
Journal of Computer and Communications, 2018, 6, 135-152
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2018.61015 Dec. 29, 2017 135 Journal of Computer and Communications

A Customized Authentication Design for Traffic
Hijacking Detection on Hardware-Trojan
Infected NoCs

Mubashir Hussain, Hui Guo, Sri Parameswaran

School of Computer Science and Engineering, The University of New South Wales, Sydney, Australia

Abstract

Traffic hijacking is a common attack perpetrated on networked systems,
where attackers eavesdrop on user transactions, manipulate packet data, and
divert traffic to illegitimate locations. Similar attacks can also be unleashed in
a NoC (Network on Chip) based system where the NoC comes from a
third-party vendor and can be engrafted with hardware Trojans. Unlike the
attackers on a traditional network, those Trojans are usually small and have
limited capacity. This paper targets such a hardware Trojan; Specifically, the
Trojan aims to divert traffic packets to unauthorized locations on the NoC. To
detect this kind of traffic hijacking, we propose an authentication scheme in
which the source and destination addresses are tagged. We develop a custom
design for the packet tagging and authentication such that the implementation
costs can be greatly reduced. Our experiments on a set of applications show
that on average the detection circuitry incurs about 3.37% overhead in area,
2.61% in power, and 0.097% in performance when compared to the baseline
design.

Keywords

Packet Hijacking Detection, Hardware Trojan, Network-on-Chip

1. Introduction

With the advance in semiconductor technology, many intellectual property (IP)
cores can be integrated on a single chip. A typical example is the system-on-chip
(SoC) [1] [2], where multiple processor cores, memory components, I/O inter-
faces are implemented on one chip and their communications are supported by
an on-chip sub-system, called NoC (Network-on-Chip).

How to cite this paper: Hussain, M., Guo,
H. and Parameswaran, S. (2018) A Custo-
mized Authentication Design for Traffic
Hijacking Detection on Hardware-Trojan
Infected NoCs. Journal of Computer and
Communications, 6, 135-152.
https://doi.org/10.4236/jcc.2018.61015

Received: October 19, 2017
Accepted: December 26, 2017
Published: December 29, 2017

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2018.61015
http://www.scirp.org
https://doi.org/10.4236/jcc.2018.61015

M. Hussain et al.

DOI: 10.4236/jcc.2018.61015 136 Journal of Computer and Communications

To reduce the cost and time-to-market, the SoC designers often use a third-party
NoC IP. The third-party IPs may contain hardware Trojans (the malicious
components unlawfully inserted into the design) and therefore the system can be
exposed to various attacks [3] [4]. Even though there are a few of offline ap-
proaches to detect hardware Trojans by the circuit level testing [5] [6], tiny Tro-
jans with a very small footprint can escape such detections and still appear in the
final product to perform simple attacks. One simple attack may be hijacking
packets to different locations where the data in the packet can be leaked or ex-
ploited. For example, some medical surgery equipment may contain a SoC that
consists of many controllers to control various supplies (such as blood, oxygen
and anesthetic) during a surgery. If a packet containing the command “increase
amount” for oxygen, is hijacked to the controller that is for anesthetic, the pa-
tient may die of anesthetic overdose. Similarly, in the case of an online payment
transaction, if the related packets are stealthily copied to an auditing application
on the SoC chip in a mobile device, the user’s credential information can be eas-
ily leaked.

1.1. Target System and Attack Model

In this paper, we focus on such a system that consists of an untrusted third-party
NoC and a set of designer’s processing units (PUs), as outlined in Figure 1(a).
In this system, each node in the NoC has a router to connect to other nodes and
a network interface (NI) for communication with the local PU. The PU hard-
ware and its system software from the designer are trusted, but some of its ap-
plications (for example software downloaded from the internet) are untrusted.

We assume that a single hardware Trojan (HT) is present in an arbitrary
router of the NoC and the Trojan can be activated and deactivated by either ex-
ternal physical parameters or internal electrical signals. Once activated1, the
Trojan can read and modify the packets passing through its host router. Due to
its limited capacity, the Trojan aims to hijack a targeted packet to a different lo-
cation by altering the packet’s destination and/or source address, as illustrated in
Figure 1(b), where the packet from node i to node j, P (i, j), is diverted to node
k. In addition, we assume that the Trojan may have a software accomplice (sit-
ting on some PU) that can communicate with the Trojan to assist attacks.

1.2. Contributions of the Paper

In order to detect such a packet hijacking, we use a tag based authentication. At
the source node, a tag is generated and inserted into the packet. Upon receiving
the packet, the destination DU recalculates the tag based on the received packet
and compares it with the original tag. If they are different, a hijacked packet is
deemed detected, as shown in Figure 1(c).

Our work makes the following contributions:

1Here we only focus on the detection of hijacked packets, our proposed detection approach is suit-
able to varied Trojan activation/deactivation triggers [3].

https://doi.org/10.4236/jcc.2018.61015

M. Hussain et al.

DOI: 10.4236/jcc.2018.61015 137 Journal of Computer and Communications

Figure 1. Problem overview. (a) Target system; (b) Packet hijacking attack by Trojan; (c)
Packet hijacking detection by detection unit.

• We proposed a novel packet tagging and authentication scheme that has two

key features for security:
o The packet tag is random, dynamic and scrambled with the packet data,

making it difficult for the Trojan to alter the tag to elude detection;
o The packet tagging and the authentication are carried out in the secure de-

tection units (DUs) and both are transparent to the application software so
that the software accomplice cannot access tagged packets to perform crypt-
analysis on the packet tag.

• We developed a custom design approach for the hardware detection unit. The
design is built on the customized packet label size, minimized look-up-table
and small block scrambling operations such that the packet space and com-
puting costs caused by the attack detection can be greatly reduced.

1.3. Paper Organization

The rest of the paper is organized as follows. Section 2 briefly reviews the NoC-based
security. A short discussion on the existing data authentication schemes is also
given in this section. Section 3 provides the overview of our packet tagging and

https://doi.org/10.4236/jcc.2018.61015

M. Hussain et al.

DOI: 10.4236/jcc.2018.61015 138 Journal of Computer and Communications

authentication design; The related custom hardware implementation is pre-
sented in Section 4 and the experimental results are given in Section 5. The pa-
per is concluded in Section 6.

2. Related Work

The NoC-based security in SoCs has been actively researched in the past decade.
A few of isolation schemes, either software or hardware based, have been used to
enhance the system security.

At the software level, different access control approaches to protect a shared
memory from unauthorized accesses over the insecure NoC (which can cause
the system denial of service (DoS), leak of information, and change of behav-
iour) have been investigated in [7] [8] [9].

To avoid interference between secure and non-secure applications on the sys-
tem, [10] partitioned the NoC based on the security level of the applications,
while Wassel et al. [11] proposed a time-multiplexing NoC to separate commu-
nication links between different applications. Sonics uses a SMART Interconnect
[12] to protect system integrity and ARM applies what they call TrustZone [13]
to separate the normal and secure execution environments.

Similarly, [14] proposed a two-level security wrapper to counter the DoS and
masquerade attacks to improve the NoC availability.

There have also some research on preventing attacks by hardware Trojans. In
[15] and [16], error detection codes are used to counter data integrity attacks by
hardware Trojans on the NoC links, where a Trojan on a link can flip the bit
value of the link.

In [17], a runtime auditor is proposed to prevent the bandwidth denial attack
by the hardware Trojan. The auditor is based on the transmission latency dif-
ference between the original and duplicated transmissions. An attack will be de-
tected if the latency difference is beyond a predefined threshold.

Ancajas in [18] proposed a three-layer security architecture, to prevent infor-
mation leak by the NoC hardware Trojan that has varied sources of assistance,
including side-channels.

Our work focuses on the detection of packet hijacking by the Hardware Tro-
jan that is tiny, has limited computing power, and only attempts to divert the
targeted packets to a different location on the NoC. We assume that both source
and destination addresses can be altered by the Trojan. When the packet source
address is altered, the reply packet can be hijacked. We use a tag-based authen-
tication to identify any changes to the packet source and destination addresses.

There are many ways that a packet can be tagged for authentication. Plenty of
approaches exist, such as the cryptographic hash function based [19] [20], the
MAC (Message Authentication Code) scheme based [21] [22] [23], and Added
Redundancy Explicit Authentication (AREA) [24]. However, those approaches
basically focus on the integrity of data. They rarely consider the intention behind
the attack.

https://doi.org/10.4236/jcc.2018.61015

M. Hussain et al.

DOI: 10.4236/jcc.2018.61015 139 Journal of Computer and Communications

In this work, we take the nature of packet hijacking attack into account in the
packet tagging so that our design can be customized to meet the design require-
ments with “just enough” resources, which is elaborated in the next sections.

3. Design Overview of Packet Tagging and Authentication

We divide the contents of a packet into source (src), destination (dst), and the
rest as data. The data includes payload data and other information auxiliary for
the packet transmission. With the packet hijacking attack, data is supposed to
remain unchanged; otherwise, the whole attack may become invalid to the at-
tacker. Therefore, our first packet tagging strategy is mixing the tag with the
packet data. If the tag position is not known, it is difficult for the attacker to re-
place the tag with a guessed value without altering the data bits.

For the tag generation, we start the design with a simple XOR operation:

(||) ttag src dst K= ⊕ (1)

where || is the bit string concatenation and tK is a secret key. It can be seen
from this tag design that if the Trojan only changes the src and dst of the packet,
the tag will be changed and the hijacking attack can be readily detected.

However, if key tK is fixed for all packets of the same (src, dst), the tag val-
ues would be identical. This fixed tag value could then be used to easily identify
the tag bits in the data field. Moreover, even if the key is dynamically changed,
the tag bit positions can still be identified if the Trojan is able to collect sufficient
number of packets of a same data value for a given (src, dst). Therefore, the key
used for the tag generation should be dynamic, and tag bit positions need to be
further concealed, which leads to our design for the packet tagging, as given in
Algorithm 1.

For a packet with data (idata) to be sent from source (src) to destination (dst),
Algorithm 1 first generates a random number, (pL), to label the packet (Line 1).

pL is then used to find a dynamic key (||t sK K) (Line 2) for the tag generation
(Line 3) and tag bit concealment (Line 4 and Line 5). The tag is generated using
Equation (1). To conceal the tag bits, the tag is initially inserted into the data
field with a predefined and secret bit-position map (tagm)(Line 4); the resulting
data field datat is then scrambled (Lines 5) under the control of key (sK). After
the tag bit concealment, the packet label (pL) is inserted, also with another pre-
defined and secret bit-position map, (Lpm), (Line 6). In the last step

Algorithm 1. Packet tagging at the source.

https://doi.org/10.4236/jcc.2018.61015

M. Hussain et al.

DOI: 10.4236/jcc.2018.61015 140 Journal of Computer and Communications

(Line 7), the data field, (odata), together with the packet source and destination
addresses forms the final packet to be transferred over the NoC.

For an illustration, Figure 2 shows how the final packet data field odata is
formed with the initial 8-bit data (01011110), 4-bit tag (1101, underlined in the
figure), and 3-bit pL (010, italicized).

Based on the packet tagging design, to obtain the tag from a packet for au-
thentication, the destination needs to extract pL (according to its bit-map,

tagm) from the received packet, and use pL to find the key (||t sK K). With

sK , the data field sdata can be restored to its initial position so that the tag can
be extracted from the original position, as detailed in Algorithm 2.

Based on the packet tagging design, to obtain the tag from a packet for au-
thentication, the destination needs to extract pL (according to its bit-map,

tagm) from the received packet, and use pL to find the key (||t sK K). With

sK , the data field sdata can be restored to its initial position so that the tag can
be extracted from the original position, as detailed in Algorithm 2.

Similar to the tag generation in the packet tagging, the tag calculation in Al-
gorithm 2 (Line 5) for the received packet also uses Equation (1). When the
calculated tag is the same as the original tag, the packet is deemed valid and the
related data is passed to the processing application software; otherwise, the
packet is invalid and dropped.

From the packet tagging design, we can see that with the tag scrambling, the
tag bit positions in the data field change from packet to packet and appear ran-
dom to the attacker. The randomness of the tag bit values and positions in turn
makes it hard for the attacker to identify the secret pL bit positions since the

pL value is also random even for packets with a same (,)src dst and fixed data.

Figure 2. Packet tagging example: tag (1101) is inserted in an 8-bit data, scrambled, and
mixed with the packet Lp (010).

Algorithm 2. Packet authentication at the destination.

0 1 0 1 1 1 1 0

0 1 1 1 0 0 1 1 1 1 0 1

1 1 0 0 1 1 1 1 0 1 0 1

1 0 1 0 0 1 1 1 1 1 0 0 1 0 1

datai:

datat:

datas:

datao:

https://doi.org/10.4236/jcc.2018.61015

M. Hussain et al.

DOI: 10.4236/jcc.2018.61015 141 Journal of Computer and Communications

4. Custom Hardware Implementation

As can be seen from the packet tagging, the effectiveness of the authentication is
closely related to how the dynamic key is generated and how the tag scrambling
is implemented, which are discussed in the next two sub-sections.

4.1. Key Generation

It is desired that a different packet label pL should have a different key value.
Assume the size of pL is LpS . We aim for a design that can generate 2 LpS
unique random keys.

A straightforward way is using a lookup table (LUT) to hold pre-generated
key values, as illustrated in Figure 3(a), where p is the key size. Each entry in the
table holds a key value and pL points the key to be used. However, the table
grows with the key size and the number of key values used, which may incur a
large overhead on the storage space. Here we propose a design with a reduced
LUT, as outlined in Figure 3(b). The approach to reducing LUT and forming a
key is detailed below.

For simplicity, we first assume the key size p is a power of 2. We narrow the
table by reducing the table width to /p q bits; q is also a power of 2. To ensure
the uniqueness of the key generated from the table, we want the value in each ta-
ble entry to be unique. Therefore, there are a maximum of /2 p q entries. We call
each entry in the table a word. A key is formed by a concatenation of q words
from the table, hence it is unique.

To obtain q words, we divide the table into q sub-tables. Each sub-table pro-
vides a word for the key.

For q sub-tables, and 2 LpS p -bit keys, the following conditions should be sat-
isfied:

/2 / 1p q q ≥ (2)

/(2 /) ! 2 LpSp q qq q∗ ≥ (3)

where !q is the number of permutations of q words. The above equations state
that q cannot be arbitrarily large. A sub-table should contain at least one entry

(a)

(b)

Figure 3. Key generation. (a) Key directly selected from a full LUT; (b) Key generated
from a reduced LUT.

https://doi.org/10.4236/jcc.2018.61015

M. Hussain et al.

DOI: 10.4236/jcc.2018.61015 142 Journal of Computer and Communications

(see Equation (2)). Since a sub-table offers /2 /p q q words, a maximum of
/(2 /) !p q qq q∗ keys can be formed based on the table. Therefore, the total

number of keys required should be no larger than this value (see Equation (3)).
Based on Equations (2) and (3), to reduce the cost we can select a q such that

the LUT is small yet sufficient for a required number of unique keys.
If p or q is not of a power of 2, the closest upper power value log2 p   or
log2 q   will be used to find a reduced LUT. From the reduced LUT, 𝑞𝑞 sub-ta-

bles will be adopted for key generation.
Given the reduced LUT table, our design for 2 LpS unique keys consists of

three stages:
1) Stage one: Word selection (WSL), selecting q words from the sub-tables;
2) Stage two (optional): Word shuffling (WSF), changing the order of selected

words;
3) Stage three: Word concatenation (WC), concatenating the shuffled words

to form a key.
The first two stages are controlled by the LpS -bit packet label. The word se-

lection uses different control bits for different sub-tables; therefore, a total of
/log(2 /)p qq q∗ bits from pL are used. The remaining bits, if there are any, in

pL are then used for word shuffling, where the selected words are partitioned
into groups such that words in each group can be shuffled by the available con-
trol bits. As an example, shuffling four words, (0 3x x∼), with two control bits,
𝑎𝑎𝑎𝑎, (denoted by the symbol shown in Figure 4(a)), is given in Figure 4(b),
where the different control value for each 4-to-1 multiplexer will select a differ-
ent input. For instance, when 01ab = , 0 1y x= , 1 0y x= , 2 3y x= , 3 2y x= ;
Therefore, inputs (0, 1, 2, 3)x x x x are shuffled into (1, 0, 3, 2)x x x x .

To demonstrate the reduced-LUT based approach, here we consider three de-
signs for: 256 16-bit keys, 256 20-bit keys, and 512 16-bit keys, respectively. For
the three designs, according to Equations (2) and (3), the largest 𝑞𝑞 for the re-
duced LUT is 4 and the table size is 24 × 4 bits. (Notice that without the LUT re-
duction, the table sizes for the three designs would be 28 × 16, 28 × 20 and 29 × 16
bits, correspondingly.)

(a) (b)

Figure 4. Four-word shuffle. (a) Symbol; (b) Circuit design.

https://doi.org/10.4236/jcc.2018.61015

M. Hussain et al.

DOI: 10.4236/jcc.2018.61015 143 Journal of Computer and Communications

The design for 256 16-bit unique keys is shown in Figure 5(a), where the (24 ×
4)-LUT are divided into four sub-tables, each having four words. The 8 bits of

pL (I1−8) are all used for word selection. No control bits are left for shuffling.
The selected four words are, therefore, directly concatenated to form a key.

For the 20-bit keys, since 20 is not a power of 2 and its closest upper power
value is 32, we first divide the (24 × 4) LUT into eight sub-tables for 32-bit keys;
each sub-table now contains two words. From the table, we choose five
sub-tables for 20-bit key generation, as shown in Figure 5(b), where five control
bits select five words from the sub-tables. For the rest of three control bits, the
selected words are partitioned into two groups. The four words in one group are
shuffled under two control bits and the group is then shuffled with the second
group under one control bit.

Similarly, we can come up a design with the same 4-bit LUT for 512 keys, as
shown in Figure 5(c) where the 9-bit pL is used. The selected four words are
partitioned into two groups and the two word groups are shuffled by one control
bit.

Figure 5. Example of key generation design for (a) 256 16-bit keys; (b) 256 20-bit keys;
(c) 512 16-bit keys.

https://doi.org/10.4236/jcc.2018.61015

M. Hussain et al.

DOI: 10.4236/jcc.2018.61015 144 Journal of Computer and Communications

As can be seen from the example, with the increase of unique keys, the hard-
ware overhead is only slightly increased. But more control bits (i.e., pL) are re-
quired. A one-bit increase in pL means the packet will carry one-bit less pay-
load data. For security, on the other hand, we want a large pL size to avoid tag
collisions among the packets of the same (src, dst). Therefore, a trade-off should
be made between the security and the overhead of the packet space consump-
tion.

Here we aim to improve the uniqueness of keys for a node within an execu-
tion time window, which is related to the traffic load on the network. For a
healthy system, the network should not be saturated. For a given a NoC of γ
nodes, assume that the average packet injection rate without causing the net-
work saturation is β and the average packet latency is τ . The average traffic
per second on the NoC is βτγ . We determine the pL size based on the fol-
lowing equation:

log()LpS βτγ= (4)

4.2. Data Field Scrambling

Data field scrambling is to make tag bit positions in the data field appear ran-
dom to the attacker. Since the tag value is dynamic and random, randomly ro-
tating the data field for each packet will make each bit value in the field random,
hence hiding the tag position.

We use key sK (see Algorithm 1) to control the rotation. A simple design is
rotating the date field by sK bits. The size of sK should be at least

logKs dS S= for a full range rotation (where dS is the data field size). How-
ever, this design has two major problems: one, it just creates up to dS values
for a given tag position; the tag can only be shuffled and hidden in this value
space; and two, the cost of the rotation increases exponentially with the data size.

To see how small block rotation helps to reduce the design cost, we imple-
mented the designs for 16-, 32-, 64-, and 128-bit data rotations based on 8-bit
blocks. Table 1 shows the related savings on the area, power, and execution de-
lay as compared to the related full data rotation designs. As can be seen from the
experiments, the savings from the small-block-based designs are significant.

Therefore, here we propose to rotate the data on small blocks such that a large
shuffle space can be created and, at the same time, the rotation cost can also be
reduced.

Table 1. Cost saving of block based design over full rotation designs.

Data Size
Savings

Area Power Delay

16 21.22% 11.49% 13.0%

32 41.37% 17.17% 32.6%

64 47.68% 25.29% 48.4%

128 50.61% 28.92% 52.3%

https://doi.org/10.4236/jcc.2018.61015

M. Hussain et al.

DOI: 10.4236/jcc.2018.61015 145 Journal of Computer and Communications

Assume the block size is bS , we divide the data field into /d bn S S= blocks.
The rotation of each block requires log bS control bits. Given key sK , we can
extract KsS random control values from the bit stream ring formed be sK , as
demonstrated in Figure 6, where the last key bit is adjacent to the first bit. A
control value iC is a bit segment starting from bit i in the ring. We, then, group
the n blocks into KsS groups of a similar size. The data field size may not be a
multiple of the block size. In this case, the smaller block of the size less than bS
will form a separate group. A bit segment

10 1(, , ,)
KsSC C C

−
 from the control

ring is selected to control block rotation in a group.
As a demonstration, Figure 7(a) shows a design for 108-bit data with a block

size of 8 bits and the control of 7 bits (that is used in our experiment). The data
field is divided into 14 blocks 1 2 14(, , ,)b b b with the last block of 4 bits, which
are then partitioned into 7 groups. Three bits control the rotation of each group.
Figure 7(b) shows blocks (1b and 2b) in the first group are rotate-left shifted
1bit when the control value for the group is 001 0(001)C = .

The block based design allows the tag bits to be concealed by up to KsS
bS val-

ues, larger than the space (up to 2 KsS values) provided by the design with the
full range rotation.

Figure 6. Control bit ring for data field shuffle.

Figure 7. Example of scrambling design (108-bit data). (a) Overview;
(b) Block rotation in group 1.

https://doi.org/10.4236/jcc.2018.61015

M. Hussain et al.

DOI: 10.4236/jcc.2018.61015 146 Journal of Computer and Communications

5. Experimental Evaluation and Results

To evaluate our design, we built a simulation platform, as shown in Figure 8.
We use the 2D-mesh NoC model developed by [25] as our baseline NoC. Each
router in the network performs five basic operations: link traversal (LT) to
transfer a packet from the output of one router to the input of another router,
buffer write (BW) to save incoming packets, routing computation (RC) to de-
termine the switching direction for a packet, switch allocation (SA) to arbitrate
multiple packet switching in the router, and switching traversal (ST) to move a
packet from the incoming buffer to the router’s output.

The five operations are pipelined into 3 stages. In addition, the XY routing
algorithm, the wormhole switching scheme and the matrix arbitration, com-
monly used in the NoC designs, are also implemented in the baseline model.

A cycle-accurate NoC simulator, Booksim 2.0 [26], is used to run application
traces collected by Netrace 1.0 [27]. We modify the simulator to simulate the
Trojan attack and the attack detection over the NoC for each application.

The hardware models are synthesized with Synopsys Design Compiler [28]
based on the TSMCs 65 nm cell library [29] for cost estimation. The experiment
results are presented below.

5.1. Determining Packet Label Size

With our design, we first need to decide the packet label size. In our experi-
ments, we use 8x8-mesh network with the packet size of 128 bits. The packet
source and destination addresses each require 6 bits so the tag size is 6 6 12+ =
bits.

We run the application traces with Booksim to simulate their network per-
formance on the given NoC. Table 2 shows the average packet latency in terms
of clock cycles (cc) and the traffic injection rate in packets per clock cycle (ppc),
for each application. Based on Equation (4), we find the label size, as shown in
the last column in the table. For the set of applications, we choose the largest size
(namely, 8 bits) in our designs for the Trojan and packet hijacking detection
unit.

Figure 8. Experimental setup.

https://doi.org/10.4236/jcc.2018.61015

M. Hussain et al.

DOI: 10.4236/jcc.2018.61015 147 Journal of Computer and Communications

Table 2. Average injection rate, latency and packet label size.

Applications (abbr.) Injection Rate (ppc) Latency (cc) SLp (bits)

Blackscholes (blks) 0.015192 31.3914 5

Bodytrack (bdyt) 0.084288 37.5532 8

Canneal (canl) 0.016099 32.3142 5

Dedup (dup) 0.079224 32.5551 7

Fluidanimate (flud) 0.018139 33.0537 5

Swaptions (swap) 0.176881 30.6503 8

Vips (vps) 0.061652 33.3856 7

X264 0.009839 32.2271 4

5.2. Costs of Hardware Trojan

We implement two Trojans (HT1 and HT2) that have following functionality
and capability in playing with packet tags:
• HT1: using randomly guessed tag value and bit positions during an attack.
• HT2: working with the software accomplice in an attempt to uncover the tag

bit positions before hijacking takes place. To do that, the software accomplice
repeatedly sends a constant data to the Trojan. By comparing the received
packets from the accomplice, the Trojan may be able to identify some tag bit
positions.

The area, power and delay overheads of the two hardware Trojans are given in
Columns 3 & 5 in Table 3. The relative values in percentage (labelled r) as com-
pared the costs of a baseline router (see Column 2, where the delay is the longest
path delay, which determines the clock cycle time) are also given in the table.
The two Trojans consume less than 3% area and 0.4% power of the single router,
and incur less than one clock cycle delay (27% of the router’s clock cycle time).
Figure 9 shows the area and power consumption of each Trojan relative to the
NoC size. For a single Trojan inserted in a large network of many nodes, the
overheads become ignorable. With our 8 × 8-mesh network, the footprints of
HT1 and HT2 are, respectively, just 0.024% and 0.043% of the overall NoC. The
performance overhead may also very unlikely be detected at the circuit testing
stage without knowing how to activate the Trojan.

5.3. Security Evaluation

We evaluate the security of our design in terms of the detection rate. To see the
effectiveness of our tag bit scrambling, we also investigate the attack success rate
and the data invalid rate. The average data invalid rate, detection rate and attack
success rate under two detection designs (with and without tag bit scrambling)
are given in Table 4.

From Column 2 of Table 4, we can see that even though there are some HT1
attacks that can pass through the authentication, chances that the packet data are
made invalid are very high; the average probability is about 99.35%. It can also

https://doi.org/10.4236/jcc.2018.61015

M. Hussain et al.

DOI: 10.4236/jcc.2018.61015 148 Journal of Computer and Communications

(a) (b)

Figure 9. Trojan overhead vs network size.

Table 3. Overheads of HT1 and HT2.

Metric Baseline Router
HT1 HT2

 r (%) r (%)

Area (um2) 83962 1313 1.56 2362 2.81

Power (uW) 53920 136 0.25 187 0.35

Delay (ns) 0.56 0.07 12.5 0.15 26.8

Table 4. Security evaluation against HT1 and HT2 attacks.

Metric
without scrambling with scrambling

HT1 HT2 HT1 HT2

Data Invalid rate (%) 99.3509 0 99.3857 98.9684

Detection rate (%) 99.9846 99.9740 99.9870 99.9753

Attack success rate (%) 0.0006 0.0260 0.0005 0.0009

be seen that the success rate is not exactly the complement of the detection rate.
If an attack has escaped the authentication but the data of the hijacked packet
has been altered, the attack cannot be successful. However, if the HT2 Trojan is
used, the data invalid rate is reduced to 0, as shown in Column 3 in the table.
This is because the HT2 Trojan can identify the static tag bit positions and alter
the tag on the correct bits in the data field. We also observe that with HT2, the
attack success rate is increased and accordingly the attack detection rate is re-
duced due to the increased tag collision frequency. But if the mixed tag and data
field is dynamically scrambled, the security of the design is greatly improved, as
shown in the last two columns in the table, where 99.9% attacks can be detected
and for the rest of attacks that have gone undetected, a majority of them are still
unsuccessful due to the invalid data they contain. Most importantly, the low at-
tack success rate (0.0005% from HT1and 0.0009% from HT2) is accompanied
with a high data invalid rate (99.38% from HT1 and 98.96% from HT2).

5.4. Overhead of Detection Unit

With 8 × 8-mesh network, the address of 12 bits, and the pL size of 8 bits ob-

https://doi.org/10.4236/jcc.2018.61015

M. Hussain et al.

DOI: 10.4236/jcc.2018.61015 149 Journal of Computer and Communications

tained in Section 5.1., the remaining 108-bit data field in the 128-bit packet will
be used for data and tag. Therefore, the key size is 20 bits (the sum of the address
size and pL size). The design shown in Figure 5(b) is used for key generation
and the design given in Figure 7 (based on the 8-bit Barrel Shifter) is applied for
data field scrambling in our experiments.

To see how effective is the cost saving on the reduced LUT and block-based
scrambling, we investigate the design with full LUT (see Figure 3(a)) and with
full data field scrambling. The relative costs as compared to the baseline router
design for the three designs are given in Columns 2 - 4 of Table 5. As can be
seen from the table, our DU design incurs very small overheads, 3.37% on area
and 2.61% on power. However, without the LUT reduction, the costs would be
very high (increased to 76.90% and 77.86% in the area and power); the costs
would also be higher if the block-based scrambling is not used.

For the performance overhead, we first measure the delay of DU with Synop-
sys Design Compiler. The delays are then incorporated into the BookSim simu-
lation, based on which we obtain the execution time for each application. Figure
10 shows the normalized execution time with and without the detection unit; on
average, only 0.097% (as given in the rightmost group, AVG) execution delay is
incurred.

6. Conclusions

In this paper, we proposed a tag-based authentication design to detect the packet
hijacking by a hardware Trojan that is embedded in a third-party NoC. Our de-
sign incorporates two customization techniques: one, the packet tagging and
authentication that are tailored to the packet hijacking attack, with the tag mixed
in the packet data so that the tag bit positions are hard to be identified by the

Figure 10. Normalized execution time.

Table 5. Area and power overheads of DU.

Metric With full LUT rel. (%) With full scram (%) DU rel (%)

Area (um2) 76.90 5.08 3.37

Power (uW) 77.86 5.70 2.61

https://doi.org/10.4236/jcc.2018.61015

M. Hussain et al.

DOI: 10.4236/jcc.2018.61015 150 Journal of Computer and Communications

attacker; and two, the tag size is determined by the NoC size and the packet label
size is customized to the applications so that the packet space consumption in-
curred by the detection is reduced. To further reduce the design overhead, we
introduced a lookup table based design for dynamic-tag generation and a block
based data field rotation for tag scrambling. Our experiments on an 8 × 8-mesh
network show that the detection unit incurs about 3.37% area, 2.61% power, and
0.097% performance overhead as compared to the baseline design.

It must be pointed out that like other security designs, our design, especially
the tag bit position, can be cracked by an exhaustive brute-force search. How-
ever, the brute-force search often requires large computing and storage supports.
Our proposed scheme targets the small Trojan that lacks sufficient resources for
such an expensive search and its software accomplice also has no opportunities
to decode the packet tag since the detection unit has filtered out the tagging in-
formation for each packet before it reaches to the destination software.

References

[1] Olukotun, K., Nayfeh, B.A., Hammond, L., Wilson, K. and Chang, K. (1996) The
Case for a Single-Chip Multiprocessor. ACM Sigplan Notices, 31, 2-11.
https://doi.org/10.1145/248209.237140

[2] Maeurer, T.R. and Shippy, D. (2005) Introduction to the Cell Multiprocessor. IBM
Journal of Research and Development, 49, 589-604.
https://doi.org/10.1147/rd.494.0589

[3] Bhunia, S., Hsiao, M.S., Banga, M. and Narasimhan, S. (2014) Hardware Trojan At-
tacks: Threat Analysis and Countermeasures. Proceedings of the IEEE, 102,
1229-1247. https://doi.org/10.1109/JPROC.2014.2334493

[4] Tehranipoor, M. and Koushanfar, F. (2010) A Survey of Hardware Trojan Taxon-
omy and Detection. IEEE Design and Test of Computers, 27, 10-25.
https://doi.org/10.1109/MDT.2010.7

[5] Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P. and Sunar, B. (2007) Trojan
Detection Using Ic Fingerprinting. IEEE Symposium on Security and Privacy,
296-310. https://doi.org/10.1109/SP.2007.36

[6] Jin, Y. and Makris, Y. (2008) Hardware Trojan Detection Using Path Delay Finger-
print. IEEE International Workshop on Hardware-Oriented Security and Trust,
HOST 2008, 51-57.

[7] Diguet, J.-P., Evain, S., Vaslin, R., Gogniat, G. and Juin, E. (2007) Noc-Centric Se-
curity of Reconfigurable Soc. Proceedings of the 1st International Symposium on
Networks-on-Chip, 223-232.

[8] Fiorin, L., Palermo, G., Lukovic, S., Catalano, V. and Silvano, C. (2008) Secure
Memory Accesses on Networks-on-Chip. IEEE Transactions on Computers, 57,
1216-1229. https://doi.org/10.1109/TC.2008.69

[9] Porquet, J., Greiner, A. and Schwarz, C. (2011) Noc-Mpu: A Secure Architecture for
Flexible Co-Hosting on Shared Memory Mpsocs. IEEE Design, Automation & Test
in Europe, 1-4. https://doi.org/10.1109/DATE.2011.5763291

[10] Sepulveda, J., Pires, R., Gogniat, G., Chau, W.J. and Strum, M. (2012) Qoss Hierar-
chical Noc-Based Architecture for Mpsoc Dynamic Protection. International Jour-
nal of Reconfigurable Computing, 2012, 3. https://doi.org/10.1155/2012/578363

https://doi.org/10.4236/jcc.2018.61015
https://doi.org/10.1145/248209.237140
https://doi.org/10.1147/rd.494.0589
https://doi.org/10.1109/JPROC.2014.2334493
https://doi.org/10.1109/MDT.2010.7
https://doi.org/10.1109/SP.2007.36
https://doi.org/10.1109/TC.2008.69
https://doi.org/10.1109/DATE.2011.5763291
https://doi.org/10.1155/2012/578363

M. Hussain et al.

DOI: 10.4236/jcc.2018.61015 151 Journal of Computer and Communications

[11] Wassel, H.M.G., Gao, Y., Oberg, J.K., Huffmire, T., Kastner, R., Chong, F.T. and
Sherwood, T. (2014) Networks on Chip with Provable Security Properties. IEEE
Micro, 34, 57-68. https://doi.org/10.1109/MM.2014.46

[12] SonicsMX Smart Interconnect Datasheet. http://www.sonicsinc.com

[13] Alves, T. and Felton, D. (2004) Trustzone: Integrated Hardware and Software Secu-
rity. ARM White Paper, 3.

[14] Baron, S., Wangham, M.S. and Zeferino, C.A. (2013) Security Mechanisms to Im-
prove the Availability of a Network-on-Chip. IEEE International Conference on
Electronics, Circuits, and Systems, 609-612.

[15] Yu, Q. and Frey, J. (2013) Exploiting Error Control Approaches for Hardware Tro-
jans on Network-on-Chip Links. IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFTS), 266-271.

[16] Boraten, T. and Kodi, A.K. (2016) Packet Security with Path Sensitization for Nocs.
IEEE Design, Automation & Test in Europe, 1136-1139.
https://doi.org/10.3850/9783981537079_0180

[17] Rajesh, J.S., Ancajas, D.M., Chakraborty, K. and Roy, S. (2015) Runtime Detection
of a Bandwidth Denial Attack from a Rogue Network-on-Chip. Proceedings of the
9th International Symposium on Networks-on-Chip, 8.

[18] Ancajas, D.M., Chakraborty, K. and Roy, S. (2014) Fort-Nocs: Mitigating the Threat
of a Compromised Noc. Proceedings of the 51st Annual Design Automation Con-
ference, 1-6. https://doi.org/10.1145/2593069.2593144

[19] Peterson, W.W. and Brown, D.T. (1961) Cyclic Codes for Error Detection. Pro-
ceedings of the IRE, 228-235. https://doi.org/10.1109/JRPROC.1961.287814

[20] Bellare, M., Canetti, R. and Krawczyk, H. (1996) Keying Hash Functions for Mes-
sage Authentication. Annual International Cryptology Conference, Springer.

[21] Rogers, A. and Milenkovic, A. (2009) Security Extensions for Integrity and Confi-
dentiality in Embedded Processors. Microprocess. Microsyst (Netherlands), 33,
398-414.

[22] Yan, C., Rogers, B., Englender, D., Solihin, D. and Prvulovic, M. (2006) Improving
Cost, Performance, and Security of Memory Encryption and Authentication. 33rd
Int. Symposium on Computer Architecture.
https://doi.org/10.1145/1150019.1136502

[23] Hong, M., Guo, H. and Hu, S.X. (2012) A Cost-Effective Tag Design for Memory
Data Authentication in Embedded Systems. Proceedings of the 2012 International
Conference on Compilers, Architectures and Synthesis for Embedded Systems
(CASES 2012), 17-26. https://doi.org/10.1145/2380403.2380414

[24] Elbaz, R., Torres, L., Sassatelli, G., Guillemin, P., Bardouillet, M. and Martinez, A.
(2010) Block-Level Added Redundancy Explicit Authentication for Parallelized En-
cryption and Integrity Checking of Processor-Memory Transactions. Transactions
on Computational Science X. Special Issue on Security in Computing, Part I, 6340,
231-260.

[25] Bokhari, H., Javaid, H., Shafique, M., Henkel, J. and Parameswaran, S. (2015) Su-
pernet: Multimode Interconnect Architecture for Manycore Chips. Proceedings of
the 52nd Annual Design Automation Conference, 85.
https://doi.org/10.1145/2744769.2744912

[26] Jiang, N., Balfour, J., Becker, D.U., Towles, B., Dally, W.J., Michelogiannakis, G. and
Kim, J. (2013) A Detailed and Flexible Cycle-Accurate Network-on-Chip Simulator.
IEEE International Symposium on Performance Analysis of Systems and Software,

https://doi.org/10.4236/jcc.2018.61015
https://doi.org/10.1109/MM.2014.46
http://www.sonicsinc.com/
https://doi.org/10.3850/9783981537079_0180
https://doi.org/10.1145/2593069.2593144
https://doi.org/10.1109/JRPROC.1961.287814
https://doi.org/10.1145/1150019.1136502
https://doi.org/10.1145/2380403.2380414
https://doi.org/10.1145/2744769.2744912

M. Hussain et al.

DOI: 10.4236/jcc.2018.61015 152 Journal of Computer and Communications

86-96. https://doi.org/10.1109/ISPASS.2013.6557149

[27] Hestness, J. and Keckler, S.W. (2011) Netrace: Dependency-Tracking Traces for Ef-
ficient Network-on-Chip Experimentation. The University of Texas at Austin, Dept.
of Computer Science, Tech. Rep.

[28] Synopsys Design Compiler. http://www.synopsys.com.

[29] TSMC 65nm GP Standard Cell Libraries-tcbn65gplus.
https://www.cmc.ca/en/whatweoffer/products/cmc-00200-01411.aspx

https://doi.org/10.4236/jcc.2018.61015
https://doi.org/10.1109/ISPASS.2013.6557149
http://www.synopsys.com/
https://www.cmc.ca/en/whatweoffer/products/cmc-00200-01411.aspx

	A Customized Authentication Design for Traffic Hijacking Detection on Hardware-Trojan Infected NoCs
	Abstract
	Keywords
	1. Introduction
	1.1. Target System and Attack Model
	1.2. Contributions of the Paper
	1.3. Paper Organization

	2. Related Work
	3. Design Overview of Packet Tagging and Authentication
	4. Custom Hardware Implementation
	4.1. Key Generation
	4.2. Data Field Scrambling

	5. Experimental Evaluation and Results
	5.1. Determining Packet Label Size
	5.2. Costs of Hardware Trojan
	5.3. Security Evaluation
	5.4. Overhead of Detection Unit

	6. Conclusions
	References

