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Abstract 
Physical therapeutic exercise (PTE) is the planned process of performing bo-
dily movements, postures, or physical activities to provide a patient with the 
ability to remediate or prevent impairments at a minimum. The efficacy of the 
PTE involves measuring accurately the range of motion (ROM) of joint func-
tions and parameters that indicate the onset of fatigue, jerky motion, and 
muscle/joint resistance to the PTE. A physical therapist (PT) typically deter-
mines the efficacy of a PTE by measuring joint angles in clinical diagnosis to 
assess the ROM using the simple device Goniometer since motion capture 
systems are generally expensive, difficult to use, and currently not suited for 
real-time operations. The joint angle measurement using Goniometer suffers 
from low accuracy, low reliability and subjective. Furthermore, a patient when 
performing PTE by themselves at remote locations like their home or com-
munity centers cannot use a Goniometer to determine the efficacy. In this 
study, we present the approach of using an inexpensive, simple human mo-
tion capture system (HMCS) consisting of a single camera and a graphical 
processing unit (GPU) to perform the efficacy of the PTE in real-time. The 
approach involves the use of general purpose graphic processing unit 
(GPGPU) computer vision technique to track and record human motion and 
relate the tracked human motion to the prescribed physical therapy regimen 
in real-time. We have developed a tracking algorithm derived from the Klein’s 
algorithm known as the Modified Klein’s algorithm (MKA) capable of track-
ing human body parts while the original Klein’s algorithm was only capable of 
tracking objects with sharp edges. The MKA algorithm is further modified for 
parallel execution on a GPU to operate in real-time. Using the GPU, we are 
able to track multiple markers in a high definition (HD) frame of the HD 
video in 1.77 msecs achieving near real-time capability of ROM measure-
ments. Furthermore, the error in the ROM measurements in comparison to 
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Goniometer measurements is in the range of −2.4˚ to +1.4˚, which is well 
within the joint measurement prescribed standards. The suitability of the 
HMCS for elbow PTE is also presented. 
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1. Introduction 

A typical therapy session constitutes a patient performing PTE consisting of a 
series of complicated bodily motions in a pattern at certain intensity level to 
achieve a beneficial range of motion. Current therapy sessions are performed by 
a patient under the supervision of a physical therapist in a clinical setting. The 
PT at all times is in the immediate proximity of the patient assisting the patient 
in performing an exercise or set of exercises in a proper way. Furthermore, the 
PT ensures the full compliance of the patient in meeting the prescribed motions 
and number of repetitions through verbal feedback. This individual attention by 
a PT to a patient during a therapy session is a viable approach if an adequate 
number of PTs are available. 

However, with the ever-increasing demand for physical therapy services by 
the aging population coupled with the shortage of highly skilled PTs, has made 
individual patient attention approach by immediate proximity a non-viable so-
lution. Furthermore, in many geographical areas in the US, patients have to tra-
vel a long distance to avail the services of a PT. The lack of a sufficient number 
of PTs, long distance travel and expenses force many of the patients to skip en-
tirely or inadequately perform physical therapy sessions. An Ad-hoc approach 
currently used to address the above issues is expecting the patients to perform 
the exercises remotely on their own using diagrams of various exercises made 
available by the PT. The ad-hoc approach leads to a deleterious effect on the ef-
ficacy of the physical therapy. Efficacy of physical therapy is directly correlated 
to the patient’s ability and willingness to comply with the assigned work. Fur-
thermore, it is very difficult to measure the outcomes of PTE, due to lack of evi-
dence-based medicine associated with physical therapy. Physical therapy re-
mains a largely manual process with less objective data generated than most 
other disciplines. Currently, there is no common, cost-effective way to monitor 
patients’ compliance and outcome. Hence, to address the above issues, there is a 
need for an alternate approach that would allow a patient to perform PTE re-
motely but still under the supervision of a PT. 

We propose an alternate physical therapy strategy of using a human motion 
capture system (HMCS) based system to assist the patient in performing re-
peated physical therapy sessions with real-time feedback and supervision by a 
PT. In this paper, we present the ongoing work of the human motion capture 
system based on the use of general purpose graphic processing unit (GPGPU) 
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computer vision technique to track and record human motion. 
Generally, physical therapy actions are correlated with the geometric motion 

of specific body parts. The body parts may include, for example, a limb, elbow, 
foot, wrist, torso, neck and head. The motion is measured by calculating the po-
sition of a body part of interest in relation to another body part [1], which may 
or not be stationery. The motion is not measured by determining the position in 
relation to physical surroundings. Typically, a PT uses Goniometer to measure 
body angles to determine the ROM of a specific body part. The ROM is meas-
ured and recorded before starting the physical therapy sessions. The measure-
ment may be performed again at the end of each therapy session or after few ses-
sions to capture the efficacy of treatment. Since, the measurements are per-
formed manually using the Goniometer, measurements during the PTE is not 
possible. For example, there is no objective data recorded which would help the 
PT to determine the intensity of the prescribed PTE. 

In our research related to the HMCS, we envision a patient performing PTE 
can have ROM, velocity, acceleration and other parameters measured accurately 
in real-time, using a single off-the-shelf high-definition camera in a cost effective 
way. The PT now receiving the measured parameters in real-time can provide 
feedback to the patient and supervise the PTE. 

This paper is organized as follows: In Section 2, we present the existing hu-
man motion capture approaches. Section 3 presents an overview of the proposed 
HMCS. In Section 4, the computer vision based tracking and the Klein’s tracking 
algorithm is discussed. In Section 5, the modified Klein’s algorithm suited for 
tracking the motion of human body parts is presented. Section 6 presents the 
parallelization of the modified Klein’s algorithm for GPGPU computing. In Sec-
tion 7, the implementation of MKA on GPU is presented. The MKA perfor-
mance and the application of HMCS to determine the efficacy of elbow PTE is 
presented in Section 8. Section 9 presents conclusions and future work. 

2. Related Work 

Muller, et al., in [2] have used two inertial measurement units (IMU) to perform 
online measurements of the flexion/extension and the pronation/supination an-
gle of the elbow. They use kinematic constraints of the elbow to estimate the two 
dominant axes of reference and thereby eliminate the need for alignment of the 
IMUs. To achieve real-time capability a window of measurements is chosen with 
the window shifted by each new measurement. This approach, however, requires 
a patient to attach the IMUs at the correct position on the elbow and in the same 
position repeatedly. Furthermore, the computational time required to estimate 
the two dominant axes of reference is 20 secs making this approach not suitable 
for real-time application. 

Chang, et al., have demonstrated the use of the Microsoft Kinect to track the 
motion of a human body [3] in real-time. They use the Kinect to track the twen-
ty joint positions inherently tracked by the Kinect SDK. They provide feedback 
to the patient about the number of repetitions a particular geometric motion was 
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performed and change in the ROM. However, this approach requires the use of 
the special camera the Microsoft Kinect, which is typically now owned by elderly 
patients. The measurements performed using the Kinect is based on the SDK 
database of joint positions of a large number of healthy human beings. Using the 
joint positions of healthy human beings as reference position introduces errors 
when the joint positions of a patient performing PTE are measured. 

Zhao proposes an assessment method using kinematic rules [4] for each reha-
bilitation exercise to provide specific feedbacks regarding the quality of exercise. 
The Microsoft Kinect is used to measure joint angles, and a fuzzy inference en-
gine is used to assess the overall quality of the execution of a PTE. The fuzzy in-
ference engine ability to assess the quality of the PTE performed is dependent on 
a set of kinematic rules specifying the requirements for each PTE fully and 
measures the joint angles accurately using the Kinect camera. 

Two Microsoft Kinect cameras are used by Chen, et al., to construct 3D joint 
positions [5] and then they construct center of voxels upon the joint positions 
using the mean shift algorithm. The joint moveable angles and the motion data 
are calculated from the center of voxels frame by frame. They compare their 
ROM measurements with VICON motion capture system. This approach of 
measuring the ROM of a patient first requires the patient to perform the PTE in 
front of a VICON motion capture system to record the skeleton data of the pa-
tient body as Golden Standard or ground truth. The two Kinect cameras have to 
be positioned at a precise distance from the patient. Due to the reconstruction of 
3D joint positions and center of voxels in each frame makes their approach 
computationally intensive, and not suitable for real-time application. 

Liu, et al., have proposed a method to track human motion using multiple 
low-cost RGBD cameras [6]. They use multiple RGBD cameras to address the 
missing depth values, and noise issues with low-cost Microsoft Kinect cameras. 
They also address the problem of body occlusions with a single camera by using 
multiple cameras. Using the color and depth images and point cloud acquired in 
each view, they extract an initial pose. The initial pose is dynamically updated by 
combining a filtering approach with a Markov model to estimate the new poses 
and thereby measure the ROM of the entire human body. However, this ap-
proach is heavily dependent on correctly aligning the point clouds from three 
depth cameras. If the alignment is not performed accurately, the tracking will 
fail. The approach requiring pose determination is computationally intensive 
making it unsuitable for real-time application. 

Penelle, et al., have used multiple Microsoft Kinect cameras to track human 
motion by fitting a model to the observed data, which are the depth images from 
the Kinect cameras [7]. They have been able to achieve near real-time execution 
speed using a GPU. However, the tracking accuracy is dependent on having a 
perfect 3D model of the patient, which requires pose estimation using multiple 
cameras. 

All of the discussed approaches for tracking human motion require a) the use 
of specialized camera or cameras, b) multiple cameras c) active sensors/markers 
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attached to parts of the human body or d) involve complex manual adjustments 
to get the right output. The patient is expected to position the multiple cameras 
at precise locations to construct a 3D model of the patient or estimate pose of the 
various parts of the human body. Furthermore, the majority of the approaches 
are computationally intensive. Especially with HD cameras, the time needed to 
process images is so high that the approaches are unsuitable for real-time use. 
Our proposed approach differs significantly from the previous work by using a 
single camera without the need of pose estimation or 3D model of the patient. In 
our approach, we process high definition resolution monocular images with pas-
sive optical markers on body parts of interest to measure individual ROM. The 
camera can be of any RGB type without any depth measuring capability. Fur-
thermore, our approach has a parallel implementation on GPUs, which facili-
tates real-time processing. 

3. Overview of Proposed HMCS 

The primary function of our HMCS is to measure the joint position or angles 
when a patient is performing a particular PTE. As an example, in Figure 1, a 
typical PTE a patient performs after an elbow injury is shown. 

The patient performing the elbow PTE is expected to perform the flexion and 
extension motions of the arm maintaining the shoulder at a stationary position. 
If a patient allows the shoulder to move along with the flexion and extension 
motions, the elbow muscles and the joint will be subjected to forces that are not 
prescribed in the PTE and will result in poor efficacy. A high efficacy of the el-
bow PTE is achieved when the patient performs a smooth flexion and extension 
motions according to the prescribed joint angles and repetitions without expe-
riencing fatigue. This necessitates measuring the joint angle position in reference 
to the shoulder horizontal axis during the PTE to determine the number of repe-
titions, smooth motion, ROM and fatigue free motion. In Figure 2, a patient 
performing the elbow PTE with passive optical markers (blue circular markers) 
 

 
Figure 1. Elbow physical therapeutic exercise. 
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is shown. The joint angle position is measured by tracking the passive markers 
in each frame of the PTE video in real-time. By computing the position differ-
ences between markers on the arm and the reference marker on the shoulder the 
efficacy of the PTE can be determined. 

The HMCS structure overview is shown in Figure 3. 
As shown in Figure 3, an off the shelf camera is used to capture the video of a 

patient performing PTE with passive optical markers attached to the body part 
performing PTE as shown in Figure 2. The video can be transmitted in real-time 
to the therapy clinic or to a laptop/PC with GPU for computing the ROM. The 
flow diagram in Figure 4 depicts the computational steps required to process the 
video and measure the joint angles. 

In Figure 4, the loop represents the modified Klein’s tracking algorithm, 
which is executed in parallel for each marker on a GPU. The first input to the 
algorithm is the initial position of the markers, which is located approximately at 
the center of a marker determined visually by a mouse click. The second and the 
third inputs are the size of a marker in pixels and the number of markers. The 
output of the algorithm is the centroid of the markers in each video frame. The 
Klein’s and MKA for tracking human body are discussed in detail in the follow-
ing section. 

4. Klein’s Tracking Algorithm 

The Klein’s tracking algorithm [8] focuses on tracking augmented reality work-
spaces. The algorithm uses the corners of different objects in a workspace as the 
 

 
Figure 2. Elbow PTE with passive optical markers. 
 

 
Figure 3. HMCS structure overview for real-time application. 
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                Figure 4. Passive optical marker tracking. 
 
tracking points or objects. In order to track, a relative motion between the cam-
era and the workspace is required. As the camera moves relative to the work-
space, the tracking algorithm segments the tracking features and tracks them 
from one image to another using the following steps: 
a. Transformation Stage 1 (S1)—Resilience: Workspaces can have different il-

luminations. To provide resilience to lighting changes, mean intensity value 
is subtracted from individual image pixels, i.e., a mean of the pixel’s sur-
rounding pixel values within a pre-determined boundary is obtained and 
subtracted from the pixel’s value. This is carried out for every pixel on the 
image frame. 

b. Segmentation: Features from Accelerated Segment Test (FAST) algorithm are 
used to detect corners in the image. FAST algorithm processes an image and 
provides a set of points for every edge on the image. Each set of points, for 
the workspace, provides one corner of an object. Hence each set is termed as 
a tracking feature or marker. 

c. Transformation Stage 2 (S2)—Object based transformation: An affine warp is 
performed on the marker. An affine warp is a differential computation that 
makes the marker resilient to rotations. This helps in tracking the marker 
even if the relative rotation between the camera and the marker is significant. 
A search template of the marker is generated using the warped conversion. 
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The image and the marker template are down-sampled by several levels, re-
ducing the dimension of the image and the template. One level of sub-sam- 
pling involves reducing the image or marker template to half its original size, 
i.e., replacing one pixel with four adjacent pixels. This helps in reducing the 
overhead of the search. 

d. Definition: The tracking is performed by evaluating the sum of the squared 
differences (SSD) between the image and the marker template at all locations 
within a given search region of an image. A search region is a fixed boundary 
around the occurrence of the marker in the previous image. The boundary is 
pre-determined for each workspace. The location within the search region 
having the smallest SSD value is taken as the location of the marker in the 
new image. 

A flow diagram representing the different phases of the Klein’s algorithm is 
shown in Figure 5. The algorithm begins at the S1 part of the transformation for 
resilience, followed by segmentation. The segmented image is then subjected to 
the S2 part of the transformation to obtain the position of the marker on the new 
image. This is repeated for each image in the sequence. 

The algorithm begins at the S1 part of the transformation for resilience, fol-
lowed by segmentation. The segmented image is then subjected to the S2 part of 
the transformation to obtain the position of the marker on the new image. This 
is repeated for each image in the sequence. 

5. Modified Klein’s Algorithm 

Klein’s algorithm has been modified by its author Klein as well as other re-
searchers as seen in [9]-[16]. These modifications focus on a) tracking an object 
with lesser or different parameters object parameters [9] [10], b) using low per 
devices [11], which may involve cloud computing for robots [12] c) using dif-
ferent camera configurations/error estimation techniques [13], d) improving  
 

 
Figure 5. Klein’s algorithm tracking phases. 

 Start

Transformation for Resilience: Subtract mean 
pixel intensity from all pixels

Segmentation: Detect edges in the frame and 
mark them as tracking features

Object based Transformation: Perform an affine warp 
on tracking features and sub-sample the image and 

tracking features

Definition: Using the sub-sampled image and marker 
templates, search the image for trackers using the SSD

Stop
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tracking capability [14], or for limited capability cameras [15] [16]. However, 
this section discusses a modification to Klein’s tracking algorithm focusing on 
better parallelization, and hence improved performance, of the algorithm. This 
new algorithm, called as MKA, is designed and developed to track human body 
parts. The FAST algorithm used in Klein, detects only sharp edges. Since not all 
human body parts have well defined edges, FAST is replaced in the MKA. Sub-
sequently, changes in transformation and segmentation have been introduced to 
compliment the replacement of the FAST algorithm. 

5.1. Transformation 

The first part of the transformation in Klein’s algorithm provides resilience. The 
approach here is to make the tracking more resilient not just to lighting changes, 
but also to the background of the image. An overview of the transformation 
phase is shown in Figure 6. 

Consider a camera, capable of taking m n×  resolution video at sf  images 
per second, which is used to capture the video to track objects. The video pro-
vides RGB (Red Green Blue) image sequences, as shown in top part of Figure 6, 
at sf  RGB images every second. The RGB color model is an additive color 
model in which red, green, and blue light are added together in various ways to 
 

 
     Figure 6. An overview of transformation phase of tracking algorithm. 
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reproduce a broad array of colors, meaning each RGB frame provides 3 
sub-frames of m n×  pixels, where the sub-frames belong to the red, green and 
blue color models respectively. Let each RGB image be given by kA , where 

3m n
kA R × ×∈ , 

k  is the time instance, 

ijh ka A∈ , 

1,2, , 1,i m m= − , 

1,2, , 1,j n n= −
 and 

1,2,3h = —1 represents red frame, 2 represents green frame and 3 represents 
blue frame. 

The element ijk ka A∈ , contain the pixel values (intensity) of the whole image 
including the markers. The markers are assumed to be uniformly colored ob-
jects. Since the human body lacks uniform coloring, small uniformly colored 
stickers are assumed to be present on the relevant body part. This is considered 
as a tracking feature. This aids in segmenting an image more efficiently, reduc-
ing noise in the images. Considering blue stickers as markers, the blue frame 
would have higher numerical pixel values for the marker locations than red or 
green frames ( 3 1 2,ij ij ija a a> ). Using this constraint, the transformation is for-
mulated as shown in the middle part of Figure 6, using: 
1. kA  is converted into a gray scale image m n

kG R ×∈  using the following 
standard conversion: 

1 2 30.2989 0.5870 0.114ij ij ij ijg a a a= + +      (1) 

where, ij kg G∈ , ijk ka A∈ . This reduces the blue content in kG . 
2. The final step of the transformation is to obtain the output image 

m n
kF R ×∈  , as shown in the bottom part of Figure 6, using: 

3 3,    if 
0,               otherwise

ij ij ij ij
ij

g a g a
f

− >
= 


      (2) 

where, ij kf F∈ . The output image kF  renders the markers as perfect black 
spots having zero values. The two-step transformation not only provides resi-
lience to lighting changes by lowering and subtracting the intensity but also 
helps in identifying the markers more effectively by differentiating them from 
the rest of the background. 

5.2. Segmentation 

The segmentation step is based on the search regions in the original Klein’s al-
gorithm. The boundary of the search region is used to segment the image kF . 
The boundary is determined based on the relative motion between the camera 
and the markers, the dimension of the marker in the image and sf . Let the ve-
locity of the marker motion relative to the camera be v . Let the dimension of 
the thl  marker on the image be l lp q× . Let the maximum possible displace-
ment of any given marker between two consecutive images be given by xv  and 
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yv  along the horizontal and vertical axes respectively. The xv  and yv  satisfy 
the relationship: 

, ,,   
l l

x y
s s

v p v qv v
f f

∝ ∝                         (3) 

Using ( ),x yv v , and the known marker location-centroid of the tracking fea-
ture on the ( )1 thk −  image given by ( ),x y , the search for the marker in the 

thk  image can be limited within the boundary ( ),x yx v y v± ± . The initial val-
ues of ,x yv v  are estimated using the , , l

sv f p  and lq  values provided. If this 
estimation fails to track the markers on any frame, then ,x yv v  are incremented 
from the initial estimation to widen the boundaries of search region. The new 

,x yv v  values are stored for successive frames. Hence the image kF  will be 
segmented as shown in Figure 7. 

In Figure 7, it can be observed that the dimension of the search region on an 
image is given by ( )( )2 1 2 1x yv v+ + , where ( ) ( )2 1 , 2 1l l

x yv p v q+ > + > . This 
implies that there are 

4 1 1
2 2

l l

x y
p qv v

  
+ − + −  

  
                     (4) 

number of l lp q×  dimension marker sized regions within the search region. 
Each of the l lp q×  dimension marker sized region, called as match blocks, is 
possibly the actual marker position, i.e., every match block is a potential marker. 
Hence all match blocks are compared with the marker templates. The technique 
to compare these match blocks forms the definition part of the algorithm. 

5.3. Definition 

In order to find a marker, a search template (s) is used. The squared summation 
of the difference (SSD) between each element of the ( )s  template and the cor-
responding element in the match block let b  represent a match block, then the 
SSD is given by: 

( )2

0 0
SSD

l lp q

ij ij
i j

s b
= =

= −∑∑                        (5) 

In the MKA’s transformation phase, all ijs  are reduced to zeros, therefore, 
the SSD for MKA can be computed using: 

( )2

0 0
SSD

l lp q

ij
i j

b
= =

= ∑∑                         (6) 

 

 
         Figure 7. Segmentation phase of the algorithm. 
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This SSD can be implemented in a number of different ways. A technique 
adopted in [8] is described in Figure 8. The SSD for the first match block posi-
tion within the search region begins at the first possible match block location, 
i.e., first row and first column, as shown in the first row of the search in Figure 
8. The search continues by performing SSD for subsequent match block loca-
tions, which occur in the same row but in subsequent columns. This will con-
tinue till the end of the row is reached, and then the search switches to next row, 
as seen in the second row of the search in Figure 8. This is continued row-wise 
till the end of search region is reached as shown in the bottom part of Figure 8  

Since 4 1 1
2 2

l l

x y
p qv v

  
+ − + −  

  
 match blocks are present, equal number of  

SSD computation for match blocks is performed. Hence for a given marker re-
gion, this generates multiple SSD values. The results are interpreted as follows: 

0, possible marker location
SSD , possible marker location for high illumination scenarios

, away from marker location
T
T

=
<
>

   (7) 

The threshold T  is based on the illumination and background of the image. 
It’s determined on a per scenario basis by trial and error. If the SSD provides one 
match, then the centroid of the marker location is taken to be the centroid of the 
object. If multiple marker positions provide a SSD value satisfying the threshold 
then the average of all the locations is obtained to get the centroid of the object. 
Once the centroid of one marker is obtained, the definition part of the algorithm 
moves on to the next marker until centroids of all markers in an image are ob-
tained. Once all markers in an image are processed, the tracking algorithm 
moves on to the next image in the sequence. 
 

 
Figure 8. The brute force technique to compute SSD for all match blocks within search 
boundary. 
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6. Parallelization of Modified Klein’s Algorithm 

The MKA needs to be redesigned for a parallel implementation. The re-design is 
performed in two phases: 
a. Computationally Intensive Region Identification: This phase is to identify the 

bottleneck of parallelism in the code. 
b. Algorithm Modification: Once the region is identified, the algorithm is mod-

ified to achieve maximum parallelism. 

6.1. Computationally Intensive Region Identification 

The SSD operation was given in Equation 6. Consider a search region described 
in Figure 8 represented as shown below: 

( )

( ) ( )( )

11 1 2 1

2 1 1 2 1 2 1

y

x x y

v

v v v

f f

f f

+

+ + +

 
 
 
 
  



  



 

The search region contains multiple match blocks as observed in Figure 8. 
SSD is performed on each of the match blocks within the search region as seen 
in Figure 8. Since the dimension of a match block is l lp q× , using the brute 
force technique to perform SSD on a match block requires l lp q  multiplications 
and ( )2l lp q+ −  additions, leading to ( )2l l l lp q p q+ + −  number of opera-
tions. Using the number of possible match blocks in a search region given in 
Equation (4), total number of operations to perform SSD within a search region 
is given by: 

( )4 1 1 2
2 2

l l
l l l l

x y
p qv v p q p q

  
+ − + − + + −  

  
      (8) 

This leads to ( )l l
x yO v v p q  complexity for one search region. Hence this is 

identified as the bottleneck of the algorithm due to the large number of opera-
tions. 

6.2. Algorithm Modification 

The reduce and re-use guidelines are merged as the following techniques not 
only reduce the number of operations but also aid in re-use of elements. 
The SSD of match blocks have repeated operations. For example, consider the 
first two SSDs, SSD1 and SSD2 as shown in Figure 8. They are given by: 

1. ( )21

0 0
SSD

l lp q

ij
i j

f
= =

= ∑∑  

2. ( )
1 22

0 1
SSD

l lp q

ij
i j

f
+

= =

= ∑∑  

12f  and 22f  are squared and added twice in the first two summations. These 
repeated computations increase with an increase in the size of the search region 
and number of markers. 

A five-step modification is introduced that reduces the number of operations 
for SSD. In the first step, all the elements of the matrix are squared. In steps 2 



R. R. P. Kumar et al. 
 

32 

and 3, row-wise summation of search region is computed such that the summa-
tion is limited to the marker size. Steps 4 and 5 are similar to steps 2 and 3 but 
are executed column-wise to obtain summation of the search region limiting it 
to marker size by columns. These steps are computed as follows: 

Step 1: Squaring assuming the search region mentioned above, each element is 
squared as shown below: 

( )

( ) ( )( )

2 2
11 1 2 1

2 2
2 1 1 2 1 2 1

y

x x y

v

v v v

f f

f f

+

+ + +

 
 
 
 
 
 



  



 

A total of ( )( )2 1 2 1x yv v+ +  multiplications are required to complete this 
step. 

Step 2: Prefix row Summation: For every row, perform a prefix sum as shown 
below: 

( )

( ) ( ) ( ) ( )( )

2 2 2 2 2 2
11 11 12 11 12 1 2 1

2 2 2 2 2 2
11 122 1 1 2 1 1 2 1 2 2 1 2 1

y

x x x x y

v

v v v v v

f f f f f f

f f f f f f

+

+ + + + +

 + + + +
 
 
 

+ + + + 
 

 

   

 

 

If each element is computed independently, then there are  
( )( )2 1 2 1x y yv v v+ +  additions. However, for a given row, if dependency is as-
sumed between column summations, i.e., the third column does not compute till 
the second column is computed, then for a given row there are 2 yv  additions. 
Hence overall there are 4 x yv v  additions. 

Step 3: Marker dimension row subtraction: For every row, based on the lq , 
consecutive elements starting from ( )1

thlq +  column of each row are sub-
tracted from each column (say thr  column) with ( )thlr q−  column of every 
row, as shown below: 

( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( )

2 2 2 2 2
11 12 1 2 11 1 1 2 1

2 2 2 2 2
122 1 1 2 1 2 12 1 1 2 1 2 1

l l
yy

l lx x yx x y

vq v q

v v vv q v v q

f f f f f

f f f f f

++ + −

+ + ++ + + + −

 + + + +
 
 
 

+ + + + 
  

   

  

   

 

This requires a total of ( )( )2 1 2 1 l
x yv v q+ + −  subtractions. 

Step 4: Prefix column summation: Starting from the ( )thlq  column, perform 
a column wise prefix sum as shown below: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )( )

2 2 2
11 1 2 11 2 1

2 2 2 2 2 2
11 21 1 2 1 2 2 11 2 1 2 2 1

2 2 2 2 2 2
11 2 1 1 1 2 1 2 1 2 11 2 1 2 1 2 1

l
yy

l l
y yy y

l lx y x yy x y

vv q

v vv q v q

v v v vv q v v q

f f f

f f f f f f

f f f f f f

++ −

+ ++ − + −

+ + + ++ − + + −

 + +
 
     + + + + + +   
    
 
 
    + + + + + + + +    

    

 

  

 

    

 

similar to step 2, this step requires a total of ( )( )2 2 2 l
x yv v q+ −  additions. 
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Step 5: Object dimension column subtraction: Similar to the row-wise sub- 
matrix summation, start from the ( )1

thlp +  row and ( )thlq  column and per-
form the column wise summation as shown below: 

( ) ( )

( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )( )

2 2 2
11 1 2 11 2 1

2 2 2 2 2 2
21 1 2 11 1 2 2 1 1 2 1 1 2 1

2 2 2 2 2
2 1 1 2 1 2 1 2 1 2 1 2 1 2 12 1 1

...

l
yy

l l l l l
yy y y

l l l l l
x x y x y x y

vv q

vp v q p v q p v

v p v p v q v p v v v qvx

f f f

f f f f f f

f f f f f

++ −

++ + − + + − + +

+ − + − + − + − + + + −+

+ +

   + + + + + + + +   
   

 + + + + + + + 
 

 

  

   

  

     ( )( )
2
2 1 2 1x yv v

f
+ +

 
 
 
 
 
 
 
 
 

  +    

 

This step requires a total of ( )( )2 1 2 1l l
x yv p v q+ − + −  additions. The sum-

mary of the computations required is given below in Table 1. 
Since ( ) ( )10 3 , 2 1l l

x yv p v q+ > + > , overall SSD per search region is reduced 
to a computational complexity of ( )x yO v v  which is significantly lower than 
Equation 8 calculated using the brute force technique shown in Figure 8. 

7. GPU Implementation 

General-Purpose Computing on GPU (GPGPU) is a new parallelization domain 
to accelerate scientific and engineering computations in vision algorithms [17]. 
NVIDIA’s Compute Unified Device Architecture (CUDA) is the earliest and 
most widely adopted programming model for GPGPU [18]. Hence, for the im-
plementation of parallelized MKA, we have used NVIDIA GPU with CUDA 
programming model. 

The GPUs, at a high level, are a collection of Streaming Multiprocessors 
(SMs), with each SM having the ability to concurrently execute large number of 
threads that are grouped in blocks, with each SM and thread having access to 
dedicated shared and register memory. Hence, the implementation of parallel 
algorithms has lot parameters such as number of threads, blocks, shared memo-
ry size, etc. to be determined. 

In our previous work [19], we have proposed and implemented parallel ver-
sion of the Scale Invariant Feature Transform (SIFT) algorithm on GPUs. In 
[19], we describe the architecture of GPUs (section 4) and a framework on how 
to calculate the parameters (section 5) to obtain a near optimal implementation 
 
Table 1. Summary of the computations required for all match blocks’ SSD. 

Step number Computations 

1 ( )( )2 1 2 1x yv v+ +  

2 4 x yv v  

3 ( )( )2 1 2 1 l
x yv v q+ + −  

4 ( )( )2 2 2 l
x yv v q+ −  

5 ( )( )2 1 2 1l l
x yv p v q+ − + −  

Total ( )( ) ( )10 3 2 1 6 2 2l l l l l l
x y x yv v v q v p q p p q+ + − + + + −  
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of the parallel algorithm. We have adopted the same framework in this paper to 
calculate the amount of shared and register memory and to determine the num-
ber of blocks and threads to be used for execution of the algorithm. 

The implementation for MKA’s SSD operation can be written such that it uses 
different amount of register and shared memory. For example, the elements of 
the search region can be completely put on shared memory or a row or column 
of the search dimension can be moved to register memory. As such the blocks 
and threads will vary based on the implementation. While the memory access 
latency on shared memory is higher than register memory, the execution time 
for code using shared memory or shared and register memory combination are 
comparable. For this paper, the code was written to minimize the number of 
registers and maximize the shared memory, since this resulted in a cleaner and 
single source code for different search region dimensions without compromising 
much of performance. Using the minimized registers code and using NVIDIA 
profiler to determine the total amount of shared and register memory, the num-
ber of threads per block and the number of blocks was determined using Equa-
tions 28 and 30 respectively in [19] for each search region. In general, the num-
ber of threads per block was found to be 256 for search dimensions having less 
than 2000 pixels and 512 for search dimensions having more than 2000 pixels. 
The number of blocks varied based on the search region dimension. 

8. Results and Analysis 

In this section, we present and analyze the effectiveness of the HMCS in tracking 
the motion of a human body part which performing PTE. First, to determine the 
suitability of the HMCS for real-time applications we compare the performance 
of sequential Klein’s algorithm with MKA. Second, we compare the performance 
of the parallel implementation of Klein’s algorithm and MKA, parallelized using 
standard libraries. Lastly, we look at the performance of the parallel MKA, pa-
rallelized using our framework. 

For analysis, the programs are executed on Intel Xeon CPU, having two E5620 
processors operating at 2.40 GHz and running a 64 bit Windows 7 Pro Operat-
ing System. The sequential programs are executed on a 64-bit Matlab R2014b 
software. Matlab’s original core has been developed from LINPACK and 
EISPACK [20]. LINPACK and EISPACK have proven to be computationally ef-
fective ways to solve linear algebra problems [21]. Hence we use this software to 
obtain the reference time for sequential programs. For parallel program execu-
tion, the CPU is equipped with a NVIDIA Tesla C2075 card. The card is 
equipped with 448 cores and 6 GB of memory for general computations. Though 
K20x and K40m cards seem to be a good option for GPU parallelization, we lim-
it ourselves to a low-cost GPU such as C2075. 

For developing parallel Klein’s algorithm and MKA code using standard libra-
ries, a combination of cuLA and cuBLAS library package was used. cuLA is a 
CUDA based accelerated Linear Algebra (LA) package provided by NVIDIA for 
GPUs. Similarly, cuBLAS library package is another accelerated Basic Linear Al-
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gebra Subprograms (BLAS) library provided by NVIDIA for GPUs. Lastly, for 
profiling NVIDIA’s Visual Profiler, NVVP, compatible with CUDA 6.0 and Mi-
crosoft Visual 2015 was used to profile the code. 

We use execution time as a measure of performance. Low execution time is 
considered to be better. Each implementation of an algorithm for a given search 
dimension is considered as one simulation and the execution time is collected. 
Each simulation is executed one thousand times and AET is computed. The 
standard deviation of AET for all simulations was observed to be under 6.5%. 
Each simulation has been verified by manually inspecting the tracked positions 
on the image. Data, for verification of algorithms, is taken from videos under 
indoor computer lab conditions using 60fps at 1080p resolution. For the track-
ing algorithm, the marker size is generally small and the search region varies 
from image to image. For the simulations, 8l lp q= =  and 

{ }32,64,128,256,512x yv v= =  is considered. 

8.1. Performance of Sequential Execution 

Figure 9 shows the speed-up of sequential execution of MKA over Klein’s algo-
rithm for tracking a single marker. The speed-up is obtained by dividing Klein’s 
algorithm AET with MKA’s AET. As expected, the MKA outperforms Klein’s 
algorithm by a significant margin. This is expected since MKA has significantly 
lower computations when compared to Klein’s algorithm. Since, Klein’s algo-
rithm has ( )l l

x yO v v p q , and MKA has ( )x yO v v , and 8l lp q= = , we could 
expect at least 64x performance improvement. The speedup observed is in close 
agreement with expectation, especially with higher search dimensions where 
speedup saturates at 132x. 

8.2. Performance of Parallel Execution Using Standard Libraries 

Figure 10 shows the AET of the Klein’s algorithm and MKA algorithm paralle- 
 

 
Figure 9. Speed-up of MKA in comparison with Klein’s algorithm. 
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Figure 10. Performance comparison of parallel implementations of Klein’s algorithm and 
MKA using standard libraries. 
 
lized using standard libraries. Similar the sequential version, the parallel MKA 
performs better than Klein’s algorithm. This is to be expected due to the differ-
ence in the number of computations in both algorithms, as mentioned before. As 
the search region dimension region increases, the AET of Klein’s algorithm in-
creases non-linearly. This is because of the higher amount of a) computations 
and b) data transfers occurring between library calls. For MKA, these are much 
lower, providing a near linear increase in AET. 

8.3. Performance of Parallel MKA 

Figure 11 shows the AET of our version of parallel MKA for different search 
dimensions. Due to a single data transfer between CPU and GPU in each direc-
tion, and highly optimized code, the AET is found under a millisecond, even for 
bigger search regions. The low AET and good scalability indicate the suitability 
of our implementation of parallel MKA for real-time applications. 

8.4. Application of HMCS to Elbow PTE 

The video frames of a patient performing the elbow flexion and extension exer-
cise shown in Figure 2 is presented again for the completion. In Figure X, the 
patient elbow has five markers stuck on the hand, which are tracked by the 
HMCS. The patient in Figure 12, starts at full extension or supine position and 
bends the elbow to reach the full flexion position. 

The patient when performing the elbow exercise is expected to maintain the 
arm (structure between shoulder and elbow joint) rigid and at the horizontal po-
sition. The ROM is measured from the zero value position. The ROM angle for 
flexion is measured ranging from 0˚ to +90˚ to the left of the zero value position. 
The ROM angle for extension is 0˚ to −90˚ to the right of the zero value position. 
Using the HMCS, the markers are tracked in Figure X between subsequent  



R. R. P. Kumar et al. 
 

37 

 
Figure 11. AET of MKA parallelized using framework for different region dimensions. 
 

 
Figure 12. Video frames of flexion and extension exercises. 
 
frames and the ROM angle between marker pairs (1, 3), (3, 4) and (3, 5) are de-
termined. The measured ROM angles for the exercise in Figure X are shown in 
Figure X1. In Figure 13, we can notice that the patient extension and flexion 
ROMs are consistently close to −90˚ and 40˚ respectively. According to the 
American Medical Association [22] normal flexion ROM values for adults range 
from 50˚ to 60˚ from the zero value position. 

Therefore, the PT based on the measured ROM can see the patient has some 
physical issues with elbow flexion and provide appropriate feedback. Further-
more in Figure 13, the ROM measurements between markers (1, 3) indicate that 
the patient is not maintaining the arm in the rigid position. In Figure 14 and 
Figure 15, the angular velocity and acceleration of the elbow motion while per-
forming the flexion and extension exercise are shown. 

In Figure 14, it can be seen that the patient is performing the elbow motion 
with a significantly large variation in angular velocity and correspondingly with 
an angular acceleration and deceleration as shown in Figure 15. The large varia-
tion in angular velocity indicates the patient is not performing the exercises at a 
sustained rate. Varying angular acceleration indicates the patient having to exert 
different forces during the flexion and extension parts of the elbow PTE. Using 
the angular velocity and acceleration/deceleration data, a PT can now provide a 
feedback to the patient in real-time about whether the motion is smooth or jerky  
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Figure 13. ROM measurements between pair of markers. 
 

 
Figure 14. Angular velocity of the elbow motion. 
 
and whether the patient is experiencing fatigue. 

In Figure 16, the error in ROM measurement between using the HMCS and a 
Goniometer is shown. The error varies anywhere from −2.6˚ to +1.4˚ which is 
well within accepted error value of 5˚ [1]. This low value of error when com-
pared with the Goniometer measurements indicates our technique of measuring 
the patient performance in near real-time can be used in clinical settings. Fur-
thermore, our implementation on the GPU allows us to track all of the markers 
in a HD frame in 1.77 msecs making the HMCS capable of operating in real- 
time. 

9. Conclusions & Future Work 

An analysis of the Klein’s algorithm indicated that there was a potential to re- 
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Figure 15. Angular acceleration of the elbow motion. 
 

 
Figure 16. Measurement error between HMCS and Goniometer. 
 
duce the number of computations. We modified the algorithm, to facilitate bet-
ter parallelization on GPU architectures in two phases—first, refactoring the al-
gorithm to have lesser number of operations and enhanced parallelism, and se-
condly, optimizing the data to obtain better parallelism for GPU architectures. 
We compared the effectiveness of our algorithm, with Klein’s algorithm for se-
quential and Klein’s algorithm and MKA for parallel implementations. For se-
quential implementation, MKA performed much better than its predecessor al-
gorithm. To understand the effectiveness of our parallel implementations, 
Klein’s algorithm and MKA were parallelized using the cuLA and cuBLAS li-
brary and compared with our parallel implementation. The results showed that 
our parallel implementation of MKA has the lowest execution time. Hence, our 
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parallel implementation of MKA could be implemented on GPUs for real-time 
applications using high-resolution frames with a high number of markers per 
frame. We have also demonstrated the use of the MKA in determining the ROM 
of the elbow of a patient performing PTE in real-time. Using the real-time ROM 
measurement, a PT can identify any issues that a patient is experiencing while 
performing the PTE and provide feedback in real-time. 

We have also shown that it is possible to measure the ROM using a single 
camera with high accuracy. 

The next stage of work would involve constructing 3D images at the clinical 
end for a PT and MD to examine subtle muscle movements. We envision deter-
mining the point cloud of a body part and manipulate the point cloud in 3D us-
ing the tracked markers. 
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Nomenclature 

BLAS—Basic Linear Algebra Subprograms; 
CUDA—Compute Unified Device Architecture; 
FAST—Features from Accelerated Segment Test; 
GPGPU—General Purpose Graphics Processing Unit; 
GPU—Graphics Processing Unit; 
HD—High Definition; 
HMCS—Human Motion Capture System; 
IMU—Inertial Measurement Units; 
LA—Linear Algebra; 
MKA—Modified Klein’s Algorithm; 
PT—Physical Therapist; 
PTE—Physical Therapeutic Exercise; 
RGB—Red Green Blue; 
ROM—Range of Motion; 
S1—Stage 1; 
S2—Stage 2; 
SIFT—Scale Invariant Feature Transform; 
SM—Streaming Multiprocessor; 
SSD—Squared Summation of Differences. 
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