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Abstract 

Intelligent equipment is a kind of device that is characterized by intelligent 
sensor interconnections, big data processing, new types of displays, hu-
man-machine interaction and so on for the new generation of information 
technology. For this purpose, in this paper, first, we present a type of novel 
intelligent deep hybrid neural network algorithm based on a deep bidirec-
tional recurrent neural network integrated with a deep backward propagation 
neural network. It has realized acoustic analysis, speech recognition and nat-
ural language understanding for jointly constituting human-machine voice 
interactions. Second, we design a voice control motherboard using an em-
bedded chip from the ARM series as the core, and the onboard components 
include ZigBee, RFID, WIFI, GPRS, a RS232 serial port, USB interfaces and 
so on. Third, we take advantage of algorithms, software and hardware to 
make machines “understand” human speech and “think” and “comprehend” 
human intentions to structure critical components for intelligent vehicles, in-
telligent offices, intelligent service robots, intelligent industries and so on, 
which furthers the structure of the intelligent ecology of the Internet of 
Things. At last, the experimental results denote that the study of the seman-
tics interaction controls based on an embedding has a very good effect, fast 
speed and high accuracy, consequently realizing the intelligent ecology con-
struction of the Internet of Things. 
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1. Introduction 

With the vigorous development of sensor technology, network transmission 
technology, intelligent information processing technology and so on, the Inter-
net of Things with intelligent interconnections of “thing to thing” is believed to 
be the third wave of world information industry development (following the 
computer and Internet). People have a lot of information that needs to be com-
municated via the computer every day. Traditional human-machine interaction 
modes such as the keyboard, mouse, touch screen and so on have had increasing 
difficulties meeting the growing needs of people for intelligent computing and 
control. Especially with mobile terminals (for example, palm computers, PADs, 
mobile-phones and so on) and various kinds of intelligent devices being exten-
sively used in mobile computing environments, implementation requirements 
for voice interaction have become increasingly more urgent. Speech recognition 
technology can be applied to indoor equipment controls, voice control telephone 
exchange, intelligent toys, industrial controls, home services, hotel services, 
banking services, ticketing systems, information web queries, voice communica-
tion systems, voice navigation and so on in all kinds of voice control systems and 
self-help customer service systems [1] [2] [3]. In particular, with the vigorous 
development of artificial intelligence technology, compared to traditional 
man-machine interaction modes, (which mainly include keyboards, mice and so 
on to communicate), people naturally expect that machines will have highly in-
telligent voice communication abilities, (named intelligent machines) that can 
“understand” human speech, “think” and “comprehend” human intentions, and 
finally respond to the speech or actions. This has always been one of the ultimate 
goals of artificial intelligence, which is one of critical components to structure 
the intelligent interconnections of the Internet of Things. Intelligent voice inte-
raction technology has involuntarily become one of the current research hots-
pots [4] [5] [6] [7] [8]. 

For this purpose, first, we present a type of novel intelligent deep hybrid neur-
al network algorithm to realize voice signal processing based on efficient em-
bedded automatic speech recognition (EASR), speech understanding (SU) and 
semantics control. Second, we design a voice control motherboard using an em-
bedded chip from the ARM series as the core. At last, on the basis of these, in 
order to provide critical components for constructing intelligent vehicles, intel-
ligent service robots, intelligent offices, intelligent industries and so on and to 
realize the intelligent ecology of the Internet of Things [9] [10] [11], we present a 
model. The model is shown in Figure 1. 

2. Previous Foreign and Domestic Studies 

Previous papers have conducted multidisciplinary cross research that includes 
speech recognition and semantic controls, deep hybrid neural networks, hu-
man-machine interactions, artificial intelligence, the Internet of Things, embed-
ded development and so on, all of which are research hotspots in today’s world. 
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Figure 1. Diagram of the intelligent ecology of the Internet of Things. 

 
Until 2006, there were no big breakthroughs in speech recognition. For speech 

recognition systems, the most representative identification methods include the 
feature parameter-matching method, the Hidden Markov Model (HMM) and 
other key technologies based on the HMM system for automatic speech recogni-
tion (for example, using the maximum a-posteriori (MAP) probability estima-
tion criterion [12] and the maximum likelihood linear regression (MLLR) [13] 
to solve the parameter adaptive problem of the HMM model). After Hinton, etc. 
presented the layer-by-layer greedy unsupervised pre-training deep neural net-
work named deep learning in 2006 [14] [15] [16] [17] [18], Microsoft has suc-
cessfully applied it to its own speech recognition system. It achieved a reduction 
in the error rate of word recognition by approximately 30% compared to pre-
vious optimal methods [19] [20], which was a major breakthrough in the field of 
speech recognition. At present, many well-known speech recognition research 
institutions, both domestic and foreign (for example Xunfei, Microsoft, Google, 
IBM and so on), are all also actively pursuing research targeted at deep learning 
[21]. 

So far, hundreds of neural networks have been proposed, such as the SOFM 
neural network, the LVQ neural network, the LAM neural network, the RBF 
neural network, the ART neural network, the BAM neural network, the CMAC 
neural network, the CPN dual propagation neural network, the quantum neural 
network, the fuzzy neural network and so on [22] [23]. In particular, in 1995, Y. 
LeCun and Y. Bengio proposed the convolution neural network (CNN) [24] [25]. 
In 2006, Hinton et al. proposed the multi-layer deep belief network (DBN) [23] 
that used the Restricted Boltzmann Machine (RBM) [26] as the construction 
module. Rumelhart, D.E. proposed the automatic encoding neural network 
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(AENN) [27] [28]. At the same time, some other neural networks were proposed 
based on these models, for example the sparse deep belief network (SDBN) [29], 
the sparse stack automatic encoders (SSAE) [30], the deep convolution genera-
tive adversarial network (DCGAN) [31] and so on. All of these have become 
main constituent models of deep neural networks, namely, deep learning [32] 
[33]. 

The concept of the Internet of Things (IOT) was first proposed by Professor 
Ashton of the Auto-ID Center of the Massachusetts Institute Technology in 1999 
[34]. He presented the “intelligent interconnection of thing to thing”, which uses 
information sensor equipment to collect information in real time and constitutes 
a huge network combined with the Internet [35]-[40]. As early as 1999, the Chi-
nese Academy of Sciences had launched research on the sensor network and has 
already made significant progress in terms of wireless intelligent sensor network 
communication technology, micro-sensors, sensor terminals, mobile base sta-
tions and so on [41]. This is especially true after 7 August 2009 when Premier 
Wen Jia-bao inspected the Wuxi Jiangsu Province and proposed constructing 
the centre of the “perception of China” in Wuxi. In 2010, the Beijing municipal 
government launched the first demonstration project of the Internet of Things 
of the “perception of Beijing”. 

An embedded system is a kind of dedicated computer system with an applica-
tion as the centre. It is based on computer technology, can tailor software and 
hardware and can adapt to the application system that has stringent require-
ments on functions, reliability, costs, volume, power consumption and so on [42] 
[43]. An embedded processor is the core of an embedded system. It is the hard-
ware unit that controls and assists the system’s operations. At present, there are 
more than 1000 kinds of embedded processors in the world. The popular system 
architecture includes the embedded microprocessor unit (EMP), the embedded 
micro controller unit (MCU), embedded digital signal processors (DSP), em-
bedded systems on chip (SOC) and so on for these four kinds [44]. 

Embedded speech recognition (ESR) refers to where all speech recognition 
processing is performed on the target device. The traditional speech recognition 
system generally adopts the acoustic model, which is based on the Gaussian 
Mixture Model and Hidden Markov Model (GMM-HMM) and the n-gram lan-
guage model. In recent years, with the rise of deep learning, the acoustic model 
and language model that are based on deep neural networks have separately 
achieved significant performance improvements compared with the traditional 
GMM-HMM and n-gram models [45] [46] [47] [48]. Automatic speech recogni-
tion based on an embedded mobile platform is one of the key technologies. 

The remainder of this paper is organized as follows. Section 3 discusses the 
principle of speech recognition control and the mathematical theory model. Sec-
tion 4 introduces the novel intelligent deep hybrid neural networks and training 
methods. The experimental results are presented and discussed in Section 5. Sec-
tion 6 provides the concluding remarks and prospects. 
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3. Principle of Speech Recognition Control and  
Mathematical Theory Model 

Although the recognition principle of all languages is similar, different languages 
have different recognition processes. The speech recognition control in the pa-
per is based on Chinese, as shown in Figure 2 and Figure 3. Speech recognition 
control can be seen as the following process. Suppose the source signals are a se-
ries of words W that are uttered by someone, which are converted into speech 
signals O through a noisy channel. Speech recognition involves speech decoding, 
which can be considered as the problem of solving the maximum a posteriori 
probability (MAP) [12]. It is assumed that the speech signals have been ex-
pressed as a sequence of observation vectors, namely, speech feature vectors O. 
To find the maximum a posteriori probability, calculate the posteriori probabili-
ty of all possible sequences of words and find the maximum probability, 
represented as *W , as shown in formula (1):  

( ){ }* arg max |
W

W P W O
τ∈

=                     (1) 

where τ  is a collection of all words. Because ( )P O  is constant, formula (2) 
can follow formula (1):  

( ) ( )
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The (random) language model can be expressed as the occurrence probability 
( )P W  of word string W, which can be decomposed into:  
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     (3) 

where iw  is the ith word of the word string, and n is the number of words that 
W has. 

It is unrealistic to estimate the conditional probability ( )1 2 1| , , ,i i iP w w w w− −   
of all vocabularies and word sequences to use the simplified model. The n-gram 
model (n elements grammar model) is the language model that is used the most 
successful and widely used to date. It assumes that the conditional probability 

( )1 2 1| , , ,i i iP w w w w− −   is only related to the preceding 1n −  words. As a result, 
it can be simplified as:  

( ) ( )1 2 1 1 2 1| , , , | , , ,n n n n n n n NP w w w w P w w w w− − − − − +=             (4) 

Thus, ( )P W  approximates the following by using the binary grammar mod-
el, namely, 2-gram:  

( ) ( )1
1

|
n

i i
i

P W P w w −
=

≈ ∏                        (5) 
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Figure 2. Schematic diagrams of the standard speech recognition system structure. 

 

 
Figure 3. Schematic diagrams of the acoustic model based on the GMM-HMM. 

4. Deep Hybrid Neural Networks  

4.1. Backward Propagation Neural Network 

The mean square error of the neural network training model can be expressed 
as: 
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To obtain the optimization parameters, use the gradient descent method to 
minimize this function. The partial derivative that is being calculated is called 
the “residual” for each unit and is denoted as ( )l

iδ . Thereby, it can get all the re-
siduals of the units in the last layer (output layer):  

( ) ( ) ( )
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Next, the residual of the individual unit in each layer (for example, 
1, 2, , 2l ll n n= − −  ) can also be obtained, such as with the residual of each unit 

of the layer 1ll n= − : 
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where W denotes the weight, b denotes the bias, ( ),x y  denotes the training 
sample, ( ),W bh x  denotes the final output, and ( )f   denotes the activation 
function. To replace the relationship 1ln −  and ln  of the formula with the re-
lationship of l  and 1l + , we can get:  

( ) ( ) ( ) ( )( )1 1

1

lsl l l l
i ji j i

j
W f zδ δ

+
+

=

 
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∑                     (9) 

However, the above formula can be used to calculate all the residuals of each 
unit. At last, it can calculate all partial derivatives based on the weights, biases 
and so on of the other variables:  
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                  (10) 

Therefore, it can realize the learning and training of deep hybrid neural net-
works. The process of learning and training is shown in Figure 4. 
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Figure 4. Schematic diagram of training pattern of deep backward propagation neural 
network. (a) Forward execution phase; (b) Backward excution and weight updates phase. 

4.2. Deep Bidirectional Recurrent Neural Network (DBRNN) 

Being based on the consistency and causality characteristics of speech signals, 
with an input series of sequential speech signal sequences, it can infer the output 
on the time t by taking advantage of historical time information [ ]1, , 1t −  and 
even take advantage of future time information [ ]1, ,t T+  . With regard to 
these, in this paper, we also present a deep bidirectional recurrent neural net-
work (DBRNN) [49] integrated with the deep belief network embedded with the 
Softmax regression to constitute deep hybrid neural networks to model and per-
form speech recognition. 

To give a sequence of T frames ( )1 2, , , TX x x x=  , the label of each frame 
corresponds to ( )1 2, , , TR r r r=  , the parameters of the DBRNN are be marked 
as θ , the status sequences of the hidden layers of the neural network are 
marked as ( )1 2, , , TH h h h=  , the output sequences are marked as 

( )1 2, , , TO o o o=  , and the objective function being optimized is marked as: 

( ) ( )
1

min , , , ,
T

t t
t

E X R E x r
θ

θ θ
=

= ∑                 (11) 

Similar to other neural networks, the DBRNN can be obtained by stacking 
multiple BRNNs. Its model is shown in Figure 5. The forward propagation algo-
rithm of the DBRNN can be obtained by combining the forward propagation 
algorithm of the deep neural network and the RNN. 

4.3. Forward Propagation Algorithm 

For single-hidden layer one-way RNN, to illustrate the input sequences ( ),X R , 
the connection matrix of the input layer to the hidden layer is ihW , the recur-
sion connection matrix’s inside hidden layer is hhW , the connection matrix of 
the hidden layer to the output layer is hoW , and the biases of the hidden layer 
and output layer are respectively hb  and ob . Because there is dependency on 
time between the outputs of sequences, the forward propagation process of the 
RNN at time t can be expressed as: 
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Figure 5. (a) The schematic diagram of the DRNN being unfolded 
according to the time domain. (b) The schematic diagram of the 
DBRNN being unfolded according to the time domain. 
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where h
tz  and th , respectively, denote the input and output of the hidden layer, 

( ) ( )h of   denotes the nonlinear transformation function, and o
tz  and tu , re-

spectively, denote the input and output of the output layer. For the BRNN, it 
uses the mechanism of taking advantage of past and future information to gen-
erate the current output at the same time, the connection matrixes of the input 
layer to the hidden layer from the front and back are respectively marked as 

ihW →  and ihW ← , the recursive connection matrix of the forward hidden 
layer is marked as hhW , the recursive connection matrix of the backward hidden 
layer is marked as hhW , and the corresponding biases are respectively marked as 

hb  and hb . Therefore, the input and output of the forward hidden layer can 
respectively be obtained as follows:  
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The input and output of the backward hidden layer can respectively be ob-
tained as follows: 
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By calculating 
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
, the output of the BRNN can be  
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obtained according to formula (14) , and the output of each layer of the DBRNN 
can also be obtained in turn. 

4.5. Time Domain Backward Propagation Algorithm 

Because the implementation of the RNN considers the consistency and causality 
characteristics of speech signals, unlike other neural networks that only need to 
calculate the error signals for backward propagation from the top-down in each 
layer, the RNN still needs to calculate the error signals for propagation based on 
the time domain. Therefore, the algorithm is called the time domain backward 
propagation algorithm (Back-Propagation Through Time, BPTT). At the time of 
implementation, it first sets the RNN as one-way and the single-hidden layer as 
the foundation, and then extends it to the BRNN of a single layer. In the end, it 
implements all operations of the DBRNN. Assuming that  

{ }, , , ,ih hh ho h oW W W b bθ = , the loss function of the ( )1n th+  round’s iteration 
training sample X is marked as ( ), ,E X R θ , similar to the DNN. The error sig-
nals of the output layer and hidden layer at time t are respectively marked as: 
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There are two sources of error signals being propagated to the hidden layer at 
moment t. One is error signals o

te  of the output layer at moment t, and the 
other is the error signals 1

h
te +  of the hidden layer at the moment 1t + . Using 

the chain rule, it can obtain: 

( ) ( )1
h T o T h h
t ho t hh t h te W e W e f z+ ′= ⋅ + ⋅                 (17) 

From formula (17), it can be seen that the error signals of the neural network 
will be propagated with the inverse time axis from moment T to moment 1. The 
algorithm is also named the BPTT. 

Therefore, the gradient of the RNN can be obtained as: 
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After that, the parameters of the model can be constantly changed by the sto-
chastic gradient descent (SGD) algorithm until they are optimal. 

For the BRNN, since at each moment it has all the characteristics of bidirec-
tional dependence, similarly, it can obtain:  
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At last, it can obtain the formula of the gradient computations as follows:  
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Then, it will update the model’s parameters. By being based on these, it can 
further implement the learning and training of the DBRNN.  

5. Experiments and Result Analysis 

5.1. Experimental Environment 

The relevant experimental equipment is shown below: 
 Hardware: 1) The core processing unit of the module adopts a Samsung 

S5PV210 64/32-bit processor, which is based on the CortexTM-A8 kernel of 
ARM, has a 1 GHZ dominant frequency, an L1 cache of 32/32 KB da-
ta/instruction, an L2 cache of 512 KB, and high performance computing 
power of 200 million instruction sets per second (2000 DMIPS). 2) It has an 
onboard speech processing module that can amplify, filter, sample, and con-
vert with A/D or D/A and digitize the speech signal, a LINE audio in-
put/output interface, and a microphone (MIC) input interface. 3) The on-
board modules include ZigBee, RFID, WIFI, GPRS, RS232 serial port, USB 
interface and so on.  

 Software: It uses the Linux operating system based on the embedded devel-
opment as the developmental platform. Its kernel is small, easy to cut, very 
suitable for embedded systems, and well supports the CPU of the ARM ar-
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chitecture, and it supports a large number of external devices. The size and 
function of the systems can all be customized and have rich driver programs.  

The main programs of deep hybrid neural networks speech recognition se-
mantic controls are developed based on the Linux operating system and the 
compilation tools on the host machine. Then, it cross-compiles the programs 
being implemented to generate execution codes for the ARMS5PV210 processor 
and burns them to the developmental motherboard. 

5.2. Experimental Process and Results 

The implementation process of speech recognition semantics control is shown 
below. First, speech recognition can be divided into two parts, namely, speech 
training and recognition. In the process of training speech signals, input devices 
(for example, microphones and so on) can be used to obtain speech signals, 
make A/D conversions, and encode and decode digital signals. They can use the 
hybrid neural networks presented by us to conduct learning and training, and 
the training results are burned into the Flash so that achieve recognition in the 
subsequent speech recognition stage. Second, in the speech recognition phase, 
after the input speech signal is processed by the audio digital signal encoding 
decoder, the system notifies the embedded Linux operating system based on the 
ARM CortexTM-A8 and makes the match with the reference samples stored in 
the Flash. Thus, the best identification results are obtained, and they switch to 
the corresponding semantic vocabularies. Finally, it achieves corresponding I/O 
output controls by the system call functions of the embedded Linux operating 
system that is based on the semantic results. For example, it can realize the oper-
ation of turning on and turning off LED lights in intelligent furniture, other in-
dustrial equipment, and so on. The Linux system kernel controls the ARM Cor-
texTM-A8 and calls its drivers, which should be implemented for the system call 
operations at least for the open, read, write, close and other system calls [50]. In 
the experiment, we also refer to the developmental boards of YueQian and the 
phonetic components of Hkust XunFei [51]. The experimental results are as fol-
lows.  

To connect the power of the developmental board and the serial port line (one 
end to the PC, and the other end to development board), we use the software 
SecureCRT developed by us to download the programs to the ARM Cor-
texTM-A8 board and conduct the cross-compilations. Voice data are obtained 
through recording devices, and the results are shown in Figure 6. 

We use the ESP8266 tool developed by us to burn and write the hybrid neural 
networks and other algorithms presented by us to the storage of the ARM Cor-
texTM-A8 board for embedded speech recognition processing. The results are 
shown in Figure 7.  

The speech recognition semantics control system being implemented in this 
paper has stronger functions. It can realize the recognition of voice data from 
audio files and realize the recognition of voice data directly from the micro-
phone and other input devices. The results are shown in (a) and (b) of Figure 8.  
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It has also realized the recognition of voice data directly from the microphone 
and other input devices, for example, the voice data “开灯” (Turning on light) 
and “关灯” (Turning off light). In the experiment, we have used six lights with 
ID numbers corresponding from 1 to 6 and have realized the switch operation of 
any light, such as No. 3 and No. 6. The results are shown in (a), (b) and (c) of 
Figure 9. 

Based on the recognition process above, two types of circuit boards are further 
used to respectively realize the control of the lights. The results are shown in (a), 
(b) and (c) of Figure 10. 
 

 

Figure 6. The process of cross-compiling and recording sounds (the 
speech recognition control of this paper is based on Chinese). 

 

 

Figure 7. The process of the recognition algorithm programs being 
burned and written. 
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(a) 

 
(b) 

Figure 8. The recognition of voice data from audio files (the 
speech recognition control of this paper is based on Chinese). 

 

 
(a) 
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(b) 

 
(c) 

Figure 9. The recognition of voice data directly from the microphone and other 
input devices (the speech recognition control of this paper is based on Chinese). 

 

 
(a) 
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(b)                                      (c) 

Figure 10. The control of the lights of two kinds of circuit boards respectively being 
realized (the speech recognition control of this paper is based on Chinese). 

6. Summary and Prospect 

The purpose of this paper was to assess the semantic interaction control for con-
structing the intelligent ecology of Internet of Things and conducting critical 
component research. First, we present a kind of novel intelligent deep hybrid 
neural network algorithm based on a deep bidirectional recurrent neural net-
work integrated with a deep backward propagation neural network. This has 
realized acoustic analysis, speech recognition and natural language understand-
ing for jointly constituting human-machine voice interaction. Second, we design 
a voice control motherboard using an embedded chip from the ARM series as 
the core, and the onboard modules include ZigBee, RFID, WIFI, GPRS, an 
RS232 serial port, a USB interface and others. Third, we take advantage of the 
algorithm, software and hardware to make machines “understand” speech of 
people and “think” and “comprehend” human intentions in order to structure 
critical components for intelligent vehicles, intelligent offices, intelligent service 
robots, intelligent industries and so on in order to structure intelligent ecology 
of the Internet of Things. At last, the experimental results denote that the study 
of the semantics interaction control based on an embedding has a very good ef-
fect, fast speed and high accuracy, consequently realizing the intelligent ecology 
construction of the Internet of Things. 

After the realization of the intelligent ecological construction of the Internet 
of Things through semantic interaction control, we will further complete the 
commercialization and scale use of the promotion, which are the directions of 
our future efforts. 
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