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Abstract 
The growing need for high-performance networking is achieved with parallel 
processing; several networking functions are processed concurrently in order 
to accomplish a performance Networking Architecture. Open systems inter-
connection (OSI) model is an example of multi-layering structure, and each 
layer performs definite function unique to that layer. OSI model works on 
pass it on principle, and it is divided in two stacks lower stack and upper 
stack. Layers 4 - 7 represent upper stack and responsible for data applications. 
The remaining 1 - 3 layers represent the lower stack and mostly involve in 
data movement. There are many techniques are available for server optimiza-
tion enhancing the availability by distributing the load among peer servers. 
According to our knowledge, nobody has implemented such splitting archi-
tecture across the entire OSI model. In this paper, we present multilayer 
Split-protocol (MLSP) a high performance, reliable and secure technique for 
spiting an application or network protocol across OSI model, and we present 
the design, implementation, and empirical performance evaluation of MLSP. 
It is the ideal choice for Cloud services where each functional component is 
considered an independent of each other. 
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1. Introduction 

Web server security and load delivery between Web servers are significant chal-
lenges that remain to be resolved using a range of methods. In specific, 
load-balancing and splitting techniques are employed at numerous layers of the 
protocols tack to segment the load among a cluster of Web servers [1] [2]. A P2P 
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application such as Bitterant (or anything else named “torrent”), Gnutella, Lime 
Wire, and KaZaA are some examples of P2P applications. P2P applications work 
by letting your computer down load parts of files from multiple sources on the 
Internet at the same time [3]. We propose a technique for splitting web request 
at various layers. At upper layers (5 - 7) an application data and bottom layers (1 
- 4) mostly moving data around. HTTP/TCP connection between Web servers 
permits one server to manage a connection establishment and others to accom-
plish data transfer. We are splitting TCP connections in such way that it allows 
servers to distribute the load without the central authority or any client’s help. 
Each server has multiple NIC cards. These NIC cards can function unidirection-
al or bi-directionally based on a server’s algorithm. Details of different type’s 
HTTP splitting into two servers are explained in [4] [5]. Figures 1-3 describes 
splitting in to multiple servers with a different configuration. Split-protocol is used 
for improving security, availability, and reliability of server system [6] [7]. Jaliya 
and Fox have described several different studies of clouds and cloud technolo-
gies on both real applications and standard benchmark. They found that cloud 
technologies work well for most pleasingly-parallel problems (“Map-only” and 
“Map-reduce” classes of applications) [8].  

Novelty and our original contribution: According to our knowledge we have 
not found any existing technique which splits a single web service on multiple 
servers, and each server performs the function of an individual or multiple OSI 
layers. The OSI reference model illustrates the layered architecture, at every layer 
specific actions, functions, and services take place. We can divide network func-
tionality into seven subprocesses and implement similar to the OSI model. The 
multi-layer splitting offers an efficient load balancing; minimizing the depen-
dency; improves the reliability by distributing the functionality over numerous 
servers; reduces the system complexity and improves performance and the sys-
tem security. 
 

 
Figure 1. Split architecture. 
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Figure 2. Splitting with a single NIC card. 
 

 
Figure 3. Splitting between two NIC cards. 
 

The remainder of the paper is organized as follows. Section II exhibits related 
work and Section III talks about some performance enhancing techniques. IV 
describes multilayer splitting architecture. Section V presents M/M/1 and 
M/M/S Queuing systems. Section VI outlines the MLSP implementation, and 
Section VII defines performance metrics. Section VIII presents performance. 
Section IX details the signification of MLSP. And section X highlights an ac-
knowledgment. Section XI holds the conclusion. 

2. Related Work 

Bare Machine Computing (BMC), formerly stated to as dispersed OS computing 
[9], permits an application to runonabare PC without any centralized kernel or 
OS support. In the BMC methodology, an application condensed in application 
object (AO) [9] straight talks with the hardware. According to my knowledge, a 
technique form ultilayer splitting, a HTTP-based TCP connection in this custom 
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has not been introduced earlier. Splitting is comparable to the M-TCP protocol 
to transfer TCP connections from one server to another [10]. TCP connection 
splitting and the in [11], staticanalys is techniques are used to analyze the code 
of Linux device drivers. Also, the communication between controllers, the OS, 
and the hard ware is monitored. In [12], hard ware abstraction and APIs for de-
vices and software interfaces are employed as a foundation for producing device 
drivers [13]. The Uniform Driver Interface (UDI) is designed for generating de-
vice drivers that are manageable concerning platforms and OSs [14]. The Net-
work Driver Interface Specification (NDIS) separates the NIC from its driver 
and defines a standard interface between upper and lower layer controllers [15]. 
The NDIS library is supported by many Windows versions, while the NDIS 
wrapper [16] enables Windows drivers to be used with Linux. [17] uses TCP 
slicing for performance guarantee for cluster-based internet services. In [18], an 
approach for driver reuse is proposed, where a virtual machine is used to run a 
driver with its original OS. Various methods applied for load balancing share 
some essential features. For example, both load balancing and TCP connection 
splitting enable a server load to be allocated between servers. In layer-2 (link 
layer) load balancing, various links function as a unique virtual connection, and 
in layer-4 (transport layer) load balancing, applications are processed based on 
port numbers and IP addresses. In layer-7 load balancing [17], content know-
ledge from the HTTP request is accepted to perform load-balancing judgments. 
In this case, there are two TCP connections that are spliced [18]. G. Anastasi 
[19] examined the BitTorrent scheme and completed the preliminary study. 
Gummadi et al. [20] investigated the prevalence of P2P content across the In-
ternet and described the “download at most once” feature of P2P clients. Saroiu 
[21] [22] characterized the P2P traffic over the Internet, including Napster, 
Gnutella, and KaZaa systems. Izal [21] investigated a five-month workload of an 
individual BitTorrent method for software delivery that required thousands of 
peers. Bellissimo and Izal each estimated the realization of BitTorrent at the flash 
crowd period [22] [23]. The security aspect of the splitting technique is demon-
strated in earlier publications [7] [24] [25]. Most of the existing related work 
splitting needs some shorts of client involvements and requires some central 
controlling mechanism for communicating between peers. Existing techniques 
heavy weight communication overhead affects the performance of overall sys-
tems. In our technique there is only two packets of 168 byte are involved for in-
ter server communication and it does not require any client’s involvement. Spit-
ing process is entirely transparent to client.  

3. Performance Enhancing Techniques 
3.1. Pipeline 

The pipeline is an execution procedure where several tasks are an overlay in ex-
ecution. The computer pipeline is distributed in various stages. In each step, 
complete a portion of execution in parallel. Each level is connected to next to 
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create a pipe. Typically, pipeline does not reduce the proper time execution; in-
stead, it improves performance, throughput. A computer processor pipeline is 
from time to time shared with an instruction pipeline and an arithmetic pipe-
line. The instruction pipeline signifies the phases in which a step is progressed 
through the processor, including it is being drawn, possibly buffered, and then 
executed. Moreover, the arithmetic pipeline embodied the portions of a mathe-
matic operation that can be broken down and overlapped as they are performed 
[18]. A similar technique used in dynamic random-access memory (DRAM), in 
which the memory loads the required memory subjects into a small cache com-
posed of static random-access memory (SRAM) and then immediately begins 
fetching the next memory contents. This makes a two-stage pipeline, wherein 
read instruction is one stage written to memory is in the other phase [14]. The 
Uniform Driver Interface (UDI) is designed for generating device drivers that 
are manageable concerning platforms and OSs [6].   

3.2. Parallel Computing & Distributed Computing  

Distributed computing and parallel computing are frequently deliberated simi-
lar, though there is a trivial difference between them. Parallel computing denotes 
a tightly coupled system with each other. If we look closely at parallel compu-
ting, it relates to the technique in which computation is divided between various 
processors who are sharing the collective memory. The uniformity describes the 
design of parallel computing. The cluster of nodes connected through an InfiniB 
and network which is configured with shared memory. Distributed computing, 
on the other hand, comprises any design or scheme in that computation is frag-
mented into parts and are performed simultaneously on unalike computing 
components, they may be multiprocessors on the same node, another computer 
or cores within the same CPU [26] [27]. 

4. Multilayer Split Architecture 

For readers convenience we are reproducing the splitting architecture between 
two or more servers [4]. The split architecture used for the experiments de-
scribed in this paper is illustrated in Figure 2. Although these experiments were 
conducted in a LAN environment, as noted earlier, the proposed splitting tech-
nique does not require that the set of clients {C} be connected to a LAN (they 
can be located anywhere on the Internet). The only requirement is that the serv-
ers be connected to the same LAN for the reasons discussed below. However, 
this requirement does not limit the scope or scalability of splitting since many 
real-world Web server clusters are located within the same LAN. The clients 
send requests to servers S1 or S2. S1 and S2 are referred to as split servers. For a 
given request, the connection server (CS) handles the {CE, CT} phases of a con-
nection, and its delegated server S2 (DS) handles the {DT} phase. Similarly, S2 
can act as a server for a client’s request and its DS will be S1. The clients do not 
have any knowledge of a DS. A given request can also be processed by the CS 
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without using the DS. In general, there can be a set of n (≥2) servers that can 
delegate requests to each other.  

A given request is split at the GET command as shown in Figure 1. The CS 
handles the connections, and the DS handles the data transfer. In addition to 
connections, the CS also handles the data ACKs and the connection closing. The 
CS has complete knowledge of the requested file, its name, size, and other 
attributes, but it may or may not have the file itself. However, the DS has the file 
and serves the data to the client. When a TCP connection is split in this manner, 
the TCP sliding window information is updated by S1 based on received ACKs 
even though the data file is sent by S2. Likewise, S2 knows what data has been 
sent, but it lacks knowledge of what data has been actually received by the client. 
Thus, retransmissions require that ACK information be forwarded by S1 to S2 
using delegate messages as described below. The number of delegate messages 
exchanged should be kept to a minimum since they add overhead to the system 
and degrade performance.  

When a client makes a request to S1, its connection is based on (IP3, Source-
Port) (IP1, 80). S1 can serve this request to a client directly, or it can utilize its 
DS, which is S2, to serve data. The decision to use a DS can be made based on 
several factors such as the maximum number of requests that can be processed 
at S1, the maximum CPU utilization at S1, or resource file location. Alternative-
ly, a load balancing algorithm could be used. When S1 chooses to use S2 as a DS, 
it proceeds as follows. After the GET command is received, it sends an ACK to 
the client and also sends a delegate message DM1 to S2 (e.g. DM1). The message 
DM1 contains the state of the request that is stored in S1 in the form of an entry 
in the TCP table (referred to as a TCB entry). When DM1 reaches the DS, it 
creates its own TCB entry and starts processing this request as if it was initiated 
in the DS itself. When a DS sends data to the client it uses the CS’s IP (IP1).  

In principle, the Internet setting is not different from a LAN environment 
since the DS does not need to receive any packets sent by the client to IP address 
IP1. A client located anywhere on the Internet can communicate in the usual 
manner with the CS. Since it is unaware that the DS is actually sending the data, 
it sends the ACKs as usual to the CS with whom the TCP connection was estab-
lished. From the client’s point of view, it has established a connection with IP 
address IP1. Now consider the information that is present in the local routers 
and switches assuming that both S1 and S2 are located in the same LAN. Note 
that only S1 should respond to ARP requests for IP address IP1. This ensures 
that any local router receiving the response will have a single ARP entry (IP1, 
MAC S1) in its ARP cache and correctly forward ACKs and connection requests 
sent with destination address IP address IP1 to S1. Note also that the switch to 
which S1 is connected will have the entry (MAC S1, INT1) in its forwarding ta-
ble, where INT1 is S1’s interface to the switch. Likewise, the switch to which S2 
is connected has the entry (MAC S2, INT2) in its forwarding table, where INT2 
is S2’s interface to the switch. When S1 sends a delegate message to S2, if they 
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are both on the same LAN, S1 can simply encapsulate the message in a MAC 
layer frame addressed to MAC S2 (i.e., it does not need an IP address to receive 
delegate messages from S1). Thus, with these assumptions, switches and routers 
do not need any special configuration for split connections to work. 

However, if S1 and S2 are on LANs with different subnet prefixes (or in gen-
eral, on WANs or different networks) and communicate through routers, S2 is 
not reachable using IP address IP1 since its prefix is not consistent with the 
network it is on. So, it will need to use its own IP address IP2 to receive packets 
including delegate messages from S1. This means that the router for S2 must 
have an ARP entry (IP2, MAC S2) for forwarding to S2, which will only be 
present if S2 has responded to ARP request for IP address IP2 with its MAC S2. 
But in this case, if S2 is also sending data to a client using IP address IP1 as 
source, it raises a security issue due to IP address spoofing. Such IP address 
spoofing may cause problems with firewalls due to sending topologically incor-
rect packets. For splitting to work in this case, note that S1 must send and re-
ceive with IP address IP1, whereas S2 must send with IP address S1 and receive 
with IP address S2. Now S1 and S2 cannot both delegate to each other, since it is 
not possible for both machines to send and receive using both IP addresses IP1 
and IP2. There are also TCP issues with splitting due to its sliding window, dup-
licate acks, fast retransmit, and congestion control that need further study. More 
delegate messages could be used to address some of these TCP issues, but this 
would have a negative performance impact.  

As the connection and data transfer are split in the architecture, there is a 
need to send one or more DM messages (DM2s) to DS. At least one DM2 mes-
sage is needed to indicate that CS received the FIN-ACK. If a received ACK in-
dicates that data is lost, retransmission is needed. One or more DM2s are needed 
to handle retransmissions since the DS does not receive any data ACKs. The CS 
monitors the data ACKs and decides to send DM2s as needed. Throughout the 
splitting process, the client is not aware of DS, and there is no need to involve 
the client (unlike M-TCP). The last DM2 message to DS is used to terminate 
when all data has been acknowledged by the client.  

Splitting results in two possible overheads. Network traffic due to sending 
DMs to DS, and the latency encountered at the client due to DM transmission 
on the LAN (or WAN) from CS to DS. In a LAN environment, this latency is 
negligible, but may be larger in a WAN or Internet environment. The network 
traffic generated for each request is at least two DM packets; in most cases it is 
two packets assuming no retransmissions. If the DM packet is small (168 bytes 
in a bare PC), the network overhead will be reduced. However, one needs to 
consider the above two overheads of the split request architecture for a given ap-
plication.  

The MLSP design used for the experiment is exemplified in Figures 1-3. Al-
though the experimental tests were conducted in a LAN/WAN environment, the 
detailed splitting architecture is described in our earlier works [4] [5]. The 
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clients do not require any prior knowledge of DSs. The CS can also process a 
given request without using the DS. In general, there can be a set of n (≥2) serv-
ers those can delegate requests to each other. 

When a client requests CS, its connection is based on (IP, Source Port) (IP1, 
80). S1 can serve this request to a client directly, or it can utilize its DS, which is 
DS1, to serve data. The decision to use a DS can be made based on several fac-
tors such as the maximum number of requests that can be administered at CS, 
the maximum CPU utilization at CS, or resource file location. Alternatively, a 
load-balancing algorithm could be used. When CS chooses to use DS, it proceeds 
as follows. After the GET command is received, it sends an ACK to the client 
and sends a delegate message (DM1) to DS. The message DM1 encompasses the 
state of the request that is kept in CS as TCB records. When DM1 reaches the 
DS, it creates its TCB entry and starts processing this application as if it was 
initiated in DS itself. When a DS directs data to the client, it uses the CS’s IP 
(IP1).  

Figure 2 represents two split configurations 1 & 2 with only one NIC card. In 
configuration 1, DSs just sends data packets to the clients and does not send any 
other kinds of packets to the clients.  

In configuration 2, the DSs dose sends other types of packets to clients. Figure 
3 represents two split configurations 3 & 4 with two NIC cards. In configuration 
3, DSs only sends data packets to the clients and does not send any other types of 
packets to the clients. CS and DSs both receive all packets through NC1 and 
transmit through NC2. In configuration 4, DSs do receive/send other types of 
packets to the clients. Also, CS and DSs both receive all packets through NC1 
and transmit through NC2 respectively [28].  

Figure 4 represents partial delegation CS and DS both can send data packets 
and NIC1 & NIC2 both can receive and transmit data (full duplex). 
 

 
Figure 4. MLSP architecture with a partial delegation.  
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5. M/M/1 and M/M/S Queuing System 

As shown in Figure 5, MLSP system with a single queue with more than one 
parallel server, then we have M/M/S queuing system, in the diagram below four 
identical servers severing a request coming into a single queue [19].  

The arrival rate λ, Service rate is µ, the ratio of traffic intensity  

Ρ = λ/µ                             (1) 

Lq = Ls − LB                          (2) 

Lq is average number costumer in the waiting line for services, Wq is average 
time customer spend in the waiting line for services 

Ws = Wq + (1/µ)                        (3) 

We are reproducing hear the analytical model of split-system as shown in 
Figures 5-8, represents a Non-split system. It has to perform both tasks of CS 
and DS (establishing a connection and serving data) [29]; which is similar to 
single-channel, multiphase system. For one http request, the system is locked for 
entire time t and can offer µ = mean service rate. A split system become sidle af-
ter t/2 time and offers 2 µ mean service rate.  

Figure 7 shows the non-resource sharing systems non-split system and Figure 
7. Illustrate the resource sharing non-split system and Multichannel, sin-
gle-phase system.  

Figure 8 demonstrates split system two hardware systems and each hardwares 
has two software components CS and DS. This system is similar to Multichan-
nel, multiphase system. 

We will consider the case that the server can serve limited http requests. The 
waiting queue is regarded as a finite queue. 

Where λ = mean arrival rate, µ = mean service rate, and n = the number of 
request in the waiting line system and the probability is described in (1). 
 

 
Figure 5. M/M/s queuing system. 

VVs1 V V

SERVER-1 SERVER-2 SERVER-3 SERVER-4

WAITING          
QUEUE

https://doi.org/10.4236/jcc.2018.69008


B. S. Rawal 
 

 

DOI: 10.4236/jcc.2018.69008 115 Journal of Computer and Communications 
 

 
Figure 6. Non-split and split systems. 

 

 
Figure 7. Non-recourse sharing non-split system. 

 

 
Figure 8. Resource sharing non-split system. 

Non-Split system; Single-channel, multiphase system
5a.

5b.

Split system; Single-channel, single system
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( ) ( )( )1
0 1 1 Mµ µλ λ +Π = − −  

[ ]0
n

n µλΠ = Π  where n ≤ M 

[ ] ( ) ( )
( )

( )( )1 1
( 1)1 1  

M M
ME N λ µ λ µ λ µ λ µ

+ +

− +
  = − −   

    (4) 

Πn is the probability of n http request being in the server system. Let M is the 
maximum requests in the system, and ΠM is a value Πn when n = M. 

We can define the probability that a http request (job) not join the system [28] 
in (2). 

[ ] [ ] ( )1E Nq E N Mλ π µ= − −  

[ ] [ ] ( )1E R E N Mλ π= −  

[ ] [ ] 1E Rq E R µ= −                         (5) 

We will compare the average response E [Rs] shown in (3), (4) and (5) and E 
[Rc] time described (6) and (7) by for the separate and non-split queuing sys-
tems respectively as illustrated in Figure 7 and Figure 8. The first system cor-
responds to two independents M/M/1 queues, with ρ = λ/2µ [29]. 

[ ] ( ) ( ) ( )1 1 2 2 2E Rs µ λ µ µ λ= − = −                 (6) 

On the other hand, the shared queue sharing system in Figure 10 is 
represented by M/M/2 system. To obtain E [Rc] first, we will calculate E [Nc]. 

[ ] ( ) ( )2 2
02 2 2! 1E Nc ρ ρ ρ π ρ= + − −                (7) 

where ( ) ( )0 1 1π ρ ρ= − +                        (8) 

[ ] ( )22 1E Nc ρ ρ= −  

[ ] [ ] ( )( ) ( )2 2 21 1 4 4E Rc E Nc µ ρ µ µ λ= = − = −            (9) 

We have  

[ ] ( ) ( ) [ ]2 22 2 4 2 4E Rs E Rcµ λ µ λ µ λ= − = + − >          (10) 

This indicates the common queue system is better than a separate-queue sys-
tem [29]. Figure 9 represents a Split-system with a balanced (optimized) re-
source sharing common queue system. Therefore, it naturally offers a better re-
sponse time than the non-split system. 

6. Multilayer Splitting Protocol Implementation 

For simplicity, we have implemented the division of functionality according to 
the TC/IP layering structure. For this experiment, we have spliced server func-
tionality between Connection Server (CS) and data servers (DSs). 

1) At the Application Layer: HTTP protocol and encryption/decryption 
splitting have been performed. 

2) Host-to-Host Transport Layer: TCP/UDP code is split between CS and 
DS. 

3) At the Internet Layer: Splitting of Logical Addressing such as IP and the  
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Figure 9. Resource sharing split-system. 

 

 
Figure 10. Lan Network topology. 
 
Address Resolution Protocol (ARP) performed between CS/DS.  

4) At the Network Interface, Layer: Ethernet and implementation of soft-
ware as a driver for a network interface card (NIC) shared between CS and DS.  

5) Splitting at NIC card level: Splitting at NIC card level description is re-
produced here is from our previous work [14]. A NIC driver consists of a 
send/receive data structure described in [14]. In a given driver, send a path using 
a transcript descriptor table (TDL) and receive the path using the descriptor ta-
ble. Send and receive controls such as for enabling, disabling, and configuration 
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parameters are also different from the driver. In essence in the NIC and the 
driver, send and receive paths can be treated as two separate entities. In the BMC 
Web server implementation send and receive, paths are also different. When a 
packet is received in RDL, its Ethernet header is removed and sent to IP. Then 
an IP header is removed and sent to TCP. For a given client’s IP address and 
Port#, a different request is formed at the TCP and a unique entry is created at a 
TCP block table (TCB). This unique entry is kept in the TCB until the comple-
tion of a client’s request. The Ethernet card will send packets from TDL and re-
ceive packets into RDL. As it is observed, send and receive paths are isolated in 
BMC Web server design. 

7. Performance Metrics 

1) Peak rate: the maximal processing rate that can be theoretically achieved 
when all processors (CPUs) are fully consumed [29]. 

2) Speedup: measures the gain we can achieve by using certain parallel 
processing to run a given parallel application in order to solve an explicit prob-
lem [29]. 

S = Ts/Tp = 838.829/220.78625 = 3.799280979      (11) 

TS: execution time needed with the sequential algorithm; Tp: execution time 
required with the parallel algorithm. 

3) Efficiency: this metric narrates the speedup to the number of processors 
used; by this, it provides a quantity of the ability with which the processors are 
used [29]. 

E = S/P = 3.7999280979/4 = 0.949820245          (12) 

S: speedup; P: number of processors.  
For the ideal situation, in theory: 
S = P; which means E = 1. 
We can notice that if we increase the number of processors (DSs) in the MLSP 

system, practically we can approach closer to the ideal efficiency of 1.  

8. The Performance Analysis of MLSP and Non-MLSP  
Systems 

8.1. Experimental Setup 

The experimental setup involved Dell Optiplex Optiplex 960 PCs with Dell Op-
tiplex 960 SFF Core 2 Duo E8400 3.0 GHz 8 GB RAM and Intel 1G NIC on the 
motherboard. The LAN is set up for the experiments using a Cisco 8 port Giga-
bit Switch. The http_load [15] stress tool was run on Linx client and the bare PC 
Web client. The http_load can run up to 1000 simultaneous HTTP applications 
per sec. Each bare PC Web client can run up to 8000/sec HTTP requests. A 
combination of Bare and Linux alongside with MLSP servers are used to meas-
ure the performance. We tested the MLSP with standard browsers running on 
Windows and Linux. Figure 10 represent W-Lan network topology.  
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8.2. Measurements and Analysis 

In Figures 10-14, a red line represents M/M/s queuing system with four parallel 
arrangements, and the blue line serve M/M/s queuing system with MLSP. The 
resource file size is 16 KB bytes and the rate of arrival 2000 requests/sec. From 
Figure 11, we can see that the CPU utilization reduces exponentially with an in-
crease in a number of servers.  

From Figure 12, we can notice that with a system of two server numbers in 
the waiting line is higher in the MLSP system due to inter-server communication 
overhead. It drastically reduces the increase in the number of servers almost all 
requests are allocated to the server without any significant delay.  

In Figure 13, the average number of requests in the system is always less with 
the MLSP system. From Figure 14, we can notice that each request spent fewer 
average time in the MLSP system than regular M/M/s queuing system.  

In Figure 15, we can notice that the probability of no requests in the system 
increases with an increase in a number of servers. The probabilities of all servers 
are busy in the system is roughly around 0.3. And the likelihood of at least one 
server is ideal in the system reduces with an increase in a number of servers in a 
system which is what expected with M/M/s queuing system.  

1) Internal Timing Comparison: The HTTP protocol timing results, includ-
ing the TCP interactions for non-split and split servers. A client request is issued 
to CS, and it can delegate the request to the DS. The client request involves a re-
source file size of 4K to 1GB. A Wireshark packet tracer was used to capture and 
measure protocol transaction timings. The Wireshark results were used to define 
the latency overhead incurred in the splitting. The usual latency measured be-
tween GET-ACK and Header data is about 20 microseconds without splitting  
 

 
Figure 11. CPU utilization.  
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Figure 12. An average number of requests waiting in line. 

 

 
Figure 13. Average number of requests in the system. 

 

 
Figure 14. Average time spent in the system (in seconds). 
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Figure 15. System Probabilities with MLSP system. 

 
and 25 microseconds with splitting into two cards. Due to the inter-server mes-
sage, the latency is about 55 microseconds.  

2) Connection Times: Figure 16 shows the connection time for various 
MLSP configuration and varying file sizes. We can notice that Split/Two NIC 
configuration offers the shortest connection time and No-split/One NIC has the 
most significant connection timing. Split/Two NIC connection time is on aver-
age 88% lower than No-split/One NIC configuration. 

3) Response Times: Figure 17 shows the response time for different HTTP 
request rates. For the small size of 4 K resource file size, the non-split server can 
process maximum up to 8500 requests/sec.  

We can notice that the behavior of connection and response times are similar. 
We can see that Split/Two NIC configuration offers the lowest connection time 
and No-split/One NIC has the highest connection timing. Split/Two NIC con-
nection time is on an average 59% lower than No-split/One NIC configuration. 
However, response times start increasing rapidly at the 100 K file size. The rapid 
surge in response time and connection times due to the accumulation of a large 
number of HTTP requests under substantial load conditions, and also due to the 
higher CPU utilization as discussed below. 

4) Protocol Transaction Time: Figure 18 shows that protocol transaction 
time for 5965717-byte resource file with two NIC card system.  

With a single server, the complete transaction took 838.761 Millisecond, and 
with two MLSP servers, it took 838.829 Millisecond slightly higher. When we 
added 4DSs with two NIC cards, it took only 220.78625 MS. In another word, it 
took only 26% of the time to complete the transaction. We can notice that with 
MSL we can significantly reduce the file transfer time.  

9. Signification of MLSP 

The significance of MLSP is a general approach that can be applied, in principle,  
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Figure 16. Connection time. 

 

 
Figure 17. Response times. 

 

 
Figure 18. The protocol transaction time for 5965717 bytes resource, file [28]. 
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to any application that uses TCP/IP layering protocol. Furthermore, it can be 
applied to a protocol other than TCP/IP to split the functionality of a protocol 
across machines or processors). In particular, splitting the HTTP protocol has 
many impacts on the area of load balancing. We discuss some of these impacts 
below. MLSP protocol configurations can be used to achieve better response and 
connection times while providing scalable performance. Splitting also eliminates 
the need for (overhead/cost associated with) external load balancers such as a 
dispatcher or a particular switch. There are definite security advantages of hav-
ing server component dispersed from central servers. Keeping DSs invisible to 
clients avoids the direct attack on database or security services. Lower CPU uti-
lization of the system makes more resilient and responsive to any unwanted at-
tack from malignant clients on the Internet. Besides the intrinsic sequentially of 
parts OSI algorithm also, other factors limit the available speedup [29]: 

1) communication cost; 
2) load balancing of processors; 
3) costs of creating and scheduling processes; and 
4) I/O operations (mostly sequential in nature). 
There are many algorithms with a high degree of parallelism. 
1) The value of f is very small and can be ignored; 
2) Suited for massively parallel systems; and 
3) The other restraining aspects, like the overhead of communications, be-

come critical, in such algorithms. 

10. Conclusion 

Our empirical results demonstrate that MLSP is feasible in an Internet setting 
and can be used in the load distribution without client’s assistance or central 
control. The high-performance technique MLSP shows scalability, and MLSP 
architecture offers highly reliable and secure service for Client/Server protocols. 
Multilayered security is a network security approach which is widely used to 
protect customers’ operations with multiple levels of security measures. Distri-
buting services to specialized unit offers better performance since it has to deliv-
er the only kind of task. So there is no communication delay. According to the 
economic principle of specialization of services offers higher degrees of produc-
tive efficiency within the entire system of businesses or areas. In conclusion, the 
MLSP system offers better performance than systems whose function is centra-
lized in a single location. By splitting the various tasks across different layers on 
a different machine, each device is under less stress. This allows each node to 
perform more efficiently. Because MLSP systems work across a variety of differ-
ent machines, they are inherently scalable and reliable. 
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