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Abstract 

Traffic hijacking is a common attack perpetrated on networked systems, 
where attackers eavesdrop on user transactions, manipulate packet data, and 
divert traffic to illegitimate locations. Similar attacks can also be unleashed in 
a NoC (Network on Chip) based system where the NoC comes from a 
third-party vendor and can be engrafted with hardware Trojans. Unlike the 
attackers on a traditional network, those Trojans are usually small and have 
limited capacity. This paper targets such a hardware Trojan; Specifically, the 
Trojan aims to divert traffic packets to unauthorized locations on the NoC. To 
detect this kind of traffic hijacking, we propose an authentication scheme in 
which the source and destination addresses are tagged. We develop a custom 
design for the packet tagging and authentication such that the implementation 
costs can be greatly reduced. Our experiments on a set of applications show 
that on average the detection circuitry incurs about 3.37% overhead in area, 
2.61% in power, and 0.097% in performance when compared to the baseline 
design.  
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1. Introduction 

With the advance in semiconductor technology, many intellectual property (IP) 
cores can be integrated on a single chip. A typical example is the system-on-chip 
(SoC) [1] [2], where multiple processor cores, memory components, I/O inter-
faces are implemented on one chip and their communications are supported by 
an on-chip sub-system, called NoC (Network-on-Chip). 
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To reduce the cost and time-to-market, the SoC designers often use a third-party 
NoC IP. The third-party IPs may contain hardware Trojans (the malicious 
components unlawfully inserted into the design) and therefore the system can be 
exposed to various attacks [3] [4]. Even though there are a few of offline ap-
proaches to detect hardware Trojans by the circuit level testing [5] [6], tiny Tro-
jans with a very small footprint can escape such detections and still appear in the 
final product to perform simple attacks. One simple attack may be hijacking 
packets to different locations where the data in the packet can be leaked or ex-
ploited. For example, some medical surgery equipment may contain a SoC that 
consists of many controllers to control various supplies (such as blood, oxygen 
and anesthetic) during a surgery. If a packet containing the command “increase 
amount” for oxygen, is hijacked to the controller that is for anesthetic, the pa-
tient may die of anesthetic overdose. Similarly, in the case of an online payment 
transaction, if the related packets are stealthily copied to an auditing application 
on the SoC chip in a mobile device, the user’s credential information can be eas-
ily leaked. 

1.1. Target System and Attack Model 

In this paper, we focus on such a system that consists of an untrusted third-party 
NoC and a set of designer’s processing units (PUs), as outlined in Figure 1(a). 
In this system, each node in the NoC has a router to connect to other nodes and 
a network interface (NI) for communication with the local PU. The PU hard-
ware and its system software from the designer are trusted, but some of its ap-
plications (for example software downloaded from the internet) are untrusted. 

We assume that a single hardware Trojan (HT) is present in an arbitrary 
router of the NoC and the Trojan can be activated and deactivated by either ex-
ternal physical parameters or internal electrical signals. Once activated1, the 
Trojan can read and modify the packets passing through its host router. Due to 
its limited capacity, the Trojan aims to hijack a targeted packet to a different lo-
cation by altering the packet’s destination and/or source address, as illustrated in 
Figure 1(b), where the packet from node i to node j, P (i, j), is diverted to node 
k. In addition, we assume that the Trojan may have a software accomplice (sit-
ting on some PU) that can communicate with the Trojan to assist attacks. 

1.2. Contributions of the Paper 

In order to detect such a packet hijacking, we use a tag based authentication. At 
the source node, a tag is generated and inserted into the packet. Upon receiving 
the packet, the destination DU recalculates the tag based on the received packet 
and compares it with the original tag. If they are different, a hijacked packet is 
deemed detected, as shown in Figure 1(c). 

Our work makes the following contributions: 

 

 

1Here we only focus on the detection of hijacked packets, our proposed detection approach is suit-
able to varied Trojan activation/deactivation triggers [3].  
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Figure 1. Problem overview. (a) Target system; (b) Packet hijacking attack by Trojan; (c) 
Packet hijacking detection by detection unit. 
 
• We proposed a novel packet tagging and authentication scheme that has two 

key features for security: 
o The packet tag is random, dynamic and scrambled with the packet data, 

making it difficult for the Trojan to alter the tag to elude detection; 
o The packet tagging and the authentication are carried out in the secure de-

tection units (DUs) and both are transparent to the application software so 
that the software accomplice cannot access tagged packets to perform crypt-
analysis on the packet tag. 

• We developed a custom design approach for the hardware detection unit. The 
design is built on the customized packet label size, minimized look-up-table 
and small block scrambling operations such that the packet space and com-
puting costs caused by the attack detection can be greatly reduced. 

1.3. Paper Organization 

The rest of the paper is organized as follows. Section 2 briefly reviews the NoC-based 
security. A short discussion on the existing data authentication schemes is also 
given in this section. Section 3 provides the overview of our packet tagging and 
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authentication design; The related custom hardware implementation is pre-
sented in Section 4 and the experimental results are given in Section 5. The pa-
per is concluded in Section 6. 

2. Related Work 

The NoC-based security in SoCs has been actively researched in the past decade. 
A few of isolation schemes, either software or hardware based, have been used to 
enhance the system security. 

At the software level, different access control approaches to protect a shared 
memory from unauthorized accesses over the insecure NoC (which can cause 
the system denial of service (DoS), leak of information, and change of behav-
iour) have been investigated in [7] [8] [9]. 

To avoid interference between secure and non-secure applications on the sys-
tem, [10] partitioned the NoC based on the security level of the applications, 
while Wassel et al. [11] proposed a time-multiplexing NoC to separate commu-
nication links between different applications. Sonics uses a SMART Interconnect 
[12] to protect system integrity and ARM applies what they call TrustZone [13] 
to separate the normal and secure execution environments. 

Similarly, [14] proposed a two-level security wrapper to counter the DoS and 
masquerade attacks to improve the NoC availability. 

There have also some research on preventing attacks by hardware Trojans. In 
[15] and [16], error detection codes are used to counter data integrity attacks by 
hardware Trojans on the NoC links, where a Trojan on a link can flip the bit 
value of the link. 

In [17], a runtime auditor is proposed to prevent the bandwidth denial attack 
by the hardware Trojan. The auditor is based on the transmission latency dif-
ference between the original and duplicated transmissions. An attack will be de-
tected if the latency difference is beyond a predefined threshold. 

Ancajas in [18] proposed a three-layer security architecture, to prevent infor-
mation leak by the NoC hardware Trojan that has varied sources of assistance, 
including side-channels. 

Our work focuses on the detection of packet hijacking by the Hardware Tro-
jan that is tiny, has limited computing power, and only attempts to divert the 
targeted packets to a different location on the NoC. We assume that both source 
and destination addresses can be altered by the Trojan. When the packet source 
address is altered, the reply packet can be hijacked. We use a tag-based authen-
tication to identify any changes to the packet source and destination addresses. 

There are many ways that a packet can be tagged for authentication. Plenty of 
approaches exist, such as the cryptographic hash function based [19] [20], the 
MAC (Message Authentication Code) scheme based [21] [22] [23], and Added 
Redundancy Explicit Authentication (AREA) [24]. However, those approaches 
basically focus on the integrity of data. They rarely consider the intention behind 
the attack. 
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In this work, we take the nature of packet hijacking attack into account in the 
packet tagging so that our design can be customized to meet the design require-
ments with “just enough” resources, which is elaborated in the next sections. 

3. Design Overview of Packet Tagging and Authentication 

We divide the contents of a packet into source (src), destination (dst), and the 
rest as data. The data includes payload data and other information auxiliary for 
the packet transmission. With the packet hijacking attack, data is supposed to 
remain unchanged; otherwise, the whole attack may become invalid to the at-
tacker. Therefore, our first packet tagging strategy is mixing the tag with the 
packet data. If the tag position is not known, it is difficult for the attacker to re-
place the tag with a guessed value without altering the data bits.  

For the tag generation, we start the design with a simple XOR operation: 

( || ) ttag src dst K= ⊕                       (1) 

where || is the bit string concatenation and tK  is a secret key. It can be seen 
from this tag design that if the Trojan only changes the src and dst of the packet, 
the tag will be changed and the hijacking attack can be readily detected. 

However, if key tK  is fixed for all packets of the same (src, dst), the tag val-
ues would be identical. This fixed tag value could then be used to easily identify 
the tag bits in the data field. Moreover, even if the key is dynamically changed, 
the tag bit positions can still be identified if the Trojan is able to collect sufficient 
number of packets of a same data value for a given (src, dst). Therefore, the key 
used for the tag generation should be dynamic, and tag bit positions need to be 
further concealed, which leads to our design for the packet tagging, as given in 
Algorithm 1. 

For a packet with data ( idata ) to be sent from source (src) to destination (dst), 
Algorithm 1 first generates a random number, ( pL ), to label the packet (Line 1). 

pL  is then used to find a dynamic key ( ||t sK K ) (Line 2) for the tag generation 
(Line 3) and tag bit concealment (Line 4 and Line 5). The tag is generated using 
Equation (1). To conceal the tag bits, the tag is initially inserted into the data 
field with a predefined and secret bit-position map ( tagm )(Line 4); the resulting 
data field datat is then scrambled (Lines 5) under the control of key ( sK ). After 
the tag bit concealment, the packet label ( pL ) is inserted, also with another pre-
defined and secret bit-position map, ( Lpm ), (Line 6). In the last step  
 
Algorithm 1. Packet tagging at the source. 
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(Line 7), the data field, ( odata ), together with the packet source and destination 
addresses forms the final packet to be transferred over the NoC. 

For an illustration, Figure 2 shows how the final packet data field odata  is 
formed with the initial 8-bit data (01011110), 4-bit tag (1101, underlined in the 
figure), and 3-bit pL  (010, italicized). 

Based on the packet tagging design, to obtain the tag from a packet for au-
thentication, the destination needs to extract pL  (according to its bit-map, 

tagm ) from the received packet, and use pL  to find the key ( ||t sK K ). With 

sK , the data field sdata  can be restored to its initial position so that the tag can 
be extracted from the original position, as detailed in Algorithm 2. 

Based on the packet tagging design, to obtain the tag from a packet for au-
thentication, the destination needs to extract pL  (according to its bit-map, 

tagm ) from the received packet, and use pL  to find the key ( ||t sK K ). With 

sK , the data field sdata  can be restored to its initial position so that the tag can 
be extracted from the original position, as detailed in Algorithm 2.  

Similar to the tag generation in the packet tagging, the tag calculation in Al-
gorithm 2 (Line 5) for the received packet also uses Equation (1). When the 
calculated tag is the same as the original tag, the packet is deemed valid and the 
related data is passed to the processing application software; otherwise, the 
packet is invalid and dropped. 

From the packet tagging design, we can see that with the tag scrambling, the 
tag bit positions in the data field change from packet to packet and appear ran-
dom to the attacker. The randomness of the tag bit values and positions in turn 
makes it hard for the attacker to identify the secret pL  bit positions since the 

pL  value is also random even for packets with a same ( , )src dst  and fixed data. 
 

 
Figure 2. Packet tagging example: tag (1101) is inserted in an 8-bit data, scrambled, and 
mixed with the packet Lp (010). 
 
Algorithm 2. Packet authentication at the destination. 

 

0 1 0 1 1 1 1 0

0 1 1 1 0 0 1 1 1 1 0 1

1 1 0 0 1 1 1 1 0 1 0 1

1 0 1 0 0 1 1 1 1 1 0 0 1 0 1

datai:

datat:

datas:

datao:
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4. Custom Hardware Implementation 

As can be seen from the packet tagging, the effectiveness of the authentication is 
closely related to how the dynamic key is generated and how the tag scrambling 
is implemented, which are discussed in the next two sub-sections. 

4.1. Key Generation 

It is desired that a different packet label pL  should have a different key value. 
Assume the size of pL  is LpS . We aim for a design that can generate 2 LpS  
unique random keys. 

A straightforward way is using a lookup table (LUT) to hold pre-generated 
key values, as illustrated in Figure 3(a), where p is the key size. Each entry in the 
table holds a key value and pL  points the key to be used. However, the table 
grows with the key size and the number of key values used, which may incur a 
large overhead on the storage space. Here we propose a design with a reduced 
LUT, as outlined in Figure 3(b). The approach to reducing LUT and forming a 
key is detailed below. 

For simplicity, we first assume the key size p is a power of 2. We narrow the 
table by reducing the table width to /p q  bits; q is also a power of 2. To ensure 
the uniqueness of the key generated from the table, we want the value in each ta-
ble entry to be unique. Therefore, there are a maximum of /2 p q  entries. We call 
each entry in the table a word. A key is formed by a concatenation of q words 
from the table, hence it is unique. 

To obtain q words, we divide the table into q sub-tables. Each sub-table pro-
vides a word for the key.  

For q sub-tables, and 2 LpS p -bit keys, the following conditions should be sat-
isfied: 

/2 / 1p q q ≥                           (2) 

/(2 / )  ! 2 LpSp q qq q∗ ≥                       (3) 

where !q  is the number of permutations of q words. The above equations state 
that q cannot be arbitrarily large. A sub-table should contain at least one entry  
 

 
(a) 

 
(b) 

Figure 3. Key generation. (a) Key directly selected from a full LUT; (b) Key generated 
from a reduced LUT. 
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(see Equation (2)). Since a sub-table offers /2 /p q q  words, a maximum of 
/(2 / )  !p q qq q∗  keys can be formed based on the table. Therefore, the total 

number of keys required should be no larger than this value (see Equation (3)). 
Based on Equations (2) and (3), to reduce the cost we can select a q such that 

the LUT is small yet sufficient for a required number of unique keys. 
If p or q is not of a power of 2, the closest upper power value log2 p    or 
log2 q    will be used to find a reduced LUT. From the reduced LUT, 𝑞𝑞 sub-ta- 

bles will be adopted for key generation. 
Given the reduced LUT table, our design for 2 LpS  unique keys consists of 

three stages: 
1) Stage one: Word selection (WSL), selecting q words from the sub-tables;  
2) Stage two (optional): Word shuffling (WSF), changing the order of selected 

words; 
3) Stage three: Word concatenation (WC), concatenating the shuffled words 

to form a key. 
The first two stages are controlled by the LpS -bit packet label. The word se-

lection uses different control bits for different sub-tables; therefore, a total of 
/log(2 / )p qq q∗  bits from pL  are used. The remaining bits, if there are any, in 

pL  are then used for word shuffling, where the selected words are partitioned 
into groups such that words in each group can be shuffled by the available con-
trol bits. As an example, shuffling four words, ( 0 3x x∼ ), with two control bits, 
𝑎𝑎𝑎𝑎, (denoted by the symbol shown in Figure 4(a)), is given in Figure 4(b), 
where the different control value for each 4-to-1 multiplexer will select a differ-
ent input. For instance, when 01ab = , 0 1y x= , 1 0y x= , 2 3y x= , 3 2y x= ; 
Therefore, inputs ( 0, 1, 2, 3)x x x x  are shuffled into ( 1, 0, 3, 2)x x x x . 

To demonstrate the reduced-LUT based approach, here we consider three de-
signs for: 256 16-bit keys, 256 20-bit keys, and 512 16-bit keys, respectively. For 
the three designs, according to Equations (2) and (3), the largest 𝑞𝑞 for the re-
duced LUT is 4 and the table size is 24 × 4 bits. (Notice that without the LUT re-
duction, the table sizes for the three designs would be 28 × 16, 28 × 20 and 29 × 16 
bits, correspondingly.) 
 

  
(a)                 (b) 

Figure 4. Four-word shuffle. (a) Symbol; (b) Circuit design. 
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The design for 256 16-bit unique keys is shown in Figure 5(a), where the (24 × 
4)-LUT are divided into four sub-tables, each having four words. The 8 bits of 

pL  (I1−8) are all used for word selection. No control bits are left for shuffling. 
The selected four words are, therefore, directly concatenated to form a key. 

For the 20-bit keys, since 20 is not a power of 2 and its closest upper power 
value is 32, we first divide the (24 × 4) LUT into eight sub-tables for 32-bit keys; 
each sub-table now contains two words. From the table, we choose five 
sub-tables for 20-bit key generation, as shown in Figure 5(b), where five control 
bits select five words from the sub-tables. For the rest of three control bits, the 
selected words are partitioned into two groups. The four words in one group are 
shuffled under two control bits and the group is then shuffled with the second 
group under one control bit. 

Similarly, we can come up a design with the same 4-bit LUT for 512 keys, as 
shown in Figure 5(c) where the 9-bit pL  is used. The selected four words are 
partitioned into two groups and the two word groups are shuffled by one control 
bit. 
 

 
Figure 5. Example of key generation design for (a) 256 16-bit keys; (b) 256 20-bit keys; 
(c) 512 16-bit keys. 
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As can be seen from the example, with the increase of unique keys, the hard-
ware overhead is only slightly increased. But more control bits (i.e., pL ) are re-
quired. A one-bit increase in pL  means the packet will carry one-bit less pay-
load data. For security, on the other hand, we want a large pL  size to avoid tag 
collisions among the packets of the same (src, dst). Therefore, a trade-off should 
be made between the security and the overhead of the packet space consump-
tion. 

Here we aim to improve the uniqueness of keys for a node within an execu-
tion time window, which is related to the traffic load on the network. For a 
healthy system, the network should not be saturated. For a given a NoC of γ  
nodes, assume that the average packet injection rate without causing the net-
work saturation is β  and the average packet latency is τ . The average traffic 
per second on the NoC is βτγ . We determine the pL  size based on the fol-
lowing equation: 

log( )LpS βτγ=                         (4) 

4.2. Data Field Scrambling 

Data field scrambling is to make tag bit positions in the data field appear ran-
dom to the attacker. Since the tag value is dynamic and random, randomly ro-
tating the data field for each packet will make each bit value in the field random, 
hence hiding the tag position. 

We use key sK  (see Algorithm 1) to control the rotation. A simple design is 
rotating the date field by sK  bits. The size of sK  should be at least 

logKs dS S=  for a full range rotation (where dS  is the data field size). How-
ever, this design has two major problems: one, it just creates up to dS  values 
for a given tag position; the tag can only be shuffled and hidden in this value 
space; and two, the cost of the rotation increases exponentially with the data size. 

To see how small block rotation helps to reduce the design cost, we imple-
mented the designs for 16-, 32-, 64-, and 128-bit data rotations based on 8-bit 
blocks. Table 1 shows the related savings on the area, power, and execution de-
lay as compared to the related full data rotation designs. As can be seen from the 
experiments, the savings from the small-block-based designs are significant. 

Therefore, here we propose to rotate the data on small blocks such that a large 
shuffle space can be created and, at the same time, the rotation cost can also be 
reduced. 
 
Table 1. Cost saving of block based design over full rotation designs. 

Data Size 
Savings 

Area Power Delay 

16 21.22% 11.49% 13.0% 

32 41.37% 17.17% 32.6% 

64 47.68% 25.29% 48.4% 

128 50.61% 28.92% 52.3% 
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Assume the block size is bS , we divide the data field into /d bn S S=  blocks. 
The rotation of each block requires log bS  control bits. Given key sK , we can 
extract KsS  random control values from the bit stream ring formed be sK , as 
demonstrated in Figure 6, where the last key bit is adjacent to the first bit. A 
control value iC  is a bit segment starting from bit i in the ring. We, then, group 
the n blocks into KsS  groups of a similar size. The data field size may not be a 
multiple of the block size. In this case, the smaller block of the size less than bS  
will form a separate group. A bit segment 

10 1( , , , )
KsSC C C

−
  from the control 

ring is selected to control block rotation in a group. 
As a demonstration, Figure 7(a) shows a design for 108-bit data with a block 

size of 8 bits and the control of 7 bits (that is used in our experiment). The data 
field is divided into 14 blocks 1 2 14( , , , )b b b  with the last block of 4 bits, which 
are then partitioned into 7 groups. Three bits control the rotation of each group. 
Figure 7(b) shows blocks ( 1b  and 2b ) in the first group are rotate-left shifted 
1bit when the control value for the group is 001 0( 001)C = . 

The block based design allows the tag bits to be concealed by up to KsS
bS  val-

ues, larger than the space (up to 2 KsS  values) provided by the design with the 
full range rotation. 
 

 
Figure 6. Control bit ring for data field shuffle. 

 

 
Figure 7. Example of scrambling design (108-bit data). (a) Overview; 
(b) Block rotation in group 1. 
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5. Experimental Evaluation and Results 

To evaluate our design, we built a simulation platform, as shown in Figure 8. 
We use the 2D-mesh NoC model developed by [25] as our baseline NoC. Each 
router in the network performs five basic operations: link traversal (LT) to 
transfer a packet from the output of one router to the input of another router, 
buffer write (BW) to save incoming packets, routing computation (RC) to de-
termine the switching direction for a packet, switch allocation (SA) to arbitrate 
multiple packet switching in the router, and switching traversal (ST) to move a 
packet from the incoming buffer to the router’s output. 

The five operations are pipelined into 3 stages. In addition, the XY routing 
algorithm, the wormhole switching scheme and the matrix arbitration, com-
monly used in the NoC designs, are also implemented in the baseline model.  

A cycle-accurate NoC simulator, Booksim 2.0 [26], is used to run application 
traces collected by Netrace 1.0 [27]. We modify the simulator to simulate the 
Trojan attack and the attack detection over the NoC for each application. 

The hardware models are synthesized with Synopsys Design Compiler [28] 
based on the TSMCs 65 nm cell library [29] for cost estimation. The experiment 
results are presented below. 

5.1. Determining Packet Label Size 

With our design, we first need to decide the packet label size. In our experi-
ments, we use 8x8-mesh network with the packet size of 128 bits. The packet 
source and destination addresses each require 6 bits so the tag size is 6 6 12+ =  
bits. 

We run the application traces with Booksim to simulate their network per-
formance on the given NoC. Table 2 shows the average packet latency in terms 
of clock cycles (cc) and the traffic injection rate in packets per clock cycle (ppc), 
for each application. Based on Equation (4), we find the label size, as shown in 
the last column in the table. For the set of applications, we choose the largest size 
(namely, 8 bits) in our designs for the Trojan and packet hijacking detection 
unit. 
 

 
Figure 8. Experimental setup.  
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Table 2. Average injection rate, latency and packet label size. 

Applications (abbr.) Injection Rate (ppc) Latency (cc) SLp (bits) 

Blackscholes (blks) 0.015192 31.3914 5 

Bodytrack (bdyt) 0.084288 37.5532 8 

Canneal (canl) 0.016099 32.3142 5 

Dedup (dup) 0.079224 32.5551 7 

Fluidanimate (flud) 0.018139 33.0537 5 

Swaptions (swap) 0.176881 30.6503 8 

Vips (vps) 0.061652 33.3856 7 

X264 0.009839 32.2271 4 

5.2. Costs of Hardware Trojan 

We implement two Trojans (HT1 and HT2) that have following functionality 
and capability in playing with packet tags: 
• HT1: using randomly guessed tag value and bit positions during an attack. 
• HT2: working with the software accomplice in an attempt to uncover the tag 

bit positions before hijacking takes place. To do that, the software accomplice 
repeatedly sends a constant data to the Trojan. By comparing the received 
packets from the accomplice, the Trojan may be able to identify some tag bit 
positions. 

The area, power and delay overheads of the two hardware Trojans are given in 
Columns 3 & 5 in Table 3. The relative values in percentage (labelled r) as com-
pared the costs of a baseline router (see Column 2, where the delay is the longest 
path delay, which determines the clock cycle time) are also given in the table. 
The two Trojans consume less than 3% area and 0.4% power of the single router, 
and incur less than one clock cycle delay (27% of the router’s clock cycle time). 
Figure 9 shows the area and power consumption of each Trojan relative to the 
NoC size. For a single Trojan inserted in a large network of many nodes, the 
overheads become ignorable. With our 8 × 8-mesh network, the footprints of 
HT1 and HT2 are, respectively, just 0.024% and 0.043% of the overall NoC. The 
performance overhead may also very unlikely be detected at the circuit testing 
stage without knowing how to activate the Trojan. 

5.3. Security Evaluation 

We evaluate the security of our design in terms of the detection rate. To see the 
effectiveness of our tag bit scrambling, we also investigate the attack success rate 
and the data invalid rate. The average data invalid rate, detection rate and attack 
success rate under two detection designs (with and without tag bit scrambling) 
are given in Table 4. 

From Column 2 of Table 4, we can see that even though there are some HT1 
attacks that can pass through the authentication, chances that the packet data are 
made invalid are very high; the average probability is about 99.35%. It can also  
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(a)                                       (b) 

Figure 9. Trojan overhead vs network size. 
 
Table 3. Overheads of HT1 and HT2. 

Metric Baseline Router 
HT1 HT2 

 r (%)  r (%) 

Area (um2) 83962 1313 1.56 2362 2.81 

Power (uW) 53920 136 0.25 187 0.35 

Delay (ns) 0.56 0.07 12.5 0.15 26.8 

 
Table 4. Security evaluation against HT1 and HT2 attacks. 

Metric 
without scrambling with scrambling 

HT1 HT2 HT1 HT2 

Data Invalid rate (%) 99.3509 0 99.3857 98.9684 

Detection rate (%) 99.9846 99.9740 99.9870 99.9753 

Attack success rate (%) 0.0006 0.0260 0.0005 0.0009 

 
be seen that the success rate is not exactly the complement of the detection rate. 
If an attack has escaped the authentication but the data of the hijacked packet 
has been altered, the attack cannot be successful. However, if the HT2 Trojan is 
used, the data invalid rate is reduced to 0, as shown in Column 3 in the table. 
This is because the HT2 Trojan can identify the static tag bit positions and alter 
the tag on the correct bits in the data field. We also observe that with HT2, the 
attack success rate is increased and accordingly the attack detection rate is re-
duced due to the increased tag collision frequency. But if the mixed tag and data 
field is dynamically scrambled, the security of the design is greatly improved, as 
shown in the last two columns in the table, where 99.9% attacks can be detected 
and for the rest of attacks that have gone undetected, a majority of them are still 
unsuccessful due to the invalid data they contain. Most importantly, the low at-
tack success rate (0.0005% from HT1and 0.0009% from HT2) is accompanied 
with a high data invalid rate (99.38% from HT1 and 98.96% from HT2). 

5.4. Overhead of Detection Unit 

With 8 × 8-mesh network, the address of 12 bits, and the pL  size of 8 bits ob-
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tained in Section 5.1., the remaining 108-bit data field in the 128-bit packet will 
be used for data and tag. Therefore, the key size is 20 bits (the sum of the address 
size and pL  size). The design shown in Figure 5(b) is used for key generation 
and the design given in Figure 7 (based on the 8-bit Barrel Shifter) is applied for 
data field scrambling in our experiments. 

To see how effective is the cost saving on the reduced LUT and block-based 
scrambling, we investigate the design with full LUT (see Figure 3(a)) and with 
full data field scrambling. The relative costs as compared to the baseline router 
design for the three designs are given in Columns 2 - 4 of Table 5. As can be 
seen from the table, our DU design incurs very small overheads, 3.37% on area 
and 2.61% on power. However, without the LUT reduction, the costs would be 
very high (increased to 76.90% and 77.86% in the area and power); the costs 
would also be higher if the block-based scrambling is not used. 

For the performance overhead, we first measure the delay of DU with Synop-
sys Design Compiler. The delays are then incorporated into the BookSim simu-
lation, based on which we obtain the execution time for each application. Figure 
10 shows the normalized execution time with and without the detection unit; on 
average, only 0.097% (as given in the rightmost group, AVG) execution delay is 
incurred. 

6. Conclusions  

In this paper, we proposed a tag-based authentication design to detect the packet 
hijacking by a hardware Trojan that is embedded in a third-party NoC. Our de-
sign incorporates two customization techniques: one, the packet tagging and 
authentication that are tailored to the packet hijacking attack, with the tag mixed 
in the packet data so that the tag bit positions are hard to be identified by the  
 

 
Figure 10. Normalized execution time. 
 
Table 5. Area and power overheads of DU. 

Metric With full LUT rel. (%) With full scram (%) DU rel (%) 

Area (um2) 76.90 5.08 3.37 

Power (uW) 77.86 5.70 2.61 
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attacker; and two, the tag size is determined by the NoC size and the packet label 
size is customized to the applications so that the packet space consumption in-
curred by the detection is reduced. To further reduce the design overhead, we 
introduced a lookup table based design for dynamic-tag generation and a block 
based data field rotation for tag scrambling. Our experiments on an 8 × 8-mesh 
network show that the detection unit incurs about 3.37% area, 2.61% power, and 
0.097% performance overhead as compared to the baseline design.  

It must be pointed out that like other security designs, our design, especially 
the tag bit position, can be cracked by an exhaustive brute-force search. How-
ever, the brute-force search often requires large computing and storage supports. 
Our proposed scheme targets the small Trojan that lacks sufficient resources for 
such an expensive search and its software accomplice also has no opportunities 
to decode the packet tag since the detection unit has filtered out the tagging in-
formation for each packet before it reaches to the destination software. 
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