
Journal of Computer and Communications, 2017, 5, 19-42
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2017.59003 July 3, 2017

Real-Time Range of Motion Measurement of
Physical Therapeutic Exercises

Raghu Raj Prasanna Kumar1, Suresh Muknahallipatna2, John McInroy2, Mark McKenna3,
Lori Franc3

1National Center for Atmospheric Research, Boulder, CO, USA
2Dept. of Electrical Engineering, University of Wyoming, Laramie, WY, USA
3Premier Bone & Joint Centers, Laramie, WY, USA

Abstract
Physical therapeutic exercise (PTE) is the planned process of performing bo-
dily movements, postures, or physical activities to provide a patient with the
ability to remediate or prevent impairments at a minimum. The efficacy of the
PTE involves measuring accurately the range of motion (ROM) of joint func-
tions and parameters that indicate the onset of fatigue, jerky motion, and
muscle/joint resistance to the PTE. A physical therapist (PT) typically deter-
mines the efficacy of a PTE by measuring joint angles in clinical diagnosis to
assess the ROM using the simple device Goniometer since motion capture
systems are generally expensive, difficult to use, and currently not suited for
real-time operations. The joint angle measurement using Goniometer suffers
from low accuracy, low reliability and subjective. Furthermore, a patient when
performing PTE by themselves at remote locations like their home or com-
munity centers cannot use a Goniometer to determine the efficacy. In this
study, we present the approach of using an inexpensive, simple human mo-
tion capture system (HMCS) consisting of a single camera and a graphical
processing unit (GPU) to perform the efficacy of the PTE in real-time. The
approach involves the use of general purpose graphic processing unit
(GPGPU) computer vision technique to track and record human motion and
relate the tracked human motion to the prescribed physical therapy regimen
in real-time. We have developed a tracking algorithm derived from the Klein’s
algorithm known as the Modified Klein’s algorithm (MKA) capable of track-
ing human body parts while the original Klein’s algorithm was only capable of
tracking objects with sharp edges. The MKA algorithm is further modified for
parallel execution on a GPU to operate in real-time. Using the GPU, we are
able to track multiple markers in a high definition (HD) frame of the HD
video in 1.77 msecs achieving near real-time capability of ROM measure-
ments. Furthermore, the error in the ROM measurements in comparison to

How to cite this paper: Kumar, R.R.P.,
Muknahallipatna, S., McInroy, J., McKenna,
M. and Franc, L. (2017) Real-Time Range
of Motion Measurement of Physical Thera-
peutic Exercises. Journal of Computer and
Communications, 5, 19-42.
https://doi.org/10.4236/jcc.2017.59003

Received: June 1, 2017
Accepted: June 30, 2017
Published: July 3, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2017.59003
http://www.scirp.org
https://doi.org/10.4236/jcc.2017.59003
http://creativecommons.org/licenses/by/4.0/

R. R. P. Kumar et al.

20

Goniometer measurements is in the range of −2.4˚ to +1.4˚, which is well
within the joint measurement prescribed standards. The suitability of the
HMCS for elbow PTE is also presented.

Keywords
Computer vision, Therapeutic Exercise, GPU, Parallel Programming

1. Introduction

A typical therapy session constitutes a patient performing PTE consisting of a
series of complicated bodily motions in a pattern at certain intensity level to
achieve a beneficial range of motion. Current therapy sessions are performed by
a patient under the supervision of a physical therapist in a clinical setting. The
PT at all times is in the immediate proximity of the patient assisting the patient
in performing an exercise or set of exercises in a proper way. Furthermore, the
PT ensures the full compliance of the patient in meeting the prescribed motions
and number of repetitions through verbal feedback. This individual attention by
a PT to a patient during a therapy session is a viable approach if an adequate
number of PTs are available.

However, with the ever-increasing demand for physical therapy services by
the aging population coupled with the shortage of highly skilled PTs, has made
individual patient attention approach by immediate proximity a non-viable so-
lution. Furthermore, in many geographical areas in the US, patients have to tra-
vel a long distance to avail the services of a PT. The lack of a sufficient number
of PTs, long distance travel and expenses force many of the patients to skip en-
tirely or inadequately perform physical therapy sessions. An Ad-hoc approach
currently used to address the above issues is expecting the patients to perform
the exercises remotely on their own using diagrams of various exercises made
available by the PT. The ad-hoc approach leads to a deleterious effect on the ef-
ficacy of the physical therapy. Efficacy of physical therapy is directly correlated
to the patient’s ability and willingness to comply with the assigned work. Fur-
thermore, it is very difficult to measure the outcomes of PTE, due to lack of evi-
dence-based medicine associated with physical therapy. Physical therapy re-
mains a largely manual process with less objective data generated than most
other disciplines. Currently, there is no common, cost-effective way to monitor
patients’ compliance and outcome. Hence, to address the above issues, there is a
need for an alternate approach that would allow a patient to perform PTE re-
motely but still under the supervision of a PT.

We propose an alternate physical therapy strategy of using a human motion
capture system (HMCS) based system to assist the patient in performing re-
peated physical therapy sessions with real-time feedback and supervision by a
PT. In this paper, we present the ongoing work of the human motion capture
system based on the use of general purpose graphic processing unit (GPGPU)

R. R. P. Kumar et al.

21

computer vision technique to track and record human motion.
Generally, physical therapy actions are correlated with the geometric motion

of specific body parts. The body parts may include, for example, a limb, elbow,
foot, wrist, torso, neck and head. The motion is measured by calculating the po-
sition of a body part of interest in relation to another body part [1], which may
or not be stationery. The motion is not measured by determining the position in
relation to physical surroundings. Typically, a PT uses Goniometer to measure
body angles to determine the ROM of a specific body part. The ROM is meas-
ured and recorded before starting the physical therapy sessions. The measure-
ment may be performed again at the end of each therapy session or after few ses-
sions to capture the efficacy of treatment. Since, the measurements are per-
formed manually using the Goniometer, measurements during the PTE is not
possible. For example, there is no objective data recorded which would help the
PT to determine the intensity of the prescribed PTE.

In our research related to the HMCS, we envision a patient performing PTE
can have ROM, velocity, acceleration and other parameters measured accurately
in real-time, using a single off-the-shelf high-definition camera in a cost effective
way. The PT now receiving the measured parameters in real-time can provide
feedback to the patient and supervise the PTE.

This paper is organized as follows: In Section 2, we present the existing hu-
man motion capture approaches. Section 3 presents an overview of the proposed
HMCS. In Section 4, the computer vision based tracking and the Klein’s tracking
algorithm is discussed. In Section 5, the modified Klein’s algorithm suited for
tracking the motion of human body parts is presented. Section 6 presents the
parallelization of the modified Klein’s algorithm for GPGPU computing. In Sec-
tion 7, the implementation of MKA on GPU is presented. The MKA perfor-
mance and the application of HMCS to determine the efficacy of elbow PTE is
presented in Section 8. Section 9 presents conclusions and future work.

2. Related Work

Muller, et al., in [2] have used two inertial measurement units (IMU) to perform
online measurements of the flexion/extension and the pronation/supination an-
gle of the elbow. They use kinematic constraints of the elbow to estimate the two
dominant axes of reference and thereby eliminate the need for alignment of the
IMUs. To achieve real-time capability a window of measurements is chosen with
the window shifted by each new measurement. This approach, however, requires
a patient to attach the IMUs at the correct position on the elbow and in the same
position repeatedly. Furthermore, the computational time required to estimate
the two dominant axes of reference is 20 secs making this approach not suitable
for real-time application.

Chang, et al., have demonstrated the use of the Microsoft Kinect to track the
motion of a human body [3] in real-time. They use the Kinect to track the twen-
ty joint positions inherently tracked by the Kinect SDK. They provide feedback
to the patient about the number of repetitions a particular geometric motion was

R. R. P. Kumar et al.

22

performed and change in the ROM. However, this approach requires the use of
the special camera the Microsoft Kinect, which is typically now owned by elderly
patients. The measurements performed using the Kinect is based on the SDK
database of joint positions of a large number of healthy human beings. Using the
joint positions of healthy human beings as reference position introduces errors
when the joint positions of a patient performing PTE are measured.

Zhao proposes an assessment method using kinematic rules [4] for each reha-
bilitation exercise to provide specific feedbacks regarding the quality of exercise.
The Microsoft Kinect is used to measure joint angles, and a fuzzy inference en-
gine is used to assess the overall quality of the execution of a PTE. The fuzzy in-
ference engine ability to assess the quality of the PTE performed is dependent on
a set of kinematic rules specifying the requirements for each PTE fully and
measures the joint angles accurately using the Kinect camera.

Two Microsoft Kinect cameras are used by Chen, et al., to construct 3D joint
positions [5] and then they construct center of voxels upon the joint positions
using the mean shift algorithm. The joint moveable angles and the motion data
are calculated from the center of voxels frame by frame. They compare their
ROM measurements with VICON motion capture system. This approach of
measuring the ROM of a patient first requires the patient to perform the PTE in
front of a VICON motion capture system to record the skeleton data of the pa-
tient body as Golden Standard or ground truth. The two Kinect cameras have to
be positioned at a precise distance from the patient. Due to the reconstruction of
3D joint positions and center of voxels in each frame makes their approach
computationally intensive, and not suitable for real-time application.

Liu, et al., have proposed a method to track human motion using multiple
low-cost RGBD cameras [6]. They use multiple RGBD cameras to address the
missing depth values, and noise issues with low-cost Microsoft Kinect cameras.
They also address the problem of body occlusions with a single camera by using
multiple cameras. Using the color and depth images and point cloud acquired in
each view, they extract an initial pose. The initial pose is dynamically updated by
combining a filtering approach with a Markov model to estimate the new poses
and thereby measure the ROM of the entire human body. However, this ap-
proach is heavily dependent on correctly aligning the point clouds from three
depth cameras. If the alignment is not performed accurately, the tracking will
fail. The approach requiring pose determination is computationally intensive
making it unsuitable for real-time application.

Penelle, et al., have used multiple Microsoft Kinect cameras to track human
motion by fitting a model to the observed data, which are the depth images from
the Kinect cameras [7]. They have been able to achieve near real-time execution
speed using a GPU. However, the tracking accuracy is dependent on having a
perfect 3D model of the patient, which requires pose estimation using multiple
cameras.

All of the discussed approaches for tracking human motion require a) the use
of specialized camera or cameras, b) multiple cameras c) active sensors/markers

R. R. P. Kumar et al.

23

attached to parts of the human body or d) involve complex manual adjustments
to get the right output. The patient is expected to position the multiple cameras
at precise locations to construct a 3D model of the patient or estimate pose of the
various parts of the human body. Furthermore, the majority of the approaches
are computationally intensive. Especially with HD cameras, the time needed to
process images is so high that the approaches are unsuitable for real-time use.
Our proposed approach differs significantly from the previous work by using a
single camera without the need of pose estimation or 3D model of the patient. In
our approach, we process high definition resolution monocular images with pas-
sive optical markers on body parts of interest to measure individual ROM. The
camera can be of any RGB type without any depth measuring capability. Fur-
thermore, our approach has a parallel implementation on GPUs, which facili-
tates real-time processing.

3. Overview of Proposed HMCS

The primary function of our HMCS is to measure the joint position or angles
when a patient is performing a particular PTE. As an example, in Figure 1, a
typical PTE a patient performs after an elbow injury is shown.

The patient performing the elbow PTE is expected to perform the flexion and
extension motions of the arm maintaining the shoulder at a stationary position.
If a patient allows the shoulder to move along with the flexion and extension
motions, the elbow muscles and the joint will be subjected to forces that are not
prescribed in the PTE and will result in poor efficacy. A high efficacy of the el-
bow PTE is achieved when the patient performs a smooth flexion and extension
motions according to the prescribed joint angles and repetitions without expe-
riencing fatigue. This necessitates measuring the joint angle position in reference
to the shoulder horizontal axis during the PTE to determine the number of repe-
titions, smooth motion, ROM and fatigue free motion. In Figure 2, a patient
performing the elbow PTE with passive optical markers (blue circular markers)

Figure 1. Elbow physical therapeutic exercise.

R. R. P. Kumar et al.

24

is shown. The joint angle position is measured by tracking the passive markers
in each frame of the PTE video in real-time. By computing the position differ-
ences between markers on the arm and the reference marker on the shoulder the
efficacy of the PTE can be determined.

The HMCS structure overview is shown in Figure 3.
As shown in Figure 3, an off the shelf camera is used to capture the video of a

patient performing PTE with passive optical markers attached to the body part
performing PTE as shown in Figure 2. The video can be transmitted in real-time
to the therapy clinic or to a laptop/PC with GPU for computing the ROM. The
flow diagram in Figure 4 depicts the computational steps required to process the
video and measure the joint angles.

In Figure 4, the loop represents the modified Klein’s tracking algorithm,
which is executed in parallel for each marker on a GPU. The first input to the
algorithm is the initial position of the markers, which is located approximately at
the center of a marker determined visually by a mouse click. The second and the
third inputs are the size of a marker in pixels and the number of markers. The
output of the algorithm is the centroid of the markers in each video frame. The
Klein’s and MKA for tracking human body are discussed in detail in the follow-
ing section.

4. Klein’s Tracking Algorithm

The Klein’s tracking algorithm [8] focuses on tracking augmented reality work-
spaces. The algorithm uses the corners of different objects in a workspace as the

Figure 2. Elbow PTE with passive optical markers.

Figure 3. HMCS structure overview for real-time application.

R. R. P. Kumar et al.

25

 Figure 4. Passive optical marker tracking.

tracking points or objects. In order to track, a relative motion between the cam-
era and the workspace is required. As the camera moves relative to the work-
space, the tracking algorithm segments the tracking features and tracks them
from one image to another using the following steps:
a. Transformation Stage 1 (S1)—Resilience: Workspaces can have different il-

luminations. To provide resilience to lighting changes, mean intensity value
is subtracted from individual image pixels, i.e., a mean of the pixel’s sur-
rounding pixel values within a pre-determined boundary is obtained and
subtracted from the pixel’s value. This is carried out for every pixel on the
image frame.

b. Segmentation: Features from Accelerated Segment Test (FAST) algorithm are
used to detect corners in the image. FAST algorithm processes an image and
provides a set of points for every edge on the image. Each set of points, for
the workspace, provides one corner of an object. Hence each set is termed as
a tracking feature or marker.

c. Transformation Stage 2 (S2)—Object based transformation: An affine warp is
performed on the marker. An affine warp is a differential computation that
makes the marker resilient to rotations. This helps in tracking the marker
even if the relative rotation between the camera and the marker is significant.
A search template of the marker is generated using the warped conversion.

R. R. P. Kumar et al.

26

The image and the marker template are down-sampled by several levels, re-
ducing the dimension of the image and the template. One level of sub-sam-
pling involves reducing the image or marker template to half its original size,
i.e., replacing one pixel with four adjacent pixels. This helps in reducing the
overhead of the search.

d. Definition: The tracking is performed by evaluating the sum of the squared
differences (SSD) between the image and the marker template at all locations
within a given search region of an image. A search region is a fixed boundary
around the occurrence of the marker in the previous image. The boundary is
pre-determined for each workspace. The location within the search region
having the smallest SSD value is taken as the location of the marker in the
new image.

A flow diagram representing the different phases of the Klein’s algorithm is
shown in Figure 5. The algorithm begins at the S1 part of the transformation for
resilience, followed by segmentation. The segmented image is then subjected to
the S2 part of the transformation to obtain the position of the marker on the new
image. This is repeated for each image in the sequence.

The algorithm begins at the S1 part of the transformation for resilience, fol-
lowed by segmentation. The segmented image is then subjected to the S2 part of
the transformation to obtain the position of the marker on the new image. This
is repeated for each image in the sequence.

5. Modified Klein’s Algorithm

Klein’s algorithm has been modified by its author Klein as well as other re-
searchers as seen in [9]-[16]. These modifications focus on a) tracking an object
with lesser or different parameters object parameters [9] [10], b) using low per
devices [11], which may involve cloud computing for robots [12] c) using dif-
ferent camera configurations/error estimation techniques [13], d) improving

Figure 5. Klein’s algorithm tracking phases.

 Start

Transformation for Resilience: Subtract mean
pixel intensity from all pixels

Segmentation: Detect edges in the frame and
mark them as tracking features

Object based Transformation: Perform an affine warp
on tracking features and sub-sample the image and

tracking features

Definition: Using the sub-sampled image and marker
templates, search the image for trackers using the SSD

Stop

R. R. P. Kumar et al.

27

tracking capability [14], or for limited capability cameras [15] [16]. However,
this section discusses a modification to Klein’s tracking algorithm focusing on
better parallelization, and hence improved performance, of the algorithm. This
new algorithm, called as MKA, is designed and developed to track human body
parts. The FAST algorithm used in Klein, detects only sharp edges. Since not all
human body parts have well defined edges, FAST is replaced in the MKA. Sub-
sequently, changes in transformation and segmentation have been introduced to
compliment the replacement of the FAST algorithm.

5.1. Transformation

The first part of the transformation in Klein’s algorithm provides resilience. The
approach here is to make the tracking more resilient not just to lighting changes,
but also to the background of the image. An overview of the transformation
phase is shown in Figure 6.

Consider a camera, capable of taking m n× resolution video at sf images
per second, which is used to capture the video to track objects. The video pro-
vides RGB (Red Green Blue) image sequences, as shown in top part of Figure 6,
at sf RGB images every second. The RGB color model is an additive color
model in which red, green, and blue light are added together in various ways to

 Figure 6. An overview of transformation phase of tracking algorithm.

R. R. P. Kumar et al.

28

reproduce a broad array of colors, meaning each RGB frame provides 3
sub-frames of m n× pixels, where the sub-frames belong to the red, green and
blue color models respectively. Let each RGB image be given by kA , where

3m n
kA R × ×∈ ,

k is the time instance,

ijh ka A∈ ,

1,2, , 1,i m m= − ,

1,2, , 1,j n n= −
 and

1,2,3h = —1 represents red frame, 2 represents green frame and 3 represents
blue frame.

The element ijk ka A∈ , contain the pixel values (intensity) of the whole image
including the markers. The markers are assumed to be uniformly colored ob-
jects. Since the human body lacks uniform coloring, small uniformly colored
stickers are assumed to be present on the relevant body part. This is considered
as a tracking feature. This aids in segmenting an image more efficiently, reduc-
ing noise in the images. Considering blue stickers as markers, the blue frame
would have higher numerical pixel values for the marker locations than red or
green frames (3 1 2,ij ij ija a a>). Using this constraint, the transformation is for-
mulated as shown in the middle part of Figure 6, using:
1. kA is converted into a gray scale image m n

kG R ×∈ using the following
standard conversion:

1 2 30.2989 0.5870 0.114ij ij ij ijg a a a= + + (1)

where, ij kg G∈ , ijk ka A∈ . This reduces the blue content in kG .
2. The final step of the transformation is to obtain the output image

m n
kF R ×∈ , as shown in the bottom part of Figure 6, using:

3 3, if
0, otherwise

ij ij ij ij
ij

g a g a
f

− >
= 


 (2)

where, ij kf F∈ . The output image kF renders the markers as perfect black
spots having zero values. The two-step transformation not only provides resi-
lience to lighting changes by lowering and subtracting the intensity but also
helps in identifying the markers more effectively by differentiating them from
the rest of the background.

5.2. Segmentation

The segmentation step is based on the search regions in the original Klein’s al-
gorithm. The boundary of the search region is used to segment the image kF .
The boundary is determined based on the relative motion between the camera
and the markers, the dimension of the marker in the image and sf . Let the ve-
locity of the marker motion relative to the camera be v . Let the dimension of
the thl marker on the image be l lp q× . Let the maximum possible displace-
ment of any given marker between two consecutive images be given by xv and

R. R. P. Kumar et al.

29

yv along the horizontal and vertical axes respectively. The xv and yv satisfy
the relationship:

, ,,
l l

x y
s s

v p v qv v
f f

∝ ∝ (3)

Using (),x yv v , and the known marker location-centroid of the tracking fea-
ture on the ()1 thk − image given by (),x y , the search for the marker in the

thk image can be limited within the boundary (),x yx v y v± ± . The initial val-
ues of ,x yv v are estimated using the , , l

sv f p and lq values provided. If this
estimation fails to track the markers on any frame, then ,x yv v are incremented
from the initial estimation to widen the boundaries of search region. The new

,x yv v values are stored for successive frames. Hence the image kF will be
segmented as shown in Figure 7.

In Figure 7, it can be observed that the dimension of the search region on an
image is given by ()()2 1 2 1x yv v+ + , where () ()2 1 , 2 1l l

x yv p v q+ > + > . This
implies that there are

4 1 1
2 2

l l

x y
p qv v

  
+ − + −  

  
 (4)

number of l lp q× dimension marker sized regions within the search region.
Each of the l lp q× dimension marker sized region, called as match blocks, is
possibly the actual marker position, i.e., every match block is a potential marker.
Hence all match blocks are compared with the marker templates. The technique
to compare these match blocks forms the definition part of the algorithm.

5.3. Definition

In order to find a marker, a search template (s) is used. The squared summation
of the difference (SSD) between each element of the ()s template and the cor-
responding element in the match block let b represent a match block, then the
SSD is given by:

()2

0 0
SSD

l lp q

ij ij
i j

s b
= =

= −∑∑ (5)

In the MKA’s transformation phase, all ijs are reduced to zeros, therefore,
the SSD for MKA can be computed using:

()2

0 0
SSD

l lp q

ij
i j

b
= =

= ∑∑ (6)

 Figure 7. Segmentation phase of the algorithm.

R. R. P. Kumar et al.

30

This SSD can be implemented in a number of different ways. A technique
adopted in [8] is described in Figure 8. The SSD for the first match block posi-
tion within the search region begins at the first possible match block location,
i.e., first row and first column, as shown in the first row of the search in Figure
8. The search continues by performing SSD for subsequent match block loca-
tions, which occur in the same row but in subsequent columns. This will con-
tinue till the end of the row is reached, and then the search switches to next row,
as seen in the second row of the search in Figure 8. This is continued row-wise
till the end of search region is reached as shown in the bottom part of Figure 8

Since 4 1 1
2 2

l l

x y
p qv v

  
+ − + −  

  
 match blocks are present, equal number of

SSD computation for match blocks is performed. Hence for a given marker re-
gion, this generates multiple SSD values. The results are interpreted as follows:

0, possible marker location
SSD , possible marker location for high illumination scenarios

, away from marker location
T
T

=
<
>

 (7)

The threshold T is based on the illumination and background of the image.
It’s determined on a per scenario basis by trial and error. If the SSD provides one
match, then the centroid of the marker location is taken to be the centroid of the
object. If multiple marker positions provide a SSD value satisfying the threshold
then the average of all the locations is obtained to get the centroid of the object.
Once the centroid of one marker is obtained, the definition part of the algorithm
moves on to the next marker until centroids of all markers in an image are ob-
tained. Once all markers in an image are processed, the tracking algorithm
moves on to the next image in the sequence.

Figure 8. The brute force technique to compute SSD for all match blocks within search
boundary.

R. R. P. Kumar et al.

31

6. Parallelization of Modified Klein’s Algorithm

The MKA needs to be redesigned for a parallel implementation. The re-design is
performed in two phases:
a. Computationally Intensive Region Identification: This phase is to identify the

bottleneck of parallelism in the code.
b. Algorithm Modification: Once the region is identified, the algorithm is mod-

ified to achieve maximum parallelism.

6.1. Computationally Intensive Region Identification

The SSD operation was given in Equation 6. Consider a search region described
in Figure 8 represented as shown below:

()

() ()()

11 1 2 1

2 1 1 2 1 2 1

y

x x y

v

v v v

f f

f f

+

+ + +

 
 
 
 
  



  



The search region contains multiple match blocks as observed in Figure 8.
SSD is performed on each of the match blocks within the search region as seen
in Figure 8. Since the dimension of a match block is l lp q× , using the brute
force technique to perform SSD on a match block requires l lp q multiplications
and ()2l lp q+ − additions, leading to ()2l l l lp q p q+ + − number of opera-
tions. Using the number of possible match blocks in a search region given in
Equation (4), total number of operations to perform SSD within a search region
is given by:

()4 1 1 2
2 2

l l
l l l l

x y
p qv v p q p q

  
+ − + − + + −  

  
 (8)

This leads to ()l l
x yO v v p q complexity for one search region. Hence this is

identified as the bottleneck of the algorithm due to the large number of opera-
tions.

6.2. Algorithm Modification

The reduce and re-use guidelines are merged as the following techniques not
only reduce the number of operations but also aid in re-use of elements.
The SSD of match blocks have repeated operations. For example, consider the
first two SSDs, SSD1 and SSD2 as shown in Figure 8. They are given by:

1. ()21

0 0
SSD

l lp q

ij
i j

f
= =

= ∑∑

2. ()
1 22

0 1
SSD

l lp q

ij
i j

f
+

= =

= ∑∑

12f and 22f are squared and added twice in the first two summations. These
repeated computations increase with an increase in the size of the search region
and number of markers.

A five-step modification is introduced that reduces the number of operations
for SSD. In the first step, all the elements of the matrix are squared. In steps 2

R. R. P. Kumar et al.

32

and 3, row-wise summation of search region is computed such that the summa-
tion is limited to the marker size. Steps 4 and 5 are similar to steps 2 and 3 but
are executed column-wise to obtain summation of the search region limiting it
to marker size by columns. These steps are computed as follows:

Step 1: Squaring assuming the search region mentioned above, each element is
squared as shown below:

()

() ()()

2 2
11 1 2 1

2 2
2 1 1 2 1 2 1

y

x x y

v

v v v

f f

f f

+

+ + +

 
 
 
 
 
 



  



A total of ()()2 1 2 1x yv v+ + multiplications are required to complete this
step.

Step 2: Prefix row Summation: For every row, perform a prefix sum as shown
below:

()

() () () ()()

2 2 2 2 2 2
11 11 12 11 12 1 2 1

2 2 2 2 2 2
11 122 1 1 2 1 1 2 1 2 2 1 2 1

y

x x x x y

v

v v v v v

f f f f f f

f f f f f f

+

+ + + + +

 + + + +
 
 
 

+ + + + 
 

 

   

 

If each element is computed independently, then there are
()()2 1 2 1x y yv v v+ + additions. However, for a given row, if dependency is as-
sumed between column summations, i.e., the third column does not compute till
the second column is computed, then for a given row there are 2 yv additions.
Hence overall there are 4 x yv v additions.

Step 3: Marker dimension row subtraction: For every row, based on the lq ,
consecutive elements starting from ()1

thlq + column of each row are sub-
tracted from each column (say thr column) with ()thlr q− column of every
row, as shown below:

() () ()

() ()() ()() ()()

2 2 2 2 2
11 12 1 2 11 1 1 2 1

2 2 2 2 2
122 1 1 2 1 2 12 1 1 2 1 2 1

l l
yy

l lx x yx x y

vq v q

v v vv q v v q

f f f f f

f f f f f

++ + −

+ + ++ + + + −

 + + + +
 
 
 

+ + + + 
  

   

  

   

This requires a total of ()()2 1 2 1 l
x yv v q+ + − subtractions.

Step 4: Prefix column summation: Starting from the ()thlq column, perform
a column wise prefix sum as shown below:

() ()

() () () ()

() () () ()() ()()

2 2 2
11 1 2 11 2 1

2 2 2 2 2 2
11 21 1 2 1 2 2 11 2 1 2 2 1

2 2 2 2 2 2
11 2 1 1 1 2 1 2 1 2 11 2 1 2 1 2 1

l
yy

l l
y yy y

l lx y x yy x y

vv q

v vv q v q

v v v vv q v v q

f f f

f f f f f f

f f f f f f

++ −

+ ++ − + −

+ + + ++ − + + −

 + +
 
     + + + + + +   
    
 
 
    + + + + + + + +    

    

 

  

 

    

similar to step 2, this step requires a total of ()()2 2 2 l
x yv v q+ − additions.

R. R. P. Kumar et al.

33

Step 5: Object dimension column subtraction: Similar to the row-wise sub-
matrix summation, start from the ()1

thlp + row and ()thlq column and per-
form the column wise summation as shown below:

() ()

() () () ()() ()()

() () ()() ()() ()()

2 2 2
11 1 2 11 2 1

2 2 2 2 2 2
21 1 2 11 1 2 2 1 1 2 1 1 2 1

2 2 2 2 2
2 1 1 2 1 2 1 2 1 2 1 2 1 2 12 1 1

...

l
yy

l l l l l
yy y y

l l l l l
x x y x y x y

vv q

vp v q p v q p v

v p v p v q v p v v v qvx

f f f

f f f f f f

f f f f f

++ −

++ + − + + − + +

+ − + − + − + − + + + −+

+ +

   + + + + + + + +   
   

 + + + + + + + 
 

 

  

   

  

     ()()
2
2 1 2 1x yv v

f
+ +

 
 
 
 
 
 
 
 
 

  +    

This step requires a total of ()()2 1 2 1l l
x yv p v q+ − + − additions. The sum-

mary of the computations required is given below in Table 1.
Since () ()10 3 , 2 1l l

x yv p v q+ > + > , overall SSD per search region is reduced
to a computational complexity of ()x yO v v which is significantly lower than
Equation 8 calculated using the brute force technique shown in Figure 8.

7. GPU Implementation

General-Purpose Computing on GPU (GPGPU) is a new parallelization domain
to accelerate scientific and engineering computations in vision algorithms [17].
NVIDIA’s Compute Unified Device Architecture (CUDA) is the earliest and
most widely adopted programming model for GPGPU [18]. Hence, for the im-
plementation of parallelized MKA, we have used NVIDIA GPU with CUDA
programming model.

The GPUs, at a high level, are a collection of Streaming Multiprocessors
(SMs), with each SM having the ability to concurrently execute large number of
threads that are grouped in blocks, with each SM and thread having access to
dedicated shared and register memory. Hence, the implementation of parallel
algorithms has lot parameters such as number of threads, blocks, shared memo-
ry size, etc. to be determined.

In our previous work [19], we have proposed and implemented parallel ver-
sion of the Scale Invariant Feature Transform (SIFT) algorithm on GPUs. In
[19], we describe the architecture of GPUs (section 4) and a framework on how
to calculate the parameters (section 5) to obtain a near optimal implementation

Table 1. Summary of the computations required for all match blocks’ SSD.

Step number Computations

1 ()()2 1 2 1x yv v+ +

2 4 x yv v

3 ()()2 1 2 1 l
x yv v q+ + −

4 ()()2 2 2 l
x yv v q+ −

5 ()()2 1 2 1l l
x yv p v q+ − + −

Total ()() ()10 3 2 1 6 2 2l l l l l l
x y x yv v v q v p q p p q+ + − + + + −

R. R. P. Kumar et al.

34

of the parallel algorithm. We have adopted the same framework in this paper to
calculate the amount of shared and register memory and to determine the num-
ber of blocks and threads to be used for execution of the algorithm.

The implementation for MKA’s SSD operation can be written such that it uses
different amount of register and shared memory. For example, the elements of
the search region can be completely put on shared memory or a row or column
of the search dimension can be moved to register memory. As such the blocks
and threads will vary based on the implementation. While the memory access
latency on shared memory is higher than register memory, the execution time
for code using shared memory or shared and register memory combination are
comparable. For this paper, the code was written to minimize the number of
registers and maximize the shared memory, since this resulted in a cleaner and
single source code for different search region dimensions without compromising
much of performance. Using the minimized registers code and using NVIDIA
profiler to determine the total amount of shared and register memory, the num-
ber of threads per block and the number of blocks was determined using Equa-
tions 28 and 30 respectively in [19] for each search region. In general, the num-
ber of threads per block was found to be 256 for search dimensions having less
than 2000 pixels and 512 for search dimensions having more than 2000 pixels.
The number of blocks varied based on the search region dimension.

8. Results and Analysis

In this section, we present and analyze the effectiveness of the HMCS in tracking
the motion of a human body part which performing PTE. First, to determine the
suitability of the HMCS for real-time applications we compare the performance
of sequential Klein’s algorithm with MKA. Second, we compare the performance
of the parallel implementation of Klein’s algorithm and MKA, parallelized using
standard libraries. Lastly, we look at the performance of the parallel MKA, pa-
rallelized using our framework.

For analysis, the programs are executed on Intel Xeon CPU, having two E5620
processors operating at 2.40 GHz and running a 64 bit Windows 7 Pro Operat-
ing System. The sequential programs are executed on a 64-bit Matlab R2014b
software. Matlab’s original core has been developed from LINPACK and
EISPACK [20]. LINPACK and EISPACK have proven to be computationally ef-
fective ways to solve linear algebra problems [21]. Hence we use this software to
obtain the reference time for sequential programs. For parallel program execu-
tion, the CPU is equipped with a NVIDIA Tesla C2075 card. The card is
equipped with 448 cores and 6 GB of memory for general computations. Though
K20x and K40m cards seem to be a good option for GPU parallelization, we lim-
it ourselves to a low-cost GPU such as C2075.

For developing parallel Klein’s algorithm and MKA code using standard libra-
ries, a combination of cuLA and cuBLAS library package was used. cuLA is a
CUDA based accelerated Linear Algebra (LA) package provided by NVIDIA for
GPUs. Similarly, cuBLAS library package is another accelerated Basic Linear Al-

R. R. P. Kumar et al.

35

gebra Subprograms (BLAS) library provided by NVIDIA for GPUs. Lastly, for
profiling NVIDIA’s Visual Profiler, NVVP, compatible with CUDA 6.0 and Mi-
crosoft Visual 2015 was used to profile the code.

We use execution time as a measure of performance. Low execution time is
considered to be better. Each implementation of an algorithm for a given search
dimension is considered as one simulation and the execution time is collected.
Each simulation is executed one thousand times and AET is computed. The
standard deviation of AET for all simulations was observed to be under 6.5%.
Each simulation has been verified by manually inspecting the tracked positions
on the image. Data, for verification of algorithms, is taken from videos under
indoor computer lab conditions using 60fps at 1080p resolution. For the track-
ing algorithm, the marker size is generally small and the search region varies
from image to image. For the simulations, 8l lp q= = and

{ }32,64,128,256,512x yv v= = is considered.

8.1. Performance of Sequential Execution

Figure 9 shows the speed-up of sequential execution of MKA over Klein’s algo-
rithm for tracking a single marker. The speed-up is obtained by dividing Klein’s
algorithm AET with MKA’s AET. As expected, the MKA outperforms Klein’s
algorithm by a significant margin. This is expected since MKA has significantly
lower computations when compared to Klein’s algorithm. Since, Klein’s algo-
rithm has ()l l

x yO v v p q , and MKA has ()x yO v v , and 8l lp q= = , we could
expect at least 64x performance improvement. The speedup observed is in close
agreement with expectation, especially with higher search dimensions where
speedup saturates at 132x.

8.2. Performance of Parallel Execution Using Standard Libraries

Figure 10 shows the AET of the Klein’s algorithm and MKA algorithm paralle-

Figure 9. Speed-up of MKA in comparison with Klein’s algorithm.

R. R. P. Kumar et al.

36

Figure 10. Performance comparison of parallel implementations of Klein’s algorithm and
MKA using standard libraries.

lized using standard libraries. Similar the sequential version, the parallel MKA
performs better than Klein’s algorithm. This is to be expected due to the differ-
ence in the number of computations in both algorithms, as mentioned before. As
the search region dimension region increases, the AET of Klein’s algorithm in-
creases non-linearly. This is because of the higher amount of a) computations
and b) data transfers occurring between library calls. For MKA, these are much
lower, providing a near linear increase in AET.

8.3. Performance of Parallel MKA

Figure 11 shows the AET of our version of parallel MKA for different search
dimensions. Due to a single data transfer between CPU and GPU in each direc-
tion, and highly optimized code, the AET is found under a millisecond, even for
bigger search regions. The low AET and good scalability indicate the suitability
of our implementation of parallel MKA for real-time applications.

8.4. Application of HMCS to Elbow PTE

The video frames of a patient performing the elbow flexion and extension exer-
cise shown in Figure 2 is presented again for the completion. In Figure X, the
patient elbow has five markers stuck on the hand, which are tracked by the
HMCS. The patient in Figure 12, starts at full extension or supine position and
bends the elbow to reach the full flexion position.

The patient when performing the elbow exercise is expected to maintain the
arm (structure between shoulder and elbow joint) rigid and at the horizontal po-
sition. The ROM is measured from the zero value position. The ROM angle for
flexion is measured ranging from 0˚ to +90˚ to the left of the zero value position.
The ROM angle for extension is 0˚ to −90˚ to the right of the zero value position.
Using the HMCS, the markers are tracked in Figure X between subsequent

R. R. P. Kumar et al.

37

Figure 11. AET of MKA parallelized using framework for different region dimensions.

Figure 12. Video frames of flexion and extension exercises.

frames and the ROM angle between marker pairs (1, 3), (3, 4) and (3, 5) are de-
termined. The measured ROM angles for the exercise in Figure X are shown in
Figure X1. In Figure 13, we can notice that the patient extension and flexion
ROMs are consistently close to −90˚ and 40˚ respectively. According to the
American Medical Association [22] normal flexion ROM values for adults range
from 50˚ to 60˚ from the zero value position.

Therefore, the PT based on the measured ROM can see the patient has some
physical issues with elbow flexion and provide appropriate feedback. Further-
more in Figure 13, the ROM measurements between markers (1, 3) indicate that
the patient is not maintaining the arm in the rigid position. In Figure 14 and
Figure 15, the angular velocity and acceleration of the elbow motion while per-
forming the flexion and extension exercise are shown.

In Figure 14, it can be seen that the patient is performing the elbow motion
with a significantly large variation in angular velocity and correspondingly with
an angular acceleration and deceleration as shown in Figure 15. The large varia-
tion in angular velocity indicates the patient is not performing the exercises at a
sustained rate. Varying angular acceleration indicates the patient having to exert
different forces during the flexion and extension parts of the elbow PTE. Using
the angular velocity and acceleration/deceleration data, a PT can now provide a
feedback to the patient in real-time about whether the motion is smooth or jerky

R. R. P. Kumar et al.

38

Figure 13. ROM measurements between pair of markers.

Figure 14. Angular velocity of the elbow motion.

and whether the patient is experiencing fatigue.

In Figure 16, the error in ROM measurement between using the HMCS and a
Goniometer is shown. The error varies anywhere from −2.6˚ to +1.4˚ which is
well within accepted error value of 5˚ [1]. This low value of error when com-
pared with the Goniometer measurements indicates our technique of measuring
the patient performance in near real-time can be used in clinical settings. Fur-
thermore, our implementation on the GPU allows us to track all of the markers
in a HD frame in 1.77 msecs making the HMCS capable of operating in real-
time.

9. Conclusions & Future Work

An analysis of the Klein’s algorithm indicated that there was a potential to re-

R. R. P. Kumar et al.

39

Figure 15. Angular acceleration of the elbow motion.

Figure 16. Measurement error between HMCS and Goniometer.

duce the number of computations. We modified the algorithm, to facilitate bet-
ter parallelization on GPU architectures in two phases—first, refactoring the al-
gorithm to have lesser number of operations and enhanced parallelism, and se-
condly, optimizing the data to obtain better parallelism for GPU architectures.
We compared the effectiveness of our algorithm, with Klein’s algorithm for se-
quential and Klein’s algorithm and MKA for parallel implementations. For se-
quential implementation, MKA performed much better than its predecessor al-
gorithm. To understand the effectiveness of our parallel implementations,
Klein’s algorithm and MKA were parallelized using the cuLA and cuBLAS li-
brary and compared with our parallel implementation. The results showed that
our parallel implementation of MKA has the lowest execution time. Hence, our

R. R. P. Kumar et al.

40

parallel implementation of MKA could be implemented on GPUs for real-time
applications using high-resolution frames with a high number of markers per
frame. We have also demonstrated the use of the MKA in determining the ROM
of the elbow of a patient performing PTE in real-time. Using the real-time ROM
measurement, a PT can identify any issues that a patient is experiencing while
performing the PTE and provide feedback in real-time.

We have also shown that it is possible to measure the ROM using a single
camera with high accuracy.

The next stage of work would involve constructing 3D images at the clinical
end for a PT and MD to examine subtle muscle movements. We envision deter-
mining the point cloud of a body part and manipulate the point cloud in 3D us-
ing the tracked markers.

References
[1] Norkin, C.C. and White, D.J. (2017) Measurement of Joint Motion: A Guide to Go-

niometry. 5th Edition, F. A. Davis Company, Philadelphia.

[2] Muller, P., Begin, M.A., Schauer, T. and Seel, T. (2016) Alignment-Free, Self-Cali-
brating Elbow Angles Measurement Using Inertial Sensors. IEEE-EMBS Interna-
tional Conference on Biomedical and Health Informatics, 21, 312-319.
https://doi.org/10.1109/JBHI.2016.2639537

[3] Chang, R.K.Y., Lau, S.H., Sim, K.S. and Too, M.S.M. (2016) Kinect-Based Frame-
work for Motor Rehabilitation. International Conference on Robotics, Automation
and Sciences, Malacca City, 9 March 2017, 1-4.

[4] Zhao, W. (2016) On Automatic Assessment of Rehabilitation Exercises with Real-
time Feedback. IEEE International Conference on Electro Information Technology,
Grand Forks, 8 August 2016, 376-381.

[5] Chen, Y.C., Lee, H.J. and Lin, K.H. (2015) Measurement of Body Joint Angles for
Physical Therapy Based on Mean Shift Tracking Using Two Low Cost Kinect Im-
ages. 37th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, Milan, 25-29 August 2015, 703-706.

[6] Liu, Z., Huang, J., Han, J., Bu, S. and Lv, J. (2016) Human Motion Tracking by Mul-
tiple RGBD Cameras. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 6 May 2016, 1-1.

[7] Penelle, B. and Debeir, O. (2013) Human Motion Tracking for Rehabilitation Using
Depth Images and Particle Filter Optimization. 2nd International Conference on
Advances in Biomedical Engineering, Tripoli, 11-13 September 2013, 211-214.
https://doi.org/10.1109/icabme.2013.6648885

[8] Klein, G. and Murray, D. (2007) Parallel Tracking and Mapping for Small AR
Workspaces. 6th IEEE and ACM International Symposium on Mixed and Aug-
mented Reality, Nara, 13-16 November 2007, 225-234.
https://doi.org/10.1109/ismar.2007.4538852

[9] Scherer, S.A., Dube, D. and Zell, A. (2012) Using Depth in Visual Simultaneous Lo-
calisation and Mapping. IEEE International Conference on Robotics and Automa-
tion, Saint Paul, 14-18 May 2012, 5216-5221.

[10] Schauwecker, K., Ke, N.R., Scherer, S.A. and Zell, A. (2012) Markerless Visual Con-
trol of a Quad-Rotor Micro Aerial Vehicle by Means of On-Board Stereo Process-
ing. Autonomous Mobile Systems Conference, 11-20.

[11] Jang, H.-S., Jeong, J.-Y., Kim, Y.-H., Yoon, Y.-J. and Ko, S.-J. (2011) Augmented

https://doi.org/10.1109/JBHI.2016.2639537
https://doi.org/10.1109/icabme.2013.6648885
https://doi.org/10.1109/ismar.2007.4538852

R. R. P. Kumar et al.

41

Reality with High Frame Rate for Low Computational Power Devices. IEEE Interna-
tional Conference on Consumer Electronics, Berlin, 6-8 September 2011, Berlin,
274-275. https://doi.org/10.1109/ICCE-Berlin.2011.6031808

[12] Riazuelo, L., Civera, J. and Montiel, J.M.M. (2014) C2TAM: A Cloud Framework
for Cooperative Tracking and Mapping. Robotics and Autonomous Systems, 62,
401-413. https://doi.org/10.1016/j.robot.2013.11.007

[13] Shimamura, J., Morimoto, M. and Koike, H. (2011) Robust vSLAM for Dynamic
Scenes. IAPR Conference on Machine Vision Applications, Nara, 13-15 June 2011,
344-347.

[14] Klein, G. and Murray, D. (2008) Improving the Agility of Keyframe-Based SLAM.
Computer Vision-ECCV, Berlin, 12-18 October 2008, 802-815.
https://doi.org/10.1007/978-3-540-88688-4_59

[15] Klein, G. and Murray, D. (2008) Compositing for Small Cameras. 7th IEEE/ACM
International Symposium on Mixed and Augmented Reality, Washington DC, 15-
18 September 2008, 57-60. https://doi.org/10.1109/ismar.2008.4637324

[16] Klein, G. and Murray, D. (2009) Parallel Tracking and Mapping on a Camera
Phone. 8th IEEE International Symposium on Mixed and Augmented Reality,
Washington DC, 19-22 October 2009, 83-86.
https://doi.org/10.1109/ismar.2009.5336495

[17] Fung, J. and Mann, S. (2004) Using Multiple Graphics Cards as a General Purpose
Parallel Computer: Applications to Computer Vision. Proceedings of the 17th Inter-
national Conference on Pattern Recognition, 1, 805-808.
https://doi.org/10.1109/ICPR.2004.1334339

[18] NVIDIA, NVIDIA CUDA. http://www.nvidia.com/object/cuda_home_new.html

[19] Kumar, R., Muknahallipatna, S. and McInroy, J. (2016) An Approach to Paralleliza-
tion of SIFT Algorithm on GPUs for Real-Time Applications. Journal of Computer
and Communications, 4, 18-50. https://doi.org/10.4236/jcc.2016.417002

[20] Ramaswamy, S., Hodges, E.W. and Banerjee, P. (1996) Compiling MATLAB Pro-
grams to ScaLAPACK: Exploiting Task and Data Parallelism. Proceedings of Inter-
national Conference on Parallel Processing, Honolulu, 15-19 April 1996, 613-619.
https://doi.org/10.1109/IPPS.1996.508120

[21] Dongarra, J.J., Moler, C.B. and Bunch, J.R. (1979) LINPACK Users’ Guide. Version
1.12, Society for Industrial and Applied Mathematics, Philadelphia.
https://doi.org/10.1137/1.9781611971811

[22] Rondinelli, R.D. (2007) Guides to the Evaluation of Impairment. 6th Edition, Ame-
rican Medical Association, Chicago.

https://doi.org/10.1109/ICCE-Berlin.2011.6031808
https://doi.org/10.1016/j.robot.2013.11.007
https://doi.org/10.1007/978-3-540-88688-4_59
https://doi.org/10.1109/ismar.2008.4637324
https://doi.org/10.1109/ismar.2009.5336495
https://doi.org/10.1109/ICPR.2004.1334339
http://www.nvidia.com/object/cuda_home_new.html
https://doi.org/10.4236/jcc.2016.417002
https://doi.org/10.1109/IPPS.1996.508120
https://doi.org/10.1137/1.9781611971811

R. R. P. Kumar et al.

42

Nomenclature

BLAS—Basic Linear Algebra Subprograms;
CUDA—Compute Unified Device Architecture;
FAST—Features from Accelerated Segment Test;
GPGPU—General Purpose Graphics Processing Unit;
GPU—Graphics Processing Unit;
HD—High Definition;
HMCS—Human Motion Capture System;
IMU—Inertial Measurement Units;
LA—Linear Algebra;
MKA—Modified Klein’s Algorithm;
PT—Physical Therapist;
PTE—Physical Therapeutic Exercise;
RGB—Red Green Blue;
ROM—Range of Motion;
S1—Stage 1;
S2—Stage 2;
SIFT—Scale Invariant Feature Transform;
SM—Streaming Multiprocessor;
SSD—Squared Summation of Differences.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jcc@scirp.org

http://papersubmission.scirp.org/
mailto:jcc@scirp.org

	Real-Time Range of Motion Measurement of Physical Therapeutic Exercises
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Overview of Proposed HMCS
	4. Klein’s Tracking Algorithm
	5. Modified Klein’s Algorithm
	5.1. Transformation
	5.2. Segmentation
	5.3. Definition

	6. Parallelization of Modified Klein’s Algorithm
	6.1. Computationally Intensive Region Identification
	6.2. Algorithm Modification

	7. GPU Implementation
	8. Results and Analysis
	8.1. Performance of Sequential Execution
	8.2. Performance of Parallel Execution Using Standard Libraries
	8.3. Performance of Parallel MKA
	8.4. Application of HMCS to Elbow PTE

	9. Conclusions & Future Work
	References
	Nomenclature

