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Abstract 
In this paper we employ artificial neural networks for predictive approxima-
tion of generalized functions having crucial applications in different areas of 
science including mechanical and chemical engineering, signal processing, 
information transfer, telecommunications, finance, etc. Results of numerical 
analysis are discussed. It is shown that the known Gibb’s phenomenon does 
not occur. 
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1. Introduction: Main Definitions, Representations and  
Relations between Known Distributions 

Generalized functions are used in modeling and analysis of applied systems in 
various areas of science including engineering, finance, control theory, etc. Prac-
tically every object or phenomenon containing discontinuity, switches or loca-
lized character, in principle, can be described in terms of generalized functions 
or distributions. The theory of generalized functions is developed by Sergei So-
bolev (1930s) and Laurent Schwartz (1940s) (for details see the monographs [1] 
[2] [3] and the references therein). Nevertheless, George Green and Oliver Hea-
viside used generalized functions in their research much earlier. The Dirac’s δ 
function defined by 
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is used in the Green’s representation formula for the general solution of non-
homogeneous boundary value problems. Later in 1930s, Paul Dirac systemati-
cally used the δ function to describe a point charge localized at a given point. In 
practical analysis, the definition of the Dirac’s δ(1) must be supplemented by 

( ) ( ) ( ) ( )0 0d 1, d ,x x f x x x x f xδ δ
∞ ∞

−∞ −∞
= − =∫ ∫              (2) 

for arbitrary continuous function f. 
On the other hand, Heaviside used the θ function given by 
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to extend the notion of the Laplace integral transform in telegraphic communi-
cations. At this, the value θ(0) depends on particular problem and can be one of 
0, 1 or 0:5. 

According to the definition, the Dirac’s and Heaviside’s functions are related 
by 

( ) ( )d ,
x

xθ δ ξ ξ
−∞

= ∫                         (4) 

In other words, θ is the antiderivative of δ in the sense of generalized func-
tions. On the other hand, the function max {x, 0} is the antiderivative of θ, 
therefore  
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= − =∫ ∫  

which direct follows from the second equality in (2) with f(x) = x.  
There exists a linear relation between the Heaviside’s generalized function and 

the sign function defined by:  

( ) ( )1 1 sin .
2 2

x xθ = +  

Evidently, here the value θ(0) = 0.5 is considered. However, it is possible to 
write such a formula with θ(0) = 0 or θ(0) = 1.  

Other known generalized functions can be defined through θ. For instance, 
the characteristic function defined by  
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can be expressed in terms of θ according to  
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The rectangular function defined by  

( )
1, 0.5,
0.5, 0.5,
0, 0.5,

x
rect x x

x

 <


= =
 >

 

can be expressed in terms of θ as follows: 
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( ) 1 1
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or  
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As above, here the value θ(0) = 0.5 is considered as well.  
Another well-known generalized function is defined through the convolution  

( ) ( ) ( ) ,R x x xθ θ= ∗  

where * denotes the convolution operation. This function is called ramp func-
tion and has many applications in engineering (it is used in the so-called 
half-wave rectification, which is used to convert alternating current into direct 
current by allowing only positive voltages), artificial neural networks (it serves as 
an activation function), finance, statistics, fluid mechanics, etc.  

According to the definition of the Heaviside function, the rump function can 
be represented also as 
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2. Approximation of Main Generalized Functions by  
Means of Locally Measurable Functions 

The theory of generalized functions is a very well developed mathematics subject 
crucial for rigorous analysis of many applied systems. Nevertheless, their rigor-
ous definitions are completely useful in numerical analysis, because they are 
even not proper functions. In numerical analysis proper functional approxima-
tions of the generalized functions are used instant.  

In practice, the approximation of generalized functions is based on construc-
tion of a sequence fn of measurable functions giving the desired generalized 
function in limit when n → ∞. For instance, the sequence 

( ) ( )2 2exp ,
πn

nx n xδ = −  

which is also called Gauss kernel, tend to the Dirac’s generalized function when 
n → ∞. The sequence δn is called δ-like sequence. Several other δ-like sequences 
can be found in literature. Examples include 
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which is also called Poisson kernel 
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which is also called Dirichlet kernel, and 
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which is also called Fejér kernel. Note that for all mentioned kernels, 

( )1 ,n locLδ ∈ −∞ ∞  

i.e. they are locally measurable functions. 
Taking into account (4), similar θ-like sequences can be constructed for ap-

proximating Heaviside’s θ. For instance, 

( ) ( )1 1 tanh ,
2n x nxθ = +                       (5) 

often referred to as logistic function, 
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also called erf-approximation,  
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Similar sequences can be constructed for the functions sign, χ, rect and R 
above. For example, 
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can be viewed as rect-like sequences.  
On the other hand, the expression 

( )exp expnR x nx= − −    

can be used as approximation to the ramp function. 

3. Approximation of Generalized Functions Using Artificial  
Neural Networks  

Generalized this paper we show through numerical experiments that artificial 
neural networks can provide a very fast and efficient approximation for genera-
lized functions using any of the approximate formula above. There is a huge 
body of references devoted to the theory and implementation of artificial neural 
networks for approximation of functions. We refer to [4] [5] [6] [7] [8] and the 
references therein. 

The neural network providing approximation consists of an input layer, a 
hidden layer and output layer. The quadratic error of approximation 
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( ) ( )( )2
appf x f xε = −  

is considered, where f is the original function and fapp is its approximation. 
Moreover, in all examples below the θ-like sequence (5) considered. Other se-
quences can be applied exactly in the same way. The learning rate is always fixed 
to 10−3 for simplicity. 

Approximation of the rect function for different number of nodes is presented 
in Figure 1. A better approximation with less error can be obtained by increas-
ing the learning rate or the number of nodes. The error is plotted on Figure 2, 
from which it is obvious that the least error is 4~ 10ε −  It is evident from Fig-
ure 3 that the known Gibbs phenomenon does not occur here [9]. 
 

 

 
Figure 1. Approximation of rect function in [−1, 1] with 50 nodes 
(upper) and 100 nodes (lower). 

 

 
Figure 2. Quadratic error approximation of rect function in [−1, 1] 
with 100 nodes. 
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Figure 3. Function fit (upper) and regression behavior (middle) and network perfor-
mance (lower) for rect function in [−1, 1] with 100 nodes. 
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4. Conclusions 

Possibilities if artificial neural network approximation of generalized functions is 
considered by means of locally measurable approximations of the Dirac’s delta 
function and Heaviside’s theta function. Considering the quadratic error of ap-
proximation, the rect function is approximated taking into account the relation 
between the rect and Heaviside’s theta functions. It is shown that due to the 
usage of neural networks, the Gibbs phenomenon does not occur. Using similar 
representation formulas and other approximations to the Heaviside’s function, 
the characteristic or sign functions can also be approximated by artificial neural 
networks. 

The results can be employed in numerical analysis of problems containing 
discontinuous phenomena, switching dynamics, etc. 
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