its 
powerful learning ability of characterizing complex patterns. However the 
deep learning methods omit some global and local information of the HRRS 
image. To this end, in this article we show efforts to adopt explicit global and 
local information to provide complementary information to deep models. 
Specifically, we use a patch based MS-CLBP method to acquire global and lo-
cal representations, and then we consider a pretrained CNN model as a fea-
ture extractor and extract deep hierarchical features from full-connection 
layers. After fisher vector (FV) encoding, we obtain the holistic visual repre-
sentation of the scene image. We view the scene classification as a reconstruc-
tion procedure and train several class-specific stack denoising autoencoders 
(SDAEs) of corresponding class, i.e., one SDAE per class, and classify the test 
image according to the reconstruction error. Experimental results show that 
our combination method outperforms the state-of-the-art deep learning clas-
sification methods without employing fine-tuning.  
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1. Introduction 

With the development of remote sensing instrument technologies, more and 
more high-resolution remote sensing (HRRS) images, which contain detailed 
spatial information, are now available. To automatically labeling an image from 
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a set of semantic categories is the main purpose of HRRS scene classification, 
and has become one of the most important applications of the HRRS. However, 
there exist semantic gap between raw visual data and its semantic category. Con-
structing discriminating feature representation of HRRS image is one of the 
most necessary steps to bridge the gap in HRRS scene classification. Low-level 
handicraft features methods, such as Local Binary Patterns (LBP) [1], capture 
different properties like texture, spatial global or local structure information of 
the HRRS scene. Mid-level methods such as the bag-of-visual-words (BOVW) 
model, probabilistic latent semantic analysis, and Fisher kernel vector [2] is the 
classical feature representation methods which are used to bridge the semantic 
gap. However improvements over these methods grow slowly in recent years 
because of the specificities of HRRS data. In other words, although some of the 
low-level or mid-level feature methods have performed well on some homoge-
neous structures, the classification results decrease a lot when the dataset shows 
more complex structures and spatial layouts. 

In recent years, deep learning methods, which construct learning models with 
multiple processing layers, have shown its great ability of representing high-level 
features from raw data hierarchically. These deep-learning based methods learn 
hierarchical feature representation and give a fine classification result when the size of 
the training sample is sufficiently large. A large number of convolutional neural network 
(CNN) based methods have been proposed in the field of HRRS scene classification.  

Generally speaking, both engineered low-level methods and deep model based 
methods have their own superiority. The former has advantage in classifying the 
simple geospatial objects such as the farm land, airports and so on, while the lat-
ter prefers the complex geographic images, owing to the generated generic ro-
bust deep features. However, these methods are not well-suited for all kinds of 
geographic images. Besides, most existing approaches use only single-modality fea-
tures which are insufficient in reflecting various characteristics of the HRRS scene.  

Different from existing methods of HRRS scene classification which focus on 
improving the network architecture or feature encoding method, we investigate 
how to fuse the hierarchical features and the low-level complementary features. 
More specifically, we use a low-level feature method, i.e., patch based MS-CLBP, 
to acquire local representations, and then we extract features from the convolu-
tion layers of a pretrained CNN model, which contain rich hierarchical structur-
al information. Both low-level and high-level features are encoded through 
Fisher Kernel encoding. Thus, we obtain holistic hierarchical and local visual 
representations. We also compare the performance of the proposed with the 
state-of-the-art methods. The superiorities of our method in classification accu-
racy are shown at the end of this study. 

2. Method Description 
2.1. Low-Level and High-Level Features Extraction and Fisher  

Kernel Encoding 

The flowchart of the proposed method is shown in Figure 1 and Figure 2. To  
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Figure 1. Procedure of low-level and high-level feature extraction and 
Fisher Kernel encoding. 

 

 
Figure 2. Procedure of classfication using reconstruction error which are 
output by class-specific SDAEs. 

 
obtain multiscale Fisher vector (FV) of the HRRS image, pyramid algorithm is 
used to produce different observation scales. These multi-scale scene images are 
fed into patch based MS-CLBP and a pretrained CNN respectively for extracting 
multiscale local features and convolutional features, which are then stacked to be 
encoded by the Fisher kernel.  

For the low-level features, we apply the CLBP [4] operator with a parameter 
pair ( ), lm r , ( )1, 2,...,l t∈  to represent images with two generated CLBP 
component, a sign component (CLBP_S) and a magnitude component (CLBP_M). 
Given a center pixel cx , its m neighboring pixels ix  equally distributed on a 
circle of radius r. CLBP_S is equivalent to the traditional LBP and the CLBP_M 
is defined as  
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where γ is the mean value of i c−x x  from the entire image. These two com-
plementary components of CLBP can capture the spatial patterns and contrast of 
local image texture, such as edge and corners. The CLBP operator with the same 
parameter pair ( ),m r  is applied to the multi-scale images to generate patch- 
based CLBP histogram features [5]. For each patch i, two occurrence histograms 
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are computed from both CLBP_S and CLBP_M. After concatenating the two 
histograms, we get the histogram feature vector if  ( )1, 2,...,j M∈  of patch j. 
Suppose M patches are extracted from the multi-scale sub-images of a HRRS 
scene image, the feature matrix of the scene image can be denote as  

( , )
1 2[ , ,..., ]lm r

M=Φ f f f . Each jf  of the matrixes corresponds to a histogram fea-
ture vector of a patch. 

As noted in [1], LBP features generated from single ( ), lm r  may not be able 
to represent the intrinsic texture features. Therefore, different parameter sets
( ) ( ) ( ){ }1 2, , , ,..., , tm r m r m r  are provided by operators of varying the parameter 

pair ( ),m r . Specifically, we use fixed number of neighbors m and multiple radii 

ir  in the process of patch based MS-CLBP feature extraction. For each radii 
( ), 1, 2,...,lr l t∈ , we can obtain a corresponding feature matrix ( ), lm rΦ , thus we 

can get a set of t feature matrix set ( ) ( ) ( ){ }1 2 ,, ,, , ..., tm rm r m r=Φ Φ Φ Φ  for a HRRS 
scene image. The feature matrix set of the corresponding scene image is of high 
dimension and cannot be used as a representative feature, then we also use the 
effective patch aggregation mechanism IFK [2] to characterize the dense local 
patch descriptors. Given TN  training images, each image ( ), 1, 2,...,q TI q N∈
can be represent by ( ) ( ) ( ){ }1 2 ,, ,, , ..., tm rm r m r

q q q q=Φ Φ Φ Φ  based on above method. 
For each CLBP parameter pair ( ), lm r , we use ( ) ( ) ( ){ }, , ,

1 2, ,...,l l lm r m r m rl
d=Φ Φ Φ Φ  

as the feature set of all the training set to estimate the Gaussian mixture model 
(GMM) [3] parameters via the Expectation Maximization (EM) algorithm. Thus 
for t CLBP parameter sets ( ) ( ) ( ){ }1 2, , , ,..., , tm r m r m r , we obtains t GMMs. After 
the GMM estimating, the concatenated low-level FV features of the testing scene 
image are obtained. 

As for the high-level hierarchical features, suppose the pretrained CNN mod-
els contains k convolutional layers and denote multi-scale convolutional features 
on ith layer ( ( )1, 2,...,i k∈ ) of a given scene image qI  at scale level s as 

{ },

0

ns i
q s=

I . Let the number and size of the filter maps be u and v. Firstly we flatten 
the filter maps from ith convolutional layer into a set of feature vectors. Then 
each column of the feature set represents for a u-dimensional local descriptor 
which can be regarded as the feature representation of the corresponding image 
region. Then PCA is performed to reduce the dimension of each modality to u'. 
Thus we obtain v u'-dimensional multi-scale features of ith convolutional layer 
for the image qI , which can be defined by  

{ } { },
1 20
, ,...,

ni s i i i i d
q q vs=
= = ∈�Φ I f f f                (2) 

given TN  training images the descriptor set { }1 2, ,...,
T

i i i i
N=Φ Φ Φ Φ  are gener-

ated from ith convolutional layer. Similar as in the FV encoding of low-level 
features, k FVs are generated from the k convolutional layers, we denote the 
high-level hierarchical meaningful feature as HΦ , and denote the low-level local 
and global features as LΦ . Then the final feature-level fusion can be formulated 
as: 

( ) ( ) ( )(1 )H Lx x xα α= + −Φ Φ Φ                (3) 
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where the α  is the weight parameter, which balance the effect of the high-level 
and low-level features. ( )xΦ  is a final feature representation of test image x. 

2.2. Classification by Stack Auto-Encoder Reconstruction Error 

After obtaining the concatenated FV feature, we conduct the classification in the 
view of reconstruction error, which is illustrated in Figure 2. The denoising 
autoencoder (DAE) is the enhanced variant of the conventional autoencoder 
using criterion of denoising. It is more robust since it learns to recover an image 
of corrupted version. The DAE can be stacked to obtain high level features like 
CNNs, resulting in stacked denoising autoencoder (SDAE) [6] approach. The 
SDAE can learn holistic hierarchical representations of an image due to the 
multi-layers abstraction. For the dataset which contains c scene classes, we first 
train c class-specific SDAEs using the combined feature of all training samples of 
the corresponding class, i.e. one SDAE for one class. Thus we get the encoding 
and decoding weights each of the c SDAEs. At testing stage, we feed the com-
bined feature of the testing scene image to each of the SDAEs to generate a c 
-dimensional reconstruction error vector, and each value of the vector corre-
sponds to a scene class. The SDAE which is trained by images of the same class 
obtains the minimum reconstruction error. So we assign the class of combined 
feature to the index of the minimal one in the reconstruction error vector. 

3. Experiment Setup and Result 
3.1. Dataset 

AID [7] dataset, which is a public available HRRS dataset, is adopted to evaluate 
the performance of our proposed methods. AID dataset is a new large-scale 
HRRS dataset established for advancing the state-of-the-arts. It consists of 30 
scene categories including airport, bare land, baseball field, and so on. There are 
a total of 10,000 images with the size of 600 × 600 pixels. For increasing the in-
tra-class variability of AID, the scene images are from several countries and ac-
quired under different imaging conditions. Figure 3 shows some example im-
ages of AID dataset. 
 

 
Figure 3. Some example images from AID remote sensing dataset. 
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3.2. Experimental Settings  

We randomly separate the dataset with the ratio of 50% on AID for training, and 
left for testing. We evaluate our classification performance with the average ac-
curacy over 50 runs. Multi-scale of 150 × 150, 300 × 300, 600 × 600 are set to 
enhance the classification performance. The number of Gaussian components in 
GMM which are used for encoding convolutional features and MS-CLBP are 
empirically set to be 100 and 16 respectively. We set the weight of high-level and 
low-level features to 0.85 after a series of experiments on AID dataset. For the 
setting of SDAE, we set three hidden layers with 800, 800 and 300 neurons. As 
mentioned in the methodology section, different parameter set ( ),m r  can 
grasp intrinsic texture features. We empirically set 8m =  and ( )1, 2,..., 6r = . 
Specifically, 6 radii are used for the parameter set  
( ) ( ){ }1 68, 1 ,..., 8, 6m r m r= = = = . We then study the number of scales for gen-

erating multi-scale image and the patch size used in the patch-based MS-LBP. 
Different choice of multiple scales contains ( ) ( ){ }1, 1,1 2 ,..., 1,1 6 . For example, 
( )1,1 6  means there are two scales of the image are used, original image and the 
down sampled image at 1/6 size of the original image. Note that the scale 1/6 has 
nothing to do with the parameter pair ( )68, 6m r= = . 

As for the size of patch ( )P P× , we empirically set { }16, 24,32, 48,64,96P∈ , 
and discuss the effects of different parameter setting pair of image scale and 
patch size on the classification results, as shown in Figure 4. It can be seen that, 
the combing of scales ( )1,1 5  and patch size 64 achieves the best result in AID 
dataset. 

3.3. Comparison with the State-of-the-Arts Methods 

To evaluate the performance of our proposed method, we make a comparison of 
our method and the state-of-the-art methods performed on the AID databases  
 

 
Figure 4. Effects of different parameter settings of scales and patch size on the 
classification results of the AID dataset. 

https://doi.org/10.4236/jcc.2018.611018


F. A. Zhao et al. 
 

 

DOI: 10.4236/jcc.2018.611018 191 Journal of Computer and Communications 
 

under the same experimental settings. Due to the high intra-class variability and 
inter-class similarity of this dataset, the most existing scene classification meth-
ods are based on deep neural network. The researchers [7] who set up this data-
set achieved accuracy of almost 90% based on CaffeNet, VGG-VD16, and 
GoogLeNet. [8] proposed a feature fusion strategy based on discriminant corre-
lation analysis (DCA), and achieved accuracy of 89.71% with the smallest feature 
size of 58. Furthermore, they use the fusion strategy of addition and gain a ex-
cellent accuracy of 91.87%. [10] uses deep ResNet to address the problem of 
training very deep convolutional networks, the classification accuracy achieves 
of almost 90% via training the top softmax layer of ResNet. Even better result 
94.23% is obtained by fine-tuning of ResNet. In this work, we achieved the ac-
curacy of 91.07% ± 0.33%, which is superior to the most state-of-the-art meth-
ods. Note that we don’t adopt the fine-turn and multi-CNN combination ap-
proach in consideration of the computing cost. The high performance of the 
method benefits from the strong representation power of the fused hierarchical 
and local features. Figure 5 shows the confusion matrix for the proposed 
method. We can observe that the classification accuracies achieve more than 0.8 
for most scene class, even though the AID is a fairly challenging large-scale 
dataset. The scene class of centre, commercial, resort, school and square are easy 
to confuse with others due to the high intro-class variety and inter-class similar-
ity of the AID dataset (Table 1). 
 

 
Figure 5. Effects of different parameter settings of scales and patch size on the classifica-
tion results of the AID dataset. 
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Table 1. Performance comparison of the state-of-the-art methods on the AID data set. 

Style name Accuracy 

DCA with concatenation [8] 89.71 ± 0.33 

Fusion by addition [8] 91.87 ± 0.36 

salM3LBP–CLM [9] 89.76 ± 0.45 

CaffeNet [7] 89.53 ± 0.31 

VGG-VD16 [7] 89.64 ± 0.36 

GoogLeNet [7] 86.39 ± 0.55 

ResNet softmax [10] 90.62 ± 0.56 

ResNet fine-turn [10] 94.23 ± 0.34 

Proposed method 91.07 ± 0.33 

4. Conclusion 

This paper presented a novel multi-feature fusion method for HRRS image scene 
classification. From the classification result we can conclude that: 1) the pro-
posed method fully considers the hierarchical information hidden in the pre-
trained CNN and the global and local information extracted from the patch 
based MS-CLBP method. The weighted concatenated features are more dis-
criminating for classification. 2) The multi-SDAE classification method utilizes 
the deep feature learning abilities of each SDAE, and the experimental results 
indicate the effectiveness of our proposed methods. At present, there are there 
are still many technologies to be improved, such as a new feature coding method 
to encode these combined features into a more compact representation, or adopt 
more effective complementary low-level features. 
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