
Journal of Computer and Communications, 2018, 6, 106-125
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2018.69008 Sep. 21, 2018 106 Journal of Computer and Communications

The Performance Analysis of Multi-Layer
Split-Protocol

Bharat S. Rawal

Department of Information Science and Technology Pennsylvania State University, Abington, PA, USA

Abstract
The growing need for high-performance networking is achieved with parallel
processing; several networking functions are processed concurrently in order
to accomplish a performance Networking Architecture. Open systems inter-
connection (OSI) model is an example of multi-layering structure, and each
layer performs definite function unique to that layer. OSI model works on
pass it on principle, and it is divided in two stacks lower stack and upper
stack. Layers 4 - 7 represent upper stack and responsible for data applications.
The remaining 1 - 3 layers represent the lower stack and mostly involve in
data movement. There are many techniques are available for server optimiza-
tion enhancing the availability by distributing the load among peer servers.
According to our knowledge, nobody has implemented such splitting archi-
tecture across the entire OSI model. In this paper, we present multilayer
Split-protocol (MLSP) a high performance, reliable and secure technique for
spiting an application or network protocol across OSI model, and we present
the design, implementation, and empirical performance evaluation of MLSP.
It is the ideal choice for Cloud services where each functional component is
considered an independent of each other.

Keywords
OSI Model, Bare Machine Computing, Split-Protocol, M-TCP, Web Server,
Reliability, Availability, Performance

1. Introduction

Web server security and load delivery between Web servers are significant chal-
lenges that remain to be resolved using a range of methods. In specific,
load-balancing and splitting techniques are employed at numerous layers of the
protocols tack to segment the load among a cluster of Web servers [1] [2]. A P2P

How to cite this paper: Rawal, B.S. (2018)
The Performance Analysis of Multi-Layer
Split-Protocol. Journal of Computer and
Communications, 6, 106-125.
https://doi.org/10.4236/jcc.2018.69008

Received: July 19, 2018
Accepted: September 18, 2018
Published: September 21, 2018

Copyright © 2018 by author and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2018.69008
http://www.scirp.org
https://doi.org/10.4236/jcc.2018.69008
http://creativecommons.org/licenses/by/4.0/

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 107 Journal of Computer and Communications

application such as Bitterant (or anything else named “torrent”), Gnutella, Lime
Wire, and KaZaA are some examples of P2P applications. P2P applications work
by letting your computer down load parts of files from multiple sources on the
Internet at the same time [3]. We propose a technique for splitting web request
at various layers. At upper layers (5 - 7) an application data and bottom layers (1
- 4) mostly moving data around. HTTP/TCP connection between Web servers
permits one server to manage a connection establishment and others to accom-
plish data transfer. We are splitting TCP connections in such way that it allows
servers to distribute the load without the central authority or any client’s help.
Each server has multiple NIC cards. These NIC cards can function unidirection-
al or bi-directionally based on a server’s algorithm. Details of different type’s
HTTP splitting into two servers are explained in [4] [5]. Figures 1-3 describes
splitting in to multiple servers with a different configuration. Split-protocol is used
for improving security, availability, and reliability of server system [6] [7]. Jaliya
and Fox have described several different studies of clouds and cloud technolo-
gies on both real applications and standard benchmark. They found that cloud
technologies work well for most pleasingly-parallel problems (“Map-only” and
“Map-reduce” classes of applications) [8].

Novelty and our original contribution: According to our knowledge we have
not found any existing technique which splits a single web service on multiple
servers, and each server performs the function of an individual or multiple OSI
layers. The OSI reference model illustrates the layered architecture, at every layer
specific actions, functions, and services take place. We can divide network func-
tionality into seven subprocesses and implement similar to the OSI model. The
multi-layer splitting offers an efficient load balancing; minimizing the depen-
dency; improves the reliability by distributing the functionality over numerous
servers; reduces the system complexity and improves performance and the sys-
tem security.

Figure 1. Split architecture.

Inter- Server Packet

Network
SYN
ACK
GET
DATA-ACK
FIN-ACK

DATA

SYN-ACK
GET-ACK
FIN-ACK-ACK

CS DS

Client

CS: Connection Server
DS: Data Server

https://doi.org/10.4236/jcc.2018.69008

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 108 Journal of Computer and Communications

Figure 2. Splitting with a single NIC card.

Figure 3. Splitting between two NIC cards.

The remainder of the paper is organized as follows. Section II exhibits related
work and Section III talks about some performance enhancing techniques. IV
describes multilayer splitting architecture. Section V presents M/M/1 and
M/M/S Queuing systems. Section VI outlines the MLSP implementation, and
Section VII defines performance metrics. Section VIII presents performance.
Section IX details the signification of MLSP. And section X highlights an ac-
knowledgment. Section XI holds the conclusion.

2. Related Work

Bare Machine Computing (BMC), formerly stated to as dispersed OS computing
[9], permits an application to runonabare PC without any centralized kernel or
OS support. In the BMC methodology, an application condensed in application
object (AO) [9] straight talks with the hardware. According to my knowledge, a
technique form ultilayer splitting, a HTTP-based TCP connection in this custom

https://doi.org/10.4236/jcc.2018.69008

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 109 Journal of Computer and Communications

has not been introduced earlier. Splitting is comparable to the M-TCP protocol
to transfer TCP connections from one server to another [10]. TCP connection
splitting and the in [11], staticanalys is techniques are used to analyze the code
of Linux device drivers. Also, the communication between controllers, the OS,
and the hard ware is monitored. In [12], hard ware abstraction and APIs for de-
vices and software interfaces are employed as a foundation for producing device
drivers [13]. The Uniform Driver Interface (UDI) is designed for generating de-
vice drivers that are manageable concerning platforms and OSs [14]. The Net-
work Driver Interface Specification (NDIS) separates the NIC from its driver
and defines a standard interface between upper and lower layer controllers [15].
The NDIS library is supported by many Windows versions, while the NDIS
wrapper [16] enables Windows drivers to be used with Linux. [17] uses TCP
slicing for performance guarantee for cluster-based internet services. In [18], an
approach for driver reuse is proposed, where a virtual machine is used to run a
driver with its original OS. Various methods applied for load balancing share
some essential features. For example, both load balancing and TCP connection
splitting enable a server load to be allocated between servers. In layer-2 (link
layer) load balancing, various links function as a unique virtual connection, and
in layer-4 (transport layer) load balancing, applications are processed based on
port numbers and IP addresses. In layer-7 load balancing [17], content know-
ledge from the HTTP request is accepted to perform load-balancing judgments.
In this case, there are two TCP connections that are spliced [18]. G. Anastasi
[19] examined the BitTorrent scheme and completed the preliminary study.
Gummadi et al. [20] investigated the prevalence of P2P content across the In-
ternet and described the “download at most once” feature of P2P clients. Saroiu
[21] [22] characterized the P2P traffic over the Internet, including Napster,
Gnutella, and KaZaa systems. Izal [21] investigated a five-month workload of an
individual BitTorrent method for software delivery that required thousands of
peers. Bellissimo and Izal each estimated the realization of BitTorrent at the flash
crowd period [22] [23]. The security aspect of the splitting technique is demon-
strated in earlier publications [7] [24] [25]. Most of the existing related work
splitting needs some shorts of client involvements and requires some central
controlling mechanism for communicating between peers. Existing techniques
heavy weight communication overhead affects the performance of overall sys-
tems. In our technique there is only two packets of 168 byte are involved for in-
ter server communication and it does not require any client’s involvement. Spit-
ing process is entirely transparent to client.

3. Performance Enhancing Techniques
3.1. Pipeline

The pipeline is an execution procedure where several tasks are an overlay in ex-
ecution. The computer pipeline is distributed in various stages. In each step,
complete a portion of execution in parallel. Each level is connected to next to

https://doi.org/10.4236/jcc.2018.69008

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 110 Journal of Computer and Communications

create a pipe. Typically, pipeline does not reduce the proper time execution; in-
stead, it improves performance, throughput. A computer processor pipeline is
from time to time shared with an instruction pipeline and an arithmetic pipe-
line. The instruction pipeline signifies the phases in which a step is progressed
through the processor, including it is being drawn, possibly buffered, and then
executed. Moreover, the arithmetic pipeline embodied the portions of a mathe-
matic operation that can be broken down and overlapped as they are performed
[18]. A similar technique used in dynamic random-access memory (DRAM), in
which the memory loads the required memory subjects into a small cache com-
posed of static random-access memory (SRAM) and then immediately begins
fetching the next memory contents. This makes a two-stage pipeline, wherein
read instruction is one stage written to memory is in the other phase [14]. The
Uniform Driver Interface (UDI) is designed for generating device drivers that
are manageable concerning platforms and OSs [6].

3.2. Parallel Computing & Distributed Computing

Distributed computing and parallel computing are frequently deliberated simi-
lar, though there is a trivial difference between them. Parallel computing denotes
a tightly coupled system with each other. If we look closely at parallel compu-
ting, it relates to the technique in which computation is divided between various
processors who are sharing the collective memory. The uniformity describes the
design of parallel computing. The cluster of nodes connected through an InfiniB
and network which is configured with shared memory. Distributed computing,
on the other hand, comprises any design or scheme in that computation is frag-
mented into parts and are performed simultaneously on unalike computing
components, they may be multiprocessors on the same node, another computer
or cores within the same CPU [26] [27].

4. Multilayer Split Architecture

For readers convenience we are reproducing the splitting architecture between
two or more servers [4]. The split architecture used for the experiments de-
scribed in this paper is illustrated in Figure 2. Although these experiments were
conducted in a LAN environment, as noted earlier, the proposed splitting tech-
nique does not require that the set of clients {C} be connected to a LAN (they
can be located anywhere on the Internet). The only requirement is that the serv-
ers be connected to the same LAN for the reasons discussed below. However,
this requirement does not limit the scope or scalability of splitting since many
real-world Web server clusters are located within the same LAN. The clients
send requests to servers S1 or S2. S1 and S2 are referred to as split servers. For a
given request, the connection server (CS) handles the {CE, CT} phases of a con-
nection, and its delegated server S2 (DS) handles the {DT} phase. Similarly, S2
can act as a server for a client’s request and its DS will be S1. The clients do not
have any knowledge of a DS. A given request can also be processed by the CS

https://doi.org/10.4236/jcc.2018.69008

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 111 Journal of Computer and Communications

without using the DS. In general, there can be a set of n (≥2) servers that can
delegate requests to each other.

A given request is split at the GET command as shown in Figure 1. The CS
handles the connections, and the DS handles the data transfer. In addition to
connections, the CS also handles the data ACKs and the connection closing. The
CS has complete knowledge of the requested file, its name, size, and other
attributes, but it may or may not have the file itself. However, the DS has the file
and serves the data to the client. When a TCP connection is split in this manner,
the TCP sliding window information is updated by S1 based on received ACKs
even though the data file is sent by S2. Likewise, S2 knows what data has been
sent, but it lacks knowledge of what data has been actually received by the client.
Thus, retransmissions require that ACK information be forwarded by S1 to S2
using delegate messages as described below. The number of delegate messages
exchanged should be kept to a minimum since they add overhead to the system
and degrade performance.

When a client makes a request to S1, its connection is based on (IP3, Source-
Port) (IP1, 80). S1 can serve this request to a client directly, or it can utilize its
DS, which is S2, to serve data. The decision to use a DS can be made based on
several factors such as the maximum number of requests that can be processed
at S1, the maximum CPU utilization at S1, or resource file location. Alternative-
ly, a load balancing algorithm could be used. When S1 chooses to use S2 as a DS,
it proceeds as follows. After the GET command is received, it sends an ACK to
the client and also sends a delegate message DM1 to S2 (e.g. DM1). The message
DM1 contains the state of the request that is stored in S1 in the form of an entry
in the TCP table (referred to as a TCB entry). When DM1 reaches the DS, it
creates its own TCB entry and starts processing this request as if it was initiated
in the DS itself. When a DS sends data to the client it uses the CS’s IP (IP1).

In principle, the Internet setting is not different from a LAN environment
since the DS does not need to receive any packets sent by the client to IP address
IP1. A client located anywhere on the Internet can communicate in the usual
manner with the CS. Since it is unaware that the DS is actually sending the data,
it sends the ACKs as usual to the CS with whom the TCP connection was estab-
lished. From the client’s point of view, it has established a connection with IP
address IP1. Now consider the information that is present in the local routers
and switches assuming that both S1 and S2 are located in the same LAN. Note
that only S1 should respond to ARP requests for IP address IP1. This ensures
that any local router receiving the response will have a single ARP entry (IP1,
MAC S1) in its ARP cache and correctly forward ACKs and connection requests
sent with destination address IP address IP1 to S1. Note also that the switch to
which S1 is connected will have the entry (MAC S1, INT1) in its forwarding ta-
ble, where INT1 is S1’s interface to the switch. Likewise, the switch to which S2
is connected has the entry (MAC S2, INT2) in its forwarding table, where INT2
is S2’s interface to the switch. When S1 sends a delegate message to S2, if they

https://doi.org/10.4236/jcc.2018.69008

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 112 Journal of Computer and Communications

are both on the same LAN, S1 can simply encapsulate the message in a MAC
layer frame addressed to MAC S2 (i.e., it does not need an IP address to receive
delegate messages from S1). Thus, with these assumptions, switches and routers
do not need any special configuration for split connections to work.

However, if S1 and S2 are on LANs with different subnet prefixes (or in gen-
eral, on WANs or different networks) and communicate through routers, S2 is
not reachable using IP address IP1 since its prefix is not consistent with the
network it is on. So, it will need to use its own IP address IP2 to receive packets
including delegate messages from S1. This means that the router for S2 must
have an ARP entry (IP2, MAC S2) for forwarding to S2, which will only be
present if S2 has responded to ARP request for IP address IP2 with its MAC S2.
But in this case, if S2 is also sending data to a client using IP address IP1 as
source, it raises a security issue due to IP address spoofing. Such IP address
spoofing may cause problems with firewalls due to sending topologically incor-
rect packets. For splitting to work in this case, note that S1 must send and re-
ceive with IP address IP1, whereas S2 must send with IP address S1 and receive
with IP address S2. Now S1 and S2 cannot both delegate to each other, since it is
not possible for both machines to send and receive using both IP addresses IP1
and IP2. There are also TCP issues with splitting due to its sliding window, dup-
licate acks, fast retransmit, and congestion control that need further study. More
delegate messages could be used to address some of these TCP issues, but this
would have a negative performance impact.

As the connection and data transfer are split in the architecture, there is a
need to send one or more DM messages (DM2s) to DS. At least one DM2 mes-
sage is needed to indicate that CS received the FIN-ACK. If a received ACK in-
dicates that data is lost, retransmission is needed. One or more DM2s are needed
to handle retransmissions since the DS does not receive any data ACKs. The CS
monitors the data ACKs and decides to send DM2s as needed. Throughout the
splitting process, the client is not aware of DS, and there is no need to involve
the client (unlike M-TCP). The last DM2 message to DS is used to terminate
when all data has been acknowledged by the client.

Splitting results in two possible overheads. Network traffic due to sending
DMs to DS, and the latency encountered at the client due to DM transmission
on the LAN (or WAN) from CS to DS. In a LAN environment, this latency is
negligible, but may be larger in a WAN or Internet environment. The network
traffic generated for each request is at least two DM packets; in most cases it is
two packets assuming no retransmissions. If the DM packet is small (168 bytes
in a bare PC), the network overhead will be reduced. However, one needs to
consider the above two overheads of the split request architecture for a given ap-
plication.

The MLSP design used for the experiment is exemplified in Figures 1-3. Al-
though the experimental tests were conducted in a LAN/WAN environment, the
detailed splitting architecture is described in our earlier works [4] [5]. The

https://doi.org/10.4236/jcc.2018.69008

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 113 Journal of Computer and Communications

clients do not require any prior knowledge of DSs. The CS can also process a
given request without using the DS. In general, there can be a set of n (≥2) serv-
ers those can delegate requests to each other.

When a client requests CS, its connection is based on (IP, Source Port) (IP1,
80). S1 can serve this request to a client directly, or it can utilize its DS, which is
DS1, to serve data. The decision to use a DS can be made based on several fac-
tors such as the maximum number of requests that can be administered at CS,
the maximum CPU utilization at CS, or resource file location. Alternatively, a
load-balancing algorithm could be used. When CS chooses to use DS, it proceeds
as follows. After the GET command is received, it sends an ACK to the client
and sends a delegate message (DM1) to DS. The message DM1 encompasses the
state of the request that is kept in CS as TCB records. When DM1 reaches the
DS, it creates its TCB entry and starts processing this application as if it was
initiated in DS itself. When a DS directs data to the client, it uses the CS’s IP
(IP1).

Figure 2 represents two split configurations 1 & 2 with only one NIC card. In
configuration 1, DSs just sends data packets to the clients and does not send any
other kinds of packets to the clients.

In configuration 2, the DSs dose sends other types of packets to clients. Figure
3 represents two split configurations 3 & 4 with two NIC cards. In configuration
3, DSs only sends data packets to the clients and does not send any other types of
packets to the clients. CS and DSs both receive all packets through NC1 and
transmit through NC2. In configuration 4, DSs do receive/send other types of
packets to the clients. Also, CS and DSs both receive all packets through NC1
and transmit through NC2 respectively [28].

Figure 4 represents partial delegation CS and DS both can send data packets
and NIC1 & NIC2 both can receive and transmit data (full duplex).

Figure 4. MLSP architecture with a partial delegation.

https://doi.org/10.4236/jcc.2018.69008

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 114 Journal of Computer and Communications

5. M/M/1 and M/M/S Queuing System

As shown in Figure 5, MLSP system with a single queue with more than one
parallel server, then we have M/M/S queuing system, in the diagram below four
identical servers severing a request coming into a single queue [19].

The arrival rate λ, Service rate is µ, the ratio of traffic intensity

Ρ = λ/µ (1)

Lq = Ls − LB (2)

Lq is average number costumer in the waiting line for services, Wq is average
time customer spend in the waiting line for services

Ws = Wq + (1/µ) (3)

We are reproducing hear the analytical model of split-system as shown in
Figures 5-8, represents a Non-split system. It has to perform both tasks of CS
and DS (establishing a connection and serving data) [29]; which is similar to
single-channel, multiphase system. For one http request, the system is locked for
entire time t and can offer µ = mean service rate. A split system become sidle af-
ter t/2 time and offers 2 µ mean service rate.

Figure 7 shows the non-resource sharing systems non-split system and Figure
7. Illustrate the resource sharing non-split system and Multichannel, sin-
gle-phase system.

Figure 8 demonstrates split system two hardware systems and each hardwares
has two software components CS and DS. This system is similar to Multichan-
nel, multiphase system.

We will consider the case that the server can serve limited http requests. The
waiting queue is regarded as a finite queue.

Where λ = mean arrival rate, µ = mean service rate, and n = the number of
request in the waiting line system and the probability is described in (1).

Figure 5. M/M/s queuing system.

VVs1 V V

SERVER-1 SERVER-2 SERVER-3 SERVER-4

WAITING
QUEUE

https://doi.org/10.4236/jcc.2018.69008

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 115 Journal of Computer and Communications

Figure 6. Non-split and split systems.

Figure 7. Non-recourse sharing non-split system.

Figure 8. Resource sharing non-split system.

Non-Split system; Single-channel, multiphase system
5a.

5b.

Split system; Single-channel, single system

https://doi.org/10.4236/jcc.2018.69008

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 116 Journal of Computer and Communications

() ()()1
0 1 1 Mµ µλ λ +Π = − −

[]0
n

n µλΠ = Π where n ≤ M

[] () ()
()

()()1 1
(1)1 1

M M
ME N λ µ λ µ λ µ λ µ

+ +

− +
 = − −

 (4)

Πn is the probability of n http request being in the server system. Let M is the
maximum requests in the system, and ΠM is a value Πn when n = M.

We can define the probability that a http request (job) not join the system [28]
in (2).

[] [] ()1E Nq E N Mλ π µ= − −

[] [] ()1E R E N Mλ π= −

[] [] 1E Rq E R µ= − (5)

We will compare the average response E [Rs] shown in (3), (4) and (5) and E
[Rc] time described (6) and (7) by for the separate and non-split queuing sys-
tems respectively as illustrated in Figure 7 and Figure 8. The first system cor-
responds to two independents M/M/1 queues, with ρ = λ/2µ [29].

[] () () ()1 1 2 2 2E Rs µ λ µ µ λ= − = − (6)

On the other hand, the shared queue sharing system in Figure 10 is
represented by M/M/2 system. To obtain E [Rc] first, we will calculate E [Nc].

[] () ()2 2
02 2 2! 1E Nc ρ ρ ρ π ρ= + − − (7)

where () ()0 1 1π ρ ρ= − + (8)

[] ()22 1E Nc ρ ρ= −

[] [] ()() ()2 2 21 1 4 4E Rc E Nc µ ρ µ µ λ= = − = − (9)

We have

[] () () []2 22 2 4 2 4E Rs E Rcµ λ µ λ µ λ= − = + − > (10)

This indicates the common queue system is better than a separate-queue sys-
tem [29]. Figure 9 represents a Split-system with a balanced (optimized) re-
source sharing common queue system. Therefore, it naturally offers a better re-
sponse time than the non-split system.

6. Multilayer Splitting Protocol Implementation

For simplicity, we have implemented the division of functionality according to
the TC/IP layering structure. For this experiment, we have spliced server func-
tionality between Connection Server (CS) and data servers (DSs).

1) At the Application Layer: HTTP protocol and encryption/decryption
splitting have been performed.

2) Host-to-Host Transport Layer: TCP/UDP code is split between CS and
DS.

3) At the Internet Layer: Splitting of Logical Addressing such as IP and the

https://doi.org/10.4236/jcc.2018.69008

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 117 Journal of Computer and Communications

Figure 9. Resource sharing split-system.

Figure 10. Lan Network topology.

Address Resolution Protocol (ARP) performed between CS/DS.

4) At the Network Interface, Layer: Ethernet and implementation of soft-
ware as a driver for a network interface card (NIC) shared between CS and DS.

5) Splitting at NIC card level: Splitting at NIC card level description is re-
produced here is from our previous work [14]. A NIC driver consists of a
send/receive data structure described in [14]. In a given driver, send a path using
a transcript descriptor table (TDL) and receive the path using the descriptor ta-
ble. Send and receive controls such as for enabling, disabling, and configuration

https://doi.org/10.4236/jcc.2018.69008

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 118 Journal of Computer and Communications

parameters are also different from the driver. In essence in the NIC and the
driver, send and receive paths can be treated as two separate entities. In the BMC
Web server implementation send and receive, paths are also different. When a
packet is received in RDL, its Ethernet header is removed and sent to IP. Then
an IP header is removed and sent to TCP. For a given client’s IP address and
Port#, a different request is formed at the TCP and a unique entry is created at a
TCP block table (TCB). This unique entry is kept in the TCB until the comple-
tion of a client’s request. The Ethernet card will send packets from TDL and re-
ceive packets into RDL. As it is observed, send and receive paths are isolated in
BMC Web server design.

7. Performance Metrics

1) Peak rate: the maximal processing rate that can be theoretically achieved
when all processors (CPUs) are fully consumed [29].

2) Speedup: measures the gain we can achieve by using certain parallel
processing to run a given parallel application in order to solve an explicit prob-
lem [29].

S = Ts/Tp = 838.829/220.78625 = 3.799280979 (11)

TS: execution time needed with the sequential algorithm; Tp: execution time
required with the parallel algorithm.

3) Efficiency: this metric narrates the speedup to the number of processors
used; by this, it provides a quantity of the ability with which the processors are
used [29].

E = S/P = 3.7999280979/4 = 0.949820245 (12)

S: speedup; P: number of processors.
For the ideal situation, in theory:
S = P; which means E = 1.
We can notice that if we increase the number of processors (DSs) in the MLSP

system, practically we can approach closer to the ideal efficiency of 1.

8. The Performance Analysis of MLSP and Non-MLSP
Systems

8.1. Experimental Setup

The experimental setup involved Dell Optiplex Optiplex 960 PCs with Dell Op-
tiplex 960 SFF Core 2 Duo E8400 3.0 GHz 8 GB RAM and Intel 1G NIC on the
motherboard. The LAN is set up for the experiments using a Cisco 8 port Giga-
bit Switch. The http_load [15] stress tool was run on Linx client and the bare PC
Web client. The http_load can run up to 1000 simultaneous HTTP applications
per sec. Each bare PC Web client can run up to 8000/sec HTTP requests. A
combination of Bare and Linux alongside with MLSP servers are used to meas-
ure the performance. We tested the MLSP with standard browsers running on
Windows and Linux. Figure 10 represent W-Lan network topology.

https://doi.org/10.4236/jcc.2018.69008

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 119 Journal of Computer and Communications

8.2. Measurements and Analysis

In Figures 10-14, a red line represents M/M/s queuing system with four parallel
arrangements, and the blue line serve M/M/s queuing system with MLSP. The
resource file size is 16 KB bytes and the rate of arrival 2000 requests/sec. From
Figure 11, we can see that the CPU utilization reduces exponentially with an in-
crease in a number of servers.

From Figure 12, we can notice that with a system of two server numbers in
the waiting line is higher in the MLSP system due to inter-server communication
overhead. It drastically reduces the increase in the number of servers almost all
requests are allocated to the server without any significant delay.

In Figure 13, the average number of requests in the system is always less with
the MLSP system. From Figure 14, we can notice that each request spent fewer
average time in the MLSP system than regular M/M/s queuing system.

In Figure 15, we can notice that the probability of no requests in the system
increases with an increase in a number of servers. The probabilities of all servers
are busy in the system is roughly around 0.3. And the likelihood of at least one
server is ideal in the system reduces with an increase in a number of servers in a
system which is what expected with M/M/s queuing system.

1) Internal Timing Comparison: The HTTP protocol timing results, includ-
ing the TCP interactions for non-split and split servers. A client request is issued
to CS, and it can delegate the request to the DS. The client request involves a re-
source file size of 4K to 1GB. A Wireshark packet tracer was used to capture and
measure protocol transaction timings. The Wireshark results were used to define
the latency overhead incurred in the splitting. The usual latency measured be-
tween GET-ACK and Header data is about 20 microseconds without splitting

Figure 11. CPU utilization.

https://doi.org/10.4236/jcc.2018.69008

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 120 Journal of Computer and Communications

Figure 12. An average number of requests waiting in line.

Figure 13. Average number of requests in the system.

Figure 14. Average time spent in the system (in seconds).

https://doi.org/10.4236/jcc.2018.69008

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 121 Journal of Computer and Communications

Figure 15. System Probabilities with MLSP system.

and 25 microseconds with splitting into two cards. Due to the inter-server mes-
sage, the latency is about 55 microseconds.

2) Connection Times: Figure 16 shows the connection time for various
MLSP configuration and varying file sizes. We can notice that Split/Two NIC
configuration offers the shortest connection time and No-split/One NIC has the
most significant connection timing. Split/Two NIC connection time is on aver-
age 88% lower than No-split/One NIC configuration.

3) Response Times: Figure 17 shows the response time for different HTTP
request rates. For the small size of 4 K resource file size, the non-split server can
process maximum up to 8500 requests/sec.

We can notice that the behavior of connection and response times are similar.
We can see that Split/Two NIC configuration offers the lowest connection time
and No-split/One NIC has the highest connection timing. Split/Two NIC con-
nection time is on an average 59% lower than No-split/One NIC configuration.
However, response times start increasing rapidly at the 100 K file size. The rapid
surge in response time and connection times due to the accumulation of a large
number of HTTP requests under substantial load conditions, and also due to the
higher CPU utilization as discussed below.

4) Protocol Transaction Time: Figure 18 shows that protocol transaction
time for 5965717-byte resource file with two NIC card system.

With a single server, the complete transaction took 838.761 Millisecond, and
with two MLSP servers, it took 838.829 Millisecond slightly higher. When we
added 4DSs with two NIC cards, it took only 220.78625 MS. In another word, it
took only 26% of the time to complete the transaction. We can notice that with
MSL we can significantly reduce the file transfer time.

9. Signification of MLSP

The significance of MLSP is a general approach that can be applied, in principle,

https://doi.org/10.4236/jcc.2018.69008

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 122 Journal of Computer and Communications

Figure 16. Connection time.

Figure 17. Response times.

Figure 18. The protocol transaction time for 5965717 bytes resource, file [28].

https://doi.org/10.4236/jcc.2018.69008

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 123 Journal of Computer and Communications

to any application that uses TCP/IP layering protocol. Furthermore, it can be
applied to a protocol other than TCP/IP to split the functionality of a protocol
across machines or processors). In particular, splitting the HTTP protocol has
many impacts on the area of load balancing. We discuss some of these impacts
below. MLSP protocol configurations can be used to achieve better response and
connection times while providing scalable performance. Splitting also eliminates
the need for (overhead/cost associated with) external load balancers such as a
dispatcher or a particular switch. There are definite security advantages of hav-
ing server component dispersed from central servers. Keeping DSs invisible to
clients avoids the direct attack on database or security services. Lower CPU uti-
lization of the system makes more resilient and responsive to any unwanted at-
tack from malignant clients on the Internet. Besides the intrinsic sequentially of
parts OSI algorithm also, other factors limit the available speedup [29]:

1) communication cost;
2) load balancing of processors;
3) costs of creating and scheduling processes; and
4) I/O operations (mostly sequential in nature).
There are many algorithms with a high degree of parallelism.
1) The value of f is very small and can be ignored;
2) Suited for massively parallel systems; and
3) The other restraining aspects, like the overhead of communications, be-

come critical, in such algorithms.

10. Conclusion

Our empirical results demonstrate that MLSP is feasible in an Internet setting
and can be used in the load distribution without client’s assistance or central
control. The high-performance technique MLSP shows scalability, and MLSP
architecture offers highly reliable and secure service for Client/Server protocols.
Multilayered security is a network security approach which is widely used to
protect customers’ operations with multiple levels of security measures. Distri-
buting services to specialized unit offers better performance since it has to deliv-
er the only kind of task. So there is no communication delay. According to the
economic principle of specialization of services offers higher degrees of produc-
tive efficiency within the entire system of businesses or areas. In conclusion, the
MLSP system offers better performance than systems whose function is centra-
lized in a single location. By splitting the various tasks across different layers on
a different machine, each device is under less stress. This allows each node to
perform more efficiently. Because MLSP systems work across a variety of differ-
ent machines, they are inherently scalable and reliable.

Acknowledgements

This paper is a substantially extended version of COMSNETS 2018 conference
paper [28]. And special thanks to Dr. Rajkumar Buyya for comments and sug-

https://doi.org/10.4236/jcc.2018.69008

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 124 Journal of Computer and Communications

gestions that helped to improve the paper.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References
[1] Cohen, A., Rangarajan, S. and Slye, H. (1999) On the Performance of TCP Splicing

for URL-Aware Redirection. Proceedings of the 2nd Conference on USENIX Sym-
posium on Internet Technologies and Systems, Boulder, Colorado, 11-14 October
1999, 11.

[2] Jiao, Y. and Wang, W. (2010) Design and Implementation of Load Balancing of a
Distributed-System-Based Web Server. 3rd International Symposium on Electronic
Commerce and Security (ISECS), Guangzhou, China, 29-31 July 2010, 337-342.

[3] Fan, B., Chiu, D.-M. and Lui, J. (2006) The Delicate Tradeoffs in BitTorrent-Like
File Sharing Protocol Design. Proceedings of the 2006 IEEE International Confe-
rence on Network Protocols, Santa Barbara, CA, USA, 12-15 November 2006,
239-248. https://doi.org/10.1109/ICNP.2006.320217

[4] Rawal, B.S., Karne, R.K. and Wijesinha, A.L. (2011) Splitting HTTP Requests on
two Servers. In Communication Systems and Networks (COMSNETS), 2011 Third
International Conference on Communication Systems and Networks (COMSNETS
2011), Bangalore, India, 4-8 January 2011, 1-8.
https://doi.org/10.1109/COMSNETS.2011.5716484

[5] Rawal, B.S., Berman, L. and Ramcharan, H. (2013) Multi-Client/Multi-Server Split
Architecture. The International Conference on Information Networking 2013
(ICOIN), Bangkok, Thailand, 28-30 January 2013, 697-701.

[6] Amar, A., Joshi, S. and Wallwork, D. (2017) Generic Driver Model.
http://www.designreuse.com/articles/a8584/generic-driver-model.html

[7] Rawal, B., Kumar, H. and Pandey, K. (2016) The Disintegration Protocol: The Ul-
timate Technique for Secure Data Storage in Cloud Computing. 2016 IEEE Interna-
tional Conference on Smart Cloud (Smart Cloud), New York, USA, 18-20 Novem-
ber 2016, 27-34.

[8] Ekanayake, J. and Fox, G. (2009) High Performance Parallel Computing with
Clouds and Cloud Technologies. International Conference on Cloud Computing,
Munich, Germany, 19-21 October 2009, 20-38.

[9] Karne, R.K., Jaganathan, K.V. and Ahmed, T. (2005) DOSC: Dispersed Operating
System Computing. Proceedings of OOPSLA ’05 Companion to the 20th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languag-
es, and Applications, San Diego, CA, 16-20 October 2005, 55-61.
https://doi.org/10.1145/1094855.1094870

[10] Sultan, K., Srinivasan, D., Iyer, D. and Lftod, L. (2002) Migratory TCP: Highly
Available Internet Services using Connection Migration. Proceedings of 22nd In-
ternational Conference on Distributed Computing Systems, Vienna, Austria, Aus-
tria, 2-5 July 2002, 469.

[11] Zagorodnov, D., Marzullo, K., Alvisi, L. and Bressourd, T.C. (2009) Practical and
Low Overhead Masking of Failures of TCP-Based Servers. ACM Transactions on
Computer Systems, 27, Article No. 4.

[12] Kadav, A. and Swift, M.M. (2012) Understanding Modern Device Drivers. Pro-
ceedings of the Seventeenth International Conference on Architectural Support for

https://doi.org/10.4236/jcc.2018.69008
https://doi.org/10.1109/ICNP.2006.320217
https://doi.org/10.1109/COMSNETS.2011.5716484
http://www.designreuse.com/articles/a8584/generic-driver-model.html
https://doi.org/10.1145/1094855.1094870

B. S. Rawal

DOI: 10.4236/jcc.2018.69008 125 Journal of Computer and Communications

Programming Languages and Operating Systems, London, England, UK, 3-7 March
2012, 87-98. https://doi.org/10.1145/2150976.2150987

[13] Chipounov, V. and Gandea, G. (2006) Reverse Engineering of Binary Device Driv-
ers with RevNIC, Proceedings of 5th ACM European Conference on Computer
Systems, Paris, France, 13-16 April 2010, 167-180.

[14] http://www.webopedia.com/TERM/P/pipeline.html

[15] (2016) Network Driver Interface Specification.
https://msdn.microsoft.com/windows/hardware/drivers/network/ndis-drivers

[16] (2016) NDIS Wrapper.
http://ndiswrapper.sourceforge.net/wiki/index.php/Main_Page

[17] Li, C., Peng, G., Gopalan, K. and Chiueh, T.-C. (2002) Performance Guarantee for
Cluster-Based Internet Services. In Parallel and Distributed Systems, Proceedings of
Ninth International Conference on Parallel and Distributed Systems, Taiwan, Chi-
na, 17-20 December 2002, 327-332.

[18] http://web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/pipe_title.html

[19] Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M. and Zahorjan, J.
(2003) Measurement, Modeling, and Analysis of a Peer-to-Peer File-Sharing Work-
load. Proceedings of the Nineteenth ACM Symposium on Operating Systems Prin-
ciples, Bolton Landing, NY, USA, 19-22 October 2003, 314-329.

[20] Saroiu, S., Gummadi, K. and Gribble, S. (2002) A Measurement Study of
Peer-to-Peer Files Sharing Systems. Proceedings of ACM/SPIE MMCN, San Jose,
CA, USA, January 2002, 156-170.

[21] Saroiu, S., Gummadi, K., Dunn, R., Gribble, S. and Levy, H. (2002) An Analysis of
Internet Content Delivery Systems. Proceedings of the 5th Symposium on Operat-
ing Systems Design and Implementation, Boston, Massachusetts, 9-11 December
2002, 315-327. https://doi.org/10.1145/1060289.1060319

[22] Izal, M., Urvoy-Keller, G., Biersack, E., Felber, P., Hamra, A. and Garces-Erice, L.
(2004) Dissecting BitTorrent: Five Months in a Torrent’s Lifetime. 5th Annual Pas-
sive & Active Measurement Workshop, Antibes Juan-les-Pins, France, 19-20 April
2004, 1-11.

[23] Bellissimo, A., Levine, B. and Shenoy, P. (2004) Exploring the Use of BitTorrent as
the Basis for a Large Trace Repository. Technical Report 04-41, University of Mas-
sachusetts Amherst, Amherst.

[24] Vivek, S.S., Ramasamy, R., Rawal, B.S. and George, P. (2017) Dynamic Verifiable
Encrypted Keyword Search Using Bitmap Index. 2017 IEEE 4th International Con-
ference on Cyber Security and Cloud Computing (CSCloud), New York, NY, USA,
26-28 June 2017, 357-362.

[25] Rawal, B., Ramcharan, H. and Tsetse, A. (2013) Emergent of DDoS Resistant Aug-
mented Split Architecture. 2013 High Capacity Optical Networks and Emerg-
ing/Enabling Technologies, Magosa, Cyprus, 11-13 December 2013, 37-43.

[26] https://www.cs.gsu.edu/

[27] Rawal, B. (2018) Multilayer Splting Protocol. 2018 10th International Conference
on Communication Systems & Networks (COMSNETS), Bengaluru, India, 3-7 Jan-
uary 2018, 357-362.

[28] https://www.ida.liu.se/~TDTS08/lectures/12/lec7.pdf

[29] Rawal, B.S., Duan, Q. and Vijayakumar, P. (2018) Dissection of the Experimental
Outcome of Split-Protocol. International Journal of Advanced Intelligence Para-
digms, 10, 23-44. https://doi.org/10.1504/IJAIP.2018.089487

https://doi.org/10.4236/jcc.2018.69008
https://doi.org/10.1145/2150976.2150987
http://www.webopedia.com/TERM/P/pipeline.html
https://msdn.microsoft.com/windows/hardware/drivers/network/ndis-drivers
http://ndiswrapper.sourceforge.net/wiki/index.php/Main_Page
http://web.cs.iastate.edu/%7Eprabhu/Tutorial/PIPELINE/pipe_title.html
https://doi.org/10.1145/1060289.1060319
https://www.cs.gsu.edu/
https://www.ida.liu.se/%7ETDTS08/lectures/12/lec7.pdf
https://doi.org/10.1504/IJAIP.2018.089487

	The Performance Analysis of Multi-Layer Split-Protocol
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Performance Enhancing Techniques
	3.1. Pipeline
	3.2. Parallel Computing & Distributed Computing

	4. Multilayer Split Architecture
	5. M/M/1 and M/M/S Queuing System
	6. Multilayer Splitting Protocol Implementation
	7. Performance Metrics
	8. The Performance Analysis of MLSP and Non-MLSP Systems
	8.1. Experimental Setup
	8.2. Measurements and Analysis

	9. Signification of MLSP
	10. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

