
Journal of Computer and Communications, 2018, 6, 1-14
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2018.610001 Oct. 10, 2018 1 Journal of Computer and Communications

Timed Petri Net Models of Shared-Memory
Bus-Based Multiprocessors

Wlodek M. Zuberek

Department of Computer Science, Memorial University, St. John’s, Canada

Abstract
In shared-memory bus-based multiprocessors, when the number of proces-
sors grows, the processors spend an increasing amount of time waiting for
access to the bus (and shared memory). This contention reduces the perfor-
mance of processors and imposes a limitation of the number of processors
that can be used efficiently in bus-based systems. Since the multiprocessor’s
performance depends upon many parameters which affect the performance
in different ways, timed Petri nets are used to model shared-memory
bus-based multiprocessors at the instruction execution level, and the devel-
oped models are used to study how the performance of processors changes
with the number of processors in the system. The results illustrate very well
the restriction on the number of processors imposed by the shared bus. All
performance characteristics presented in this paper are obtained by dis-
crete-event simulation of Petri net models.

Keyword
Shared-Memory Multiprocessors, Bus-Based Multiprocessors, Timed Petri
Nets, Discrete-Event Simulation

1. Introduction

More than 50 years ago Gordon Moore predicted that the number of transistors
on microprocessor chips will double every 18 to 24 months (the so called
Moore’s law [1]). This prediction has proven remarkably robust; although the
end of Moore’s law was supposed to occur several times in the past [2], the trend
seems to be holding, resulting in impressive improvement of the performance of
microprocessors. The capacity of memory chips has also been doubling every 18
months or so, but their performance has been improving less than 10% per year
[3]. The performance gap [4] between the processor and its memory has been

How to cite this paper: Zuberek, W.M.
(2018) Timed Petri Net Models of
Shared-Memory Bus-Based Multiproces-
sors. Journal of Computer and Communi-
cations, 6, 1-14.
https://doi.org/10.4236/jcc.2018.610001

Received: August 14, 2018
Accepted: October 7, 2018
Published: October 10, 2018

Copyright © 2018 by author and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2018.610001
http://www.scirp.org
https://doi.org/10.4236/jcc.2018.610001
http://creativecommons.org/licenses/by/4.0/

W. M. Zuberek

DOI: 10.4236/jcc.2018.610001 2 Journal of Computer and Communications

doubling approximately every six years, and an increasing part of the processor’s
time is being spent on waiting for the completion of memory operations. Al-
though multilevel cache memories are used to reduce the average latencies of
memory accesses, matching the performances of the processor and the memory
is an increasingly difficult task. In effect, it is often the case that more than 50%
of processor cycles are spent waiting for the completion of memory accesses [5].

Shared-memory bus-based multiprocessors are typically composed of a num-
ber of (identical) processors with their local cache memories and a shared mem-
ory (at a higher level of memory hierarchy). As the number of processors grows,
the processors spent an increasing amount of time waiting for getting access to
the bus (and shared memory) which reduces their performance. The limitations
imposed by the bus depend upon many parameters, and different parameters af-
fect the performance in different ways. In order to study the influence of differ-
ent parameters on the performance of the system, a model of a pipelined pro-
cessor at the instruction execution level is proposed and is used for performance
analysis of shared-memory bus-based multiprocessors. The main objective of
this analysis is to study the reduction of processor’s performance when the utili-
zation of the (shared) bus approaches 100%.

A flexible formalism that can easily handle concurrent activities as well as
synchronization of different events and processes that occur in shared-memory
bus-based systems is needed for modeling and performance analysis of
bus-based multiprocessors. Petri nets [6] [7] are such formal models. In order to
study performance aspects of systems modeled by Petri nets, the durations of
modeled activities must also be taken into account. This can be done in different
ways, resulting in different types of temporal nets [8]. In timed Petri nets [9],
occurrence times are associated with events, and the events occur in real-time
(as opposed to instantaneous occurrences in other models).

In this paper, timed Petri nets are used to model shared-memory bus-based
multiprocessor systems at the level of instruction execution. Section 2 recalls ba-
sic concepts of Petri nets and timed Petri nets. Section 3 discusses a model of a
pipelined processor and its performance as a function of modeling parameters.
Shared-memory bus-based systems are described and analyzed in Section 4. Sec-
tion 5 concludes the paper.

This paper is an extension of previous work on performance analysis of
shared-memory bus-based multiprocessors using timed Petri nets [10]. The new
contributions include a refined model of pipelined processors which captures
parameters of physical systems in a better way than previously. Also, much
simpler models of multiprocessor systems are presented in this paper with per-
formance characteristics that are consistent with previous models.

2. Timed Petri Nets

Petri nets are bipartite directed graphs in which the two types of vertices
represent (in a very general sense) conditions and events. An event can occur

https://doi.org/10.4236/jcc.2018.610001

W. M. Zuberek

DOI: 10.4236/jcc.2018.610001 3 Journal of Computer and Communications

only when all conditions associated with it (represented by arcs directed to the
event) are satisfied. An occurrence of an event usually satisfies some other con-
ditions, indicated by arcs directed from the event. So, an occurrence of one event
causes some other event (or events) to occur, and so on.

Tokens which can move within a (static) graph-like structure of the net are
used in Petri nets to represent concurrent activities. More formally, a marked
place/transition Petri net  is defined as a pair ()0,m=  , where the
structure  is a bipartite directed graph, (), ,P T A= , with two types of
vertices, a set of places P (representing conditions) and a set of transitions T
(representing events), and a set of directed arcs A connecting places with transi-
tions and transitions with places, A T P P T⊆ × × . The initial marking func-
tion 0m assigns nonnegative numbers of tokens to places of the net,

{ }0 : 0,1,m P →  . Marked nets can be equivalently defined as ()0, , ,P T A m= .
A transition is enabled by a marking if all its input places are marked (i.e., are

assigned at least one token by the marking function). Each enabled transition t
can occur removing a single token from each of t’s input places and adding a
single token to each of its output places. This creates a new marking function, a
new set of enabled transitions and so on.

A place is shared if it has more than one input transition. A shared place p is
free-choice if the sets of output places of all transitions sharing p are identical. A
shared place p is (dynamically) conflict-free if for each marking reachable from
the initial marking at most one transition sharing p is enabled. If a shared place
p is not free-choice and not conflict-free, the transitions sharing p are conflict-
ing.

It is assumed that the choice of transition which occurs in each free-choice
class and each class of conflicting transitions is random and can be described by
a corresponding probability.

In timed nets [9], occurrence times are associated with transitions, and transi-
tion occurrences are timed events, i.e., tokens are removed from input places at
the beginning of the occurrence period, and they are deposited to the output
places at the end of this period. All occurrences of enabled transitions are in-
itiated in the same instants of time in which the transitions become enabled (al-
though some enabled transitions may not initiate their occurrences). If, during
the occurrence period of a transition, the transition becomes enabled again, a
new, independent occurrence can be initiated, which will overlap with the other
occurrence(s). There is no limit on the number of simultaneous occurrences of
the same transition (sometimes this is called infinite occurrence semantics). Si-
milarly, if a transition is enabled “several times” (i.e., it remains enabled after in-
itiating an occurrence), it may start several independent occurrences in the same
time instant.

More formally, a timed Petri net is a triple, (), ,c f=  , where  is a
marked net, c is a choice function which assigns probabilities to transitions in
free-choice classes, or relative frequencies of occurrences to conflicting transi-

https://doi.org/10.4236/jcc.2018.610001

W. M. Zuberek

DOI: 10.4236/jcc.2018.610001 4 Journal of Computer and Communications

tions, []0,1c → , and t is a timing function which assigns an (average) occur-
rence time to each transition of the net, :f T +→ R , where +R is the set of
nonnegative real numbers.

If the occurrence times of transitions are deterministic, the nets are called
D-timed nets [11], and their behavior is represented by an embedded Markov
chain. If these occurrence times are stochastic with the (negative) exponential
distribution function, the nets are called M-timed nets (Markovian nets) [12],
and their behavior is represented by a Markov chain. In both cases, the concepts
of state and state transitions have been formally defined and used in the deriva-
tion of the state space of the model. If this state space is finite and reasonably
small, stationary probabilities of states can be determined by standard methods
[13] and then the stationary probabilities are used for the derivation of many
performance characteristics of the model [14]. In other cases, discrete event si-
mulation [15] is used to find performance characteristics of a timed net.

In timed nets, some transitions may have occurrence times equal to zero,
which means that the occurrences are instantaneous; all such transitions are
called immediate (while the others are called timed). Since the occurrences of
immediate transitions have no tangible effects on the (timed) behavior of the
model, for each time instant all occurrences of the (enabled) immediate transi-
tions are performed first, and then (still in the same time instant), when no more
immediate transitions are enabled, the occurrences of (enabled) timed transi-
tions are initiated. It should be noted that such a convention effectively intro-
duces the priority of immediate transitions over the timed ones, so the conflicts
of immediate and timed transitions are not allowed in timed nets. A detailed de-
scription of the behavior or timed nets with immediate and timed transitions is
given in [9].

3. Pipelined Processors

A timed Petri net model of a pipelined processor [16] at the level of instruction
execution is shown in Figure 1 (as usually, timed transitions are represented by
solid bars, and immediate transitions by thin bars). For simplicity, only two le-
vels of cache memory are represented in the model; it appears that such a sim-
plification does not affect the results in a significant way [17]. It is assumed that
the first-level cache does not delay the processor, while level-1 cache misses in-
troduce the delay of tc processor cycles for level-2 cache hits and tm processor
cycles for level-2 cache misses.

Place Pnxt is marked when the processor is ready to execute the next instruc-
tion. Pnxt is a free-choice place with three possible outcomes that model issuing
an instruction without any further delay (Ts0 with the choice probability 0sp), a
single-cycle pipeline stall (modeled by the timed transition Td1 with the choice
probability 1sp associated with Ts1), and a two-cycle pipeline stall (modeled by
Td2 and then Td1 with the choice probability 2sp assigned to Ts2). Other
pipeline stalls could be represented in a similar way, if needed.

https://doi.org/10.4236/jcc.2018.610001

W. M. Zuberek

DOI: 10.4236/jcc.2018.610001 5 Journal of Computer and Communications

Figure 1. Instruction-level Petri net model of a pipelined processor.

Cont is a free-choice place which determines if the current instruction ac-

cesses memory or not; the probability associated with Tma is the probability that
an instruction accesses memory (its typical value is 0.4 [3]). Complementary
probability is associated with Tnm.

Marked place Pex indicates that an instruction is ready to be issued to the ex-
ecution pipeline. It is assumed that once the instruction enters the pipeline, it
will progress through the stages and, eventually, leave the pipeline. Since the de-
tails of pipeline implementation are not important for performance analysis of
the processor, they are not represented here. Only the first stage of the execution
pipeline is shown as timed transition Tex.

P1 is another free-choice place which determines if the executing instruction
results in a level-1 cache hit or miss. Transition Th1 (with the corresponding
probability) models first-level cache hits when the processor continues fetching
and issuing instructions without any additional delay. Level-1 cache misses are
represented by Tm1.

P2 is another free-choice place; it models the hits and missed of the
second-level cache. The probability associated with transition Th2 represents the
hit ratio of the second-level cache (the occurrence time of Tc is the average
access time to the second-level cache, tc) while the miss ratio is associated with
transition Tm2 which represents accesses to the main memory (with the occur-
rence time tm).

Typical values of modeling parameters used in this paper are shown in Table 1.
All temporal data in Table 1 (i.e., cache and memory access times) are in

processor cycles.
Processor utilization as a function of h1, the hit rate of the first-level cache, is

shown in Figure 2 for three combinations of values of the second-level cache

https://doi.org/10.4236/jcc.2018.610001

W. M. Zuberek

DOI: 10.4236/jcc.2018.610001 6 Journal of Computer and Communications

Table 1. Modeling parameters and their typical values.

symbol parameter value

h1 first-level cache hit rate 0.9

h2 second-level cache hit rate 0.8

tp first-level cache access time 1

tc second-level cache access time 5

tm main memory access time 25

pm prob. that an instruction accesses memory 0.4

ps1 prob. of one-cycle pipeline stall 0.1

ps2 prob. of two-cycle pipeline stall 0.05

Figure 2. Processor utilization as a function of first-level cache hit rate for 2 0.8, 0.2.sh p= =

access time, 5ct = and 10ct = , and main memory access time, 25mt = and

50mt = . It should not be surprising that processor utilization is quite sensitive to
the values of h1, but is much less sensitive to the values of tc and tm.

Figure 3 shows processor utilization as a function of h2, the hit rate of the
second-level cache for two values of the main memory access time, 25mt = , and

50mt = . It is well illustrated in Figure 3 that processor utilization is rather in-
sensitive to values of h2, and does not change much for different values of tm.

4. Shared-Memory Bus-Based Systems

An outline of a shared-memory bus-based multiprocessor is shown in Figure 4.
The system is composed of n identical processors which access the shared mem-
ory using a system bus. To reduce the average access time to the shared memory,
the processors use (multilevel) cache memories. It is assumed that memory con-
sistency is provided by a cache coherence mechanism [18] which usually in-
creases the miss ratio of accessing caches (and is otherwise not represented in
the model).

https://doi.org/10.4236/jcc.2018.610001

W. M. Zuberek

DOI: 10.4236/jcc.2018.610001 7 Journal of Computer and Communications

Figure 3. Processor utilization as a function of second-level cache hit rate for

1 0.9, 0.2.sh p= =

Figure 4. A shared-memory buss-based multiprocessor.

A timed Petri net model of a shared-memory bus-based multiprocessor is

shown in Figure 5. It is very similar to the model shown in Figure 1 with the
only new element that is the place Bus controlling access to the shared memory
represented by Tsm. All n processors use the same model and are actually
represented by the initial marking (in Figure 5, three processors are represented
by the initial marking of place Pnxt). The single token assigned to Bus serializes
accesses to the shared memory; if several processors simultaneously request
access to the shared memory, only one access is granted while all other request
wait in place Psm.

Figure 6 shows the utilization of processors and the bus as functions of the
number of processors in a shared-memory system.

In Figure 6, the bus utilization approaches 100% for about 6 processors. Also,
the reduction of processors’ performance due to increasing waiting times for ac-
cessing the bus (and shared memory) is well illustrated in Figure 6.

The average waiting time (in processor cycles) of accessing shared memory
(i.e., the average time from requesting memory access to granting this access) is

https://doi.org/10.4236/jcc.2018.610001

W. M. Zuberek

DOI: 10.4236/jcc.2018.610001 8 Journal of Computer and Communications

Figure 5. A timed Petri net model of bus-based shared-memory multiprocessor.

Figure 6. Processor and bus utilization as functions of the number of processors for

1 0.8h = , 2 0.8h = , 0.2sp = . 5ct = , 25mt = .

shown in Figure 7 as a function of the number of processors in the system.
Figure 7 shows that the waiting times increase almost linearly with the num-

ber of processors when this number of greater then 6, i.e., when the bus (and
shared memory) is utilized in almost 100%. In such a situation each additional
processor increases the average length of the queue of processors waiting for
access to the bus by one, and then the waiting time of all processors is increased
by the access time to shared memory, i.e., by tm.

There are several ways in which the number of processors can be increased in
bus-based systems without sacrificing the processors’ performance. The simplest

https://doi.org/10.4236/jcc.2018.610001

W. M. Zuberek

DOI: 10.4236/jcc.2018.610001 9 Journal of Computer and Communications

approach is to introduce the second bus which allows two concurrent accesses to
shared memory, provided the memory is dual port (i.e., it allows two concurrent
accesses). Figure 8 outlines a dual bus shared-memory system.

Petri net model of a dual bus system is the same as in Figure 6, and the only
difference is the initial marking of place Bus, which now requires two tokens to
represent the two buses of the system.

Figure 9 shows the utilization of processors and buses as functions of the
number of processors in a dual bus system. It should be observed that, for the
small number of processors, the utilization of each bus in Figure 9 is one half of
that in Figure 6, and also the number of processors that can be used in such a
dual bus system without degradation of their performance is twice as large as in
a single bus system (Figure 6).

If dual port memory cannot be used, the shared memory can be split into sev-
eral independent modules which can be accessed concurrently by the processors

Figure 7. The average waiting time for accessing shared memory as as a function of the
number of processors for 1 0.8h = , 2 0.8h = , 0.2sp = . 5ct = , 25mt = .

Figure 8. A dual bus shared-memory multiprocessor.

https://doi.org/10.4236/jcc.2018.610001

W. M. Zuberek

DOI: 10.4236/jcc.2018.610001 10 Journal of Computer and Communications

provided that the bus is also split into sections associated with each module, with
processors accessing all such sections, as shown in Figure 10 for 4 independent
memory modules. The main difference between a multibus system (Figure 8)
and a system with split bus is in accessing the shared memory; in a multiple bus
system the whole shared memory is accessed by each bus while in a split bus
system (Figure 10) each section of the bus accesses only one memory module. In
the system shown in Figure 10, up to four (the number of memory modules)
memory accesses can be performed concurrently, but if two (or more) proces-
sors request access to the same memory module, the requests are served one af-
ter another.

Petri net models of a system outlined in Figure 10 is shown in Figure 11.
In Figure 11, the free-choice place Psm selects the requested memory module

by transitions Tbj, 1,2,3,4j = , and forwards the memory access request to the

Figure 9. Processor and bus utilization as functions of the number of processors—dual
bus system with 1 0.8h = , 2 0.8h = , 0.2sp = . 5ct = , 25.mt =

Figure 10. A shared-memory multiprocessor with multiple memory modules.

https://doi.org/10.4236/jcc.2018.610001

W. M. Zuberek

DOI: 10.4236/jcc.2018.610001 11 Journal of Computer and Communications

Figure 11. Petri net model of a shared-memory multiprocessor with multiple memory modules.

selected memory module (place Pbj). If the selected module is available, i.e. if
place Bj is marked, the access to shared memory is initiated. If memory module
is not available when it is requested, the memory access is delayed (in Pbj) until
the requested module becomes available.

If more that one processor is waiting for the same memory module, the selec-
tion of the processor which will get access first is random with the same proba-
bility assigned to all waiting processors. In real systems there is usually some
priority scheme that determines the order in which the waiting processors access
the bus. Such priority scheme could easily be modeled if it is needed (for exam-
ple, for studying the starvation effect which can be created when the system is
overloaded).

In Figure 11, the selection of memory modules is random, with the same
probabilities for all modules. If this policy is not realistic, a different memory
accessing policy can be implemented, for example, the probabilities of accessing
consecutive memory modules by each processor could be used to model sequen-
tial processing of large arrays, and so on.

Figure 12 shows the utilization of processors and buses as functions of the
number of processors in a system outlined in Figure 10.

In Figure 12, even for 25 processors the average utilization of the bus is close
to 85%, so the system can accommodate a few additional processors.

5. Concluding Remarks

The paper uses timed Petri nets to model shared-memory bus-based architectures
at the level of instruction execution to study the effects of modeling parameters on

https://doi.org/10.4236/jcc.2018.610001

W. M. Zuberek

DOI: 10.4236/jcc.2018.610001 12 Journal of Computer and Communications

Figure 12. Processor and bus utilization as functions of the number of processors—system
with four memory modules and 1 0.8h = , 2 0.8h = , 0.2sp = . 5ct = , 25.mt =

the performance of the system. The models are rather simple with straightfor-
ward representation of modeling parameters.

Performance results show that bus-based share-memory systems cannot be
used efficiently for large numbers of processors. When the utilization of the bus
approaches 100%, the utilization of individual processors as well as the entire
system degrades with the processors spending an increasing amount of time
waiting for the access to the bus (and shared memory).

The long-latency accesses to the shared memory can be tolerated by using in-
struction-level multithreading [19], which may result in increased performance
of processors. It should be observed, however, that multithreading increases
concurrency at the thread level, so improved processor utilization is associated
with increases demand for accessing the bus; the utilization of processors cannot
be improved without increasing the utilization of the bus. On the other hand, the
utilization of the bus can be reduced by improved performance of the cache
memory [20].

Performance results presented in this paper have been obtained by the simula-
tion of developed Petri net models. Their accuracy can be verified by a compari-
son with analytical solution for models with reasonably small state spaces. For
example, the model shown in Figure 1 has only 12 states, so its analytical solu-
tion (for different values of modeling parameters) can be easily obtained. Table
2 shows such a comparison of processor utilization for several values of parame-
ters h1 and h2. In all cases the simulation-based results are very close to the ana-
lytical ones.

The results presented in this paper are consistent with the earlier results, pre-
sented in [10] (although some parameters need rescaling for comparison be-
cause of different modeling of instruction execution). Table 3 compares the uti-
lization of processors and buses in a system with the split bus, for a selected

https://doi.org/10.4236/jcc.2018.610001

W. M. Zuberek

DOI: 10.4236/jcc.2018.610001 13 Journal of Computer and Communications

Table 2. A comparison of simulation and analytical results.

h1 h2 simulated results analytical results

0.8 0.8 0.52178 0.52083

0.8 0.9 0.57000 0.56818

0.9 0.8 0.64166 0.64103

0.9 0.9 0.67682 0.67568

Table 3. A comparison of utilization of processors and buses.

number of processors
current model

processor bus
previous model

processor bus

5 0.460 0.288 0.462 0.284

10 0.430 0.536 0.434 0.530

15 0.384 0.717 0.390 0.716

20 0.334 0.830 0.334 0.833

number of processors in the system.

Although the models of multiprocessors are very different, the performance
results are practically the same.

Finally, it should be noted that performance characteristics presented in this
paper can only be used as some insight into the complex behavior of multipro-
cessor systems. The performance of real-life multiprocessors very rarely can be
described by a set of parameters that remain stable for any significant period of
time. The basic parameters like the hit rates depend upon the executed programs
as well as their data, and can change very quickly in a significant way. Therefore
the performance of multiprocessors is typically described at a higher level of ab-
straction, for example, in terms of the number of processors.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Hamilton, S. (1999) Taking Moore’s Law into the Next Century. IEEE Computer,

32, 43-48. https://doi.org/10.1109/2.738303

[2] Lundstrom, M. (2003) Moore’s Law Forever? Science, 299, 210-211.
https://doi.org/10.1126/science.1079567

[3] Patterson, D.A. and Hennessy, J.L. (2006) Computer Architecture—A Quantitative
Approach. 4th Edition, Morgan Kaufmann, San Mateo, CA.

[4] Wilkes, M.V. (2001) The Memory Gap and the Future of High-Performance Mem-
ories. ACM Architecture News, 29, 2-7. https://doi.org/10.1145/373574.373576

[5] Mutlu, O., Stark, J., Wilkerson, C. and Patt, Y.N. (2003) Runahead Execution: An
Effective Alternative to Large Instruction Windows. IEEE Micro, 23, 20-25.
https://doi.org/10.1109/MM.2003.1261383

https://doi.org/10.4236/jcc.2018.610001
https://doi.org/10.1109/2.738303
https://doi.org/10.1126/science.1079567
https://doi.org/10.1145/373574.373576
https://doi.org/10.1109/MM.2003.1261383

W. M. Zuberek

DOI: 10.4236/jcc.2018.610001 14 Journal of Computer and Communications

[6] Murata, T. (1989) Petri Nets: Properties, Analysis and Applications. Proceedings of
IEEE, 77, 541-580. https://doi.org/10.1109/5.24143

[7] Reisig, W. (1985) Petri Nets—An Introduction (EATCS Monographs on Theoreti-
cal Computer Science 4). Springer-Verlag, New York.

[8] Popova-Zeugmann, L. (2013) Time and Petri Nets. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-3-642-41115-1

[9] Zuberek, W.M. (1991) Timed Petri Nets—Definitions, Properties and Applications.
Microelectronics and Reliability (Special Issue on Petri Nets and Related Graph
Models), 31, 627-644. https://doi.org/10.1016/0026-2714(91)90007-T

[10] Zuberek, W. (2018) Performance Analysis of Shared-Memory Bus-Based Multipro-
cessors Using Timed Petri Nets. In: Campos-Rodriguez, R., Ed., Petri Nets in
Science and Engineering, InTechOpen, London, Chapter 5, 75-91.

[11] Zuberek, W.M. (1987) D-Timed Petri Nets and Modelling of Timeouts and Proto-
cols. Transactions of the Society for Computer Simulation, 4, 331-357.

[12] Zuberek, W.M. (1986) M-Timed Petri Nets, Priorities, Preemptions, and Perfor-
mance Evaluation of Systems. In: Advances in Petri Nets 1985 (LNCS 222), Sprin-
ger-Verlag, Berlin, 478-498. https://doi.org/10.1007/BFb0016227

[13] Allen, A.A. (1991) Probability, Statistics and Queueing Theory with Computer
Science Applications. 2rd Edition, Academic Press, San Diego, CA.

[14] Jain, R. (1991) The Art of Computer Systems Performance Analysis. J. Wiley Inters-
cience, New York, NY.

[15] Pooch, U.W. and Wall, J.A. (1993) Discrete Event Simulation. CRC Press, Boca Ra-
ton, FL.

[16] Ramamoorthy, C.V. and Li, H.F. (1977) Pipeline Architecture. ACM Computing
Surveys, 9, 61-102. https://doi.org/10.1145/356683.356687

[17] Zuberek, W.M. (2007) Modeling and Analysis of Simultaneous Multithreading.
14th International Conference on Analytical and Stochastic Modeling Techniques
and Applications, a Part of the 21st European Conference on Modeling and Simula-
tion, Prague, 15-120.

[18] Suh, T., Lee, H.S. and Blough, D.M. (2004) Integrating Cache Coherence Protocols
for Heterogeneous Multiprocessor System, Part 2. IEEE Micro, 24, 55-69.
https://doi.org/10.1109/MM.2004.50

[19] Jesshope, C. (2003) Multithreaded Microprocessors—Evolution or Revolution. In:
Advances in Computer Systems Architecture, Springer-Verlag, Berlin Heidelberg,
21-45. https://doi.org/10.1007/978-3-540-39864-6_4

[20] Milenkovic, A. (2000) Achieving High Performance in Bus-Based Shared-Memory
Multiprocessors. IEEE Concurrency, 8, 36-44. https://doi.org/10.1109/4434.865891

https://doi.org/10.4236/jcc.2018.610001
https://doi.org/10.1109/5.24143
https://doi.org/10.1007/978-3-642-41115-1
https://doi.org/10.1016/0026-2714(91)90007-T
https://doi.org/10.1007/BFb0016227
https://doi.org/10.1145/356683.356687
https://doi.org/10.1109/MM.2004.50
https://doi.org/10.1007/978-3-540-39864-6_4
https://doi.org/10.1109/4434.865891

	Timed Petri Net Models of Shared-Memory Bus-Based Multiprocessors
	Abstract
	Keyword
	1. Introduction
	2. Timed Petri Nets
	3. Pipelined Processors
	4. Shared-Memory Bus-Based Systems
	5. Concluding Remarks
	Conflicts of Interest
	References

