
Journal of Computer and Communications, 2017, 5, 69-82
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2017.58006 June 30, 2017

A Stable and Consistent Document Model
Suitable for Asynchronous Cooperative Edition

Maurice Tchoupé Tchendji1, Rodrigue D. Djeumen2, Marcellin T. Atemkeng3

1Department of Mathematics and Computer Science, Faculty of Sciences, University of Dschang, Dschang, Cameroon
2Department of Mathematics and Computer Science, Faculty of Sciences, University of Douala, Douala, Cameroon
3Department of Physics and Electronics, Rhodes University, Grahamstown, South Africa

Abstract
Complex structured documents can be intentionally represented as a tree struc-
ture decorated with attributes. Ignoring attributes (these are related to semantic
aspects that can be treated separately from purely structural aspects which inter-
est us here), in the context of a cooperative edition, legal structures are characte-
rized by a document model (an abstract grammar) and each intentional repre-
sentation can be manipulated independently and eventually asynchronously by
several co-authors through various editing tools that operate on its “partial rep-
licas”. For unsynchronized edition of a partial replica, considered co-author
must have a syntactic document local model that constraints him to ensure
minimum consistency of local representation that handles with respect to the
global model. This consistency is synonymous with the existence of one or more
(global) intentional representations towards the global model, assuming the
current local representation as her/their partial replica. The purpose of this pa-
per is to present the grammatical structures which are grammars that permit not
only to specify a (global) model for documents published in a cooperative man-
ner, but also to derive automatically via a so call projection operation, consistent
(local) models for each co-authors involved in the cooperative edition. We also
show some properties that meet these grammatical structures.

Keywords
Structured Documents, Documents Models, Grammars, Cooperative Edition,
Structured Edition, Projections, Views, Partial Replicas

1. Introduction

With the rise of XML technologies and Web services, structured documents have
become important tools for the publication and exchange of information bet-
ween most often heterogeneous and remote applications. The ever-increasing

How to cite this paper: Tchoupé, M.T.,
Rodrigue, D.D. and Atemkeng, M.T. (2017)
A Stable and Consistent Document Model
Suitable for Asynchronous Cooperative Edi-
tion. Journal of Computer and Communi-
cations, 5, 69-82.
https://doi.org/10.4236/jcc.2017.58006

Received: May 10, 2017
Accepted: June 27, 2017
Published: June 30, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2017.58006
http://www.scirp.org
https://doi.org/10.4236/jcc.2017.58006
http://creativecommons.org/licenses/by/4.0/

M. T. Tchendji et al.

70

power of communication networks in terms of throughput and security as well
as efficiency is concern, has revolutionized the way of such documents are edited.
Indeed, to the classical model of an author editing his document locally and
autonomously, was added the (asynchronous) cooperative editing in which,
several authors located on geographically distant sites, coordinate to edit asynch-
ronously the same structured document (Figure 1).

Cooperative structured editing is a research field related to computer-
supported cooperative work—CSCW [1], which Baecker, et al. in [2] defined as a
set of activities performed on computers and coordinated by a group of
collaborative entities. Structured cooperative publishing is a hierarchically orga-
nized group publishing work, that operates according to a schedule involving
deadlines and task sharing (coordination). When it is asynchronous, each of the
participating co-authors in the edition has on its site, a replica of the structured
document (intentionally represented as an abstract tree) on which he acts. It is
generally preferable for safety reasons1, efficiency2, … that this copy is only a
partial replica of the global document, i.e. consisting only of parts of the
document containing relevant information related to the considered co-author.
In this case, in order to minimize the inconsistencies that can be introduced in
the partial replica when locally edited, and to ensure that at the end of edition
(or at specific times), the different contributions will be structurally merged [3]
[4], each co-author must have on his publishing local site a local document
model (a grammar) which is consistent with the global model. Intuitively, a local
document model is consistent with respect to the global model, when any partial
document t’ that is conform to him is the partial replica of at least one document
t conform to the global model.

The central issue addressed in this paper can be simply presented by means of
an example of unsynchronized cooperative structured editing process (Figure 1).
In fact, one can easily imagine an editing process in which several authors work
together to produce a pluri-disciplinary book and such that, according to its own
field of expertise, everyone contribute to more or less disjointed parts of the
same document.

It may be interesting for these authors to specify previously (may be together)
the overall hierarchical structure of the document via a grammatical model; we
call thereafter global model of the document. From it are derive for each of the
co-authors a dedicated (local) model called thereafter local model. This local
model can be regarded as a “view” on the global model and obtained by means
of a projection operation performed on it, which retains on the global model
only syntactic categories with a demonstrated interest for the considered author.

For example, Figure 1 present an overview of the cooperative edition
distributed on three sites. Site 1 is dedicated to the edition and the merging of

1For a given co-author, some parts of the document may contain sensitive information. It is prefera-
ble that he is not even informed of the presence of this information in the document. As we shall see
later, the projection operation will resolve this confidentiality problem.
2Handled documents pass through the network. They will circulate all the more quickly as their size
is reduced. For this reason, the replica of the document to be sent to a co-author must contain only
the parts which are of obvious interest to him: it’s a partial replica. Here too, the projection opera-
tion will solve this concern.

M. T. Tchendji et al.

71

Figure 1. The desynchronized cooperative editing of partial replicas of a structured document.

the (global) document according to the (global) document model G hosted on
him. On G, two projections are made to obtain G1 and G2, the local models
hosted by site 2 and 3 an used for syntactically constrain the desynchronized
edition of the partial replicas of the global document on the sites 2 (resp. site 3).
Note that, documents published on these sites can be saved (serialized) then
restored by parsing. The overall document is subsequently obtained from the site
1 by performing a consistent expansion3 of the various documents published on
sites 2 and 3.

The purpose of this paper is to propose a generic document model allowing to
specify syntactically both the global model and derived local models, which are
consistent with the global model.

In order to do this, we propose the grammatical structures (a subset of the
extended context free grammars) as well as a projection operation which allows to
derive from a grammatical structure (global model) and a set of syntactic categories
relevant to a given co-author, a local grammatical structure dedicated to him.

Organization of the manuscript: Section 2 presents some concepts and
definitions used thereafter. Section 3 presents the grammatical structures, the
projection algorithm on grammatical structures and some features of this model.
Section 4 is devoted to the conclusion.

2. Preliminaries
2.1. Extended Context Free Grammars, Documents and Compliances

It is usual to represent the abstract structure of a document by a tree (derivation
tree) and its model by an Extended Context Free grammars (ECFG)4. In an
ECFG, the right member of each production is a regular expression as opposed

3The problem of re-synchronization—consistent expansion—a posteriori is presented and resolved
in [4] where we can also find many basic definitions reused here.

M. T. Tchendji et al.

72

to the sequence of terminal and non-terminal that constitute the right hand side
of productions in classical context free grammar. More formally, an extended
context free grammar (),= S P is given by a finite set of syntactic categories
S , a finite set of production rules P written as ss →P such that, s∈S and

sP is a regular expression defined on S .
The dependency graph D of grammar  is a graph whose set of node

tags is included in S and, for all rules ss →P in P , there is an arrow from
s to b , for all b in a word belonging to the language denoted by sP and
termed ()sPL . An ECFG is said to be non recursive if and only if D is
acyclic, and recursive if not.

A document t conforms to a grammar  and we write t∴ , if it is a
derivation tree of this grammar: it’s the case if for any t node n labeled s∈S
and with children nodes 1, , mn n labeled respectively 1, , ms s , is ∈S , the
word ()1 m ss s ∈ PL .

2.2. View, Projection, Partial Replica and Consistency
The derivation tree giving a (global) representation of a structured document
published cooperatively, makes visible all the grammar’s grammatical symbols.
As mentioned in Section 1 above, a coauthor handling such a document using a
structured dedicated editor of his area of expertise, do not necessarily have
access to all of these grammatical symbols; only a subset of them correspond to
syntactic categories perceptible as such by this tool: hence the notion of “view”
[4]. A view V , is a subset of grammatical symbols (⊆V S). Intuitively, they
are symbols associated with visible syntactic categories in the considered
representation (derivation tree).

Each view V is associated with a projection operation noted ()tπV , on
derivation trees t which erases nodes labeled by invisible symbols while retaining
the subtree structure. Partial replication is the result of the projection of a
document (derivation tree) with respect to a given view. For example, in the
Figure 2 from the global document t in the center, and views { }1 ,V A B= and

{ }2 ,V A C= on the alphabet { }, ,A B C=S , we have on the left the partial
replica ()

1 1V Vt tπ= , and on the right the partial replica ()
2 2V Vt tπ= .

The edition type considered in this paper is asynchronous. On a site i hosting
a document model

i
V on which a partial replica

iVt is updated with

i iVt ∴V , we will say that
iVt is consistent vis-a-vis a global model  , and we

write
i

t V if and only if a document t∴ exists and ()
i i

t tπ=V V . Also, a
local model

i
V is consistent vis-a-vis a global model  if and only if

,
iit t∀ ∴ ∃ ∴ V such that ()

iit tπ= V .

2.3. Some Definitions and Notations

Let (),= S P be an extended context free grammar, ,i jX X ∈S , *α ∈S ,
⊆V S a view, t a derivation tree for  (t∴), D the dependency graph

of  and p∈P a production rule.

4The DTD (Document Type Definition) for example are special cases of extended context free
grammars verifying property of one-unambiguity [5].

M. T. Tchendji et al.

73

Figure 2. One document (center) and two partial replicas obtained by projections.

 is said to be finite type if and only if D is non recursive.  is said to
be finite type with respect to V if the restriction of dependency graph D
on symbols which belongs to V is not recursive.

We note ()nt t ⊆ S the t’s set nodes labels, and ()root t the t’s root node
label.

The notation “ @p X α→ ” means that “p has the form X α→ ”. We
introduce function ()lhs p (resp. ()rhs p) which returns the symbol (resp. the
symbols) in left hand side (resp. right hand side) of his argument p, a production rule.
For example, if 0 1@ np X X X→  , () 0lhs p X= (resp. () { }1, , nrhs p X X= ).
Also, []1 1 , , n np X Xα α means the substitution in the right hand side of p of
all occurrences of each symbols iX ∈S by the corresponding iα . For example,
with 0 1 1 5:p X aX bX cX→ , 1 2 3X Xα = , [] { }1 1 0 2 3 2 3 5p X X aX X bX X cXα = → .

(), iAL is the language generated by grammar  from symbol iA ∈S .

3. A Document Model Stable by Projection Operation,
for Cooperative Asynchronous Edition

In this section, we present grammatical structures which are a particular form of
non-recursive extended context free grammars (ECFG). Indeed, to make the
projection (defined below, Section 3.2) possible, it is not permitted to have in
this model, recursive grammar symbols5. The grammatical structures will then
be models for documents of bounded depths (consequence of the non-
recursivity of the symbols) but of unbounded widths. Moreover, they will allow
to specify in a homogeneous way both the global model for the global document
and the local models for its various partial replicas.

3.1. Defining (Abstract) Grammatical Structures

A grammatical structure (),= S P is given as:
• a set S of non recursive grammatical symbols, and
• a set P of production rules. Each rule in P has one of the two forms:

− 0 1@ np A A A→  (classical form of context free grammars rules),

5As in [6], we are just interested by non recursive models. This is not an aberration because, from
statistical point of view, non recursive DTDs are more frequent than recursive ones.

M. T. Tchendji et al.

74

− *@q A B→ (i.e. A is build up by a list of B)
We recall that an equivalent ECFG can be evidently be derived from a

grammatical structure.

3.2. Projection of a Grammatical Structure

Let (),= S P be a grammatical structure, ⊆V S a view; let also
\=V S V be the complementary of V in S . The view V projection on

 , termed ()π V is the grammatical structure (),=V V VS P where:
• VP is obtained from P by successive rewriting of symbols in V in

terms of those in V , then, by substituting properly the result (of this
rewriting) in the subset of rules P having symbols in V on the left hand
side: 0 1, @ np p X X X∀ ∈ → VP or *

0 1@ , ,0ip X X X i n→ ∈ ≤ ≤VS .
• new= ∪VS V S : syntactic categories of the projected grammar contains

symbols of the view with enventually new symbols introduce for structuring
purpose belonging to set newS . As the process of obtaining the production
rules of the projected model proceed by successive rewriting of symbols
which did not belong to the view, it can occur during the rewriting process of
some symbols that, new symbols being added for format purpose (or
decomposition) in order to bring some rules back to the form of the
production rules adopted for the grammatical structures6 (cf. Section 3.1).

The algorithm for deriving VP and VS proceeds in two steps:
Step 1: consider the subset Prodν ⊆P of  ’s rules which left hand side

does not belongs to the view (){ }(), Prod p lhs pν = ∈ ∈P V and transform

them by successive rewriting to rules like X β′→ , an acceptable rule of
grammatical structure, with ()X lhs p′ = , and β containing only VS
symbols. Hence Pν set is given as:

{ } { } (){
() ()}

1 1 1 1 2 1

*
1 1 2 1

| | , with : , , ,

@ , , , , .

n n k k k

k k i i i ik

P A A u v w v v w v

p A v A v v A v v A w A

ν

ν

µ µ µ µ +

+

= → ∈ = =

∃ → ∈ ∈ ∈

  

 

V

V V L
 (1)

Indeed, Pν can be considered as production rules of a concrete context free
grammar ν with newν = ∪V S as non terminal symbols and V as
terminal symbols; then (), , new Pν ν= ∪ V S V .

From Equation (1), one easily deduces that Pν is in fact the union of the
rewriting of the productions of  having a symbol belonging to V in her
left hand side. Thus, for every symbol iX ′ belonging to V , if we note

()iP Xν ′ the set obtained by rewriting rules of  having iX ′∈V as left hand
side, we have ()iP P Xν ν ′= ∪ with iX ν′∈ . Recall that, symbols in V are
considered as terminal symbols when rewriting.

Algorithm 1 describes the construction process of () , i iP X Xν ν′ ′∈ . Let’s
emphasis that, for effective construction of () , i iP P X Xν ν ν′ ′= ∪ ∈ , the different

6For example a form of rule like *
0 1 2:p X X X→ can be obtained after successive rewriting of a

rule; this is not an acceptable form of rule. So a new restructuring symbol 1X is created and rule p
is decompose in two new rules as follow 1

1 0 2:p X X X→ and 1 *
2 1:p X X→ .

M. T. Tchendji et al.

75

Algorithm 1. Construction of () { }: , ,i i j jP X p X X Xν β β′ ′= → ∀ ∈ ∈V .

sets () , i iP X Xν ν′ ′∈ should be built according to the topological sorting of the

iX dependency graph: a symbol is evaluated after evaluation of symbols from
which it depends.

Step 2: Consider the subset Prodν ⊆P of  ’s rules, with view symbols in
left hand side ((){ }, Prod p lhs pν = ∈ ∈P V 7); for every rule in this set, replace

all occurrences of V elements in right hand side, by their right hand side
counterpart in Pν , this by all means; we finally obtain the set VP of
production rules of the projected grammatical structure.

{ } { } (){
() ()}

1 1 1 1 2 1

*
1 1 2 1

| | , with : , , ,

@ , , , , .

n n k k k

k k i i i ik

A A u v w v v w v

p A v A v v A v v A w Aν

µ µ µ µ +

+

= → ∈ = =

∃ → ∈ ∈ ∈

  

 

VP V

V V L
 (2)

As for Pν (Equation (1)), we deduce from Equation (2) that Pν is the
reunion of the sets obtained by rewriting the productions of  having symbols

iX belonging to V in their left hand side, by using νP ; that sets is denoted
()iXνP . Thus, ()iXν= ∪VP P with iX ∈V . The construction of
() , i iX X ∈VP V is described in Algorithm 2 below.

Algorithm 3 purpose is to construct []1 1 , , m mp X Xα α′ ′ ′ ′
 . It explicitly

presents when restructuring symbols are created (line 5) and when they are
explicitly used (line 5 and line 8) in generated productions rules.

3.3. Grammatical Structures Properties

Let  be a grammatical structure, and V a view;  satisfies properties
below:

Property 1: ()π V is a grammatical structure (stability property); this
property is guaranteed by Algorithm 3.

7Note that Prod Prodν ν∪ =P .

M. T. Tchendji et al.

76

Algorithm 2. Construction of { }: , , , new
i ip X X X Xα α= → ∈ ∀ ∈ ∈ ∪VP V V S .

Algorithm 3. Construction of [] () (){ }1 1 , , , , m m i ip X X rhs p p P Xνα α α′ ′ ′ ′ ′ ′ ′ ′∈ ∈ .

Property 2: if t∴ then () ()()tπ π∴ V V .
Property 3: if t′V is a local update of a replica tV such that ()t π′ ∴ V V ,

then ()(), t t tπ′∃ ∴ = V V (consistency property).
We present below, the proof of the Property 2. The proof of Property 3 can be

obtained from the proof of Theorem 3.3 given in [7].
Proof. Let t∴ be such that ()t tπ =V V ; let’s show that ()t π∴ V V .
In order to do this, if we consider an internal node n of tV labeled iA , with

its k children, 1, , kn n labeled 1, , kA A ; it suffices to show that the word

1 kA A belongs to the language denoted by the grammar V , admitting the
symbol iA axiom i.e. ()1 ,k iA A A∈ VL .

Note that one can define a partition ()\Π = ∪ =V S V V of S so that,
every tree t∴ (Figure 3(a)) can be uniquely partitioned into a finite set of
maximal subtrees 1 2, , , nt t t (Figure 3(b)) such as, for any subtree ,1it i n≤ ≤
of the partition, either ()int t ⊆V , and the labels of the successor nodes of the

M. T. Tchendji et al.

77

leaf nodes of it in t if they exist do not belong to V , or () ()\int t ⊆ S V and
the labels of the successor nodes of the leaf nodes of it in t if they exist belong
to V . When ()int t ⊆V , we say that it is of type tν and when

() ()\int t ⊆ S V , we say that it is of type tν .
Considering the decomposition of t into subtrees of type tν and tν as

described above (Figure 3), a node of t can be found either in a subtree of type
tν or in a subtree of type tν . Moreover, by focusing on a node n of tV and
his children 1, , kn n , they can either: 1) all belong to the same subtree of type
tν (Figure 4) or, 2) belong to different subtrees of type tν in t; in this case, n
is a leaf in the subtree in which it appears, and the , 1, ,iA i k=  are labels of
the root nodes (Figure 5) of other subtrees of type tν or, 3) n and some of his
children are in the same subtree and the other are each one in their own subtree
(Figure 6). Three case studies are therefore to be considered.

Case 1: 1, , , kn n n belong to the same subtree jt such that ()jnt t ⊆V . In
this case, according to the construction algorithm of PV

, ()1 ,k iA A A∈ L
and therefore to (), iAVL .

Figure 3. A document (a), its partitioning ((b), (c)) and one of its projections (d).

Figure 4. Case where an inner node n and its children 1, , kn n belong to the same

subtree jt such that ()jnt t ⊆ V .

M. T. Tchendji et al.

78

Figure 5. Case of labeled iA leaf node n of subtree jt (()jnt t ⊆ V), with all its

children belonging to subtrees of another type.

Figure 6. Case of an internal node n labeled iA of a subtree jt such that ()jnt t ⊆ V

with some of its children belonging to subtrees of another type.

Case 2: Node n labeled iA is a leaf node of a subtree jt such that

()jnt t ⊆V . Let
1
, ,

ml lA A be labels of m children of n in t. n has therefore
been developed using a  ’s production rule of one of the two forms *

iA B→ ,
with B∉V ; or 1i kA A A→  with , 1, ,jA j k∉ = V . We develop below the
second form, the treatment of the first being similar.

There is therefore m sub-terms of t, says
1
, ,

ml lt t , whose roots are

respectively labeled by
1
, ,

ml lA A and such that ()jlnt t ∈V . According to the

P
ν

’s building process8, we can partition the word 1 kA A in m sub-words:

1 21 11 1 21 2 1 1j mk l l j jl m mlA A A A A A A A A A=      

 



 with

()
1

1 1, 1, , i.e. ,
j j j j

m

l j jl j jl l

l l k

A A A j m A A A
ν ν

+

+ + =
 ⇒ = ∈



   L

As ()
1

,
ml l iA A A∈ L , ()1 ,k iA A Aν∈ L according to the construction

process of the productions rules of V (modulo restructuring symbols).

8Reminder: the non-terminals of ν are rewritten by the production rules of P by considering

the symbols of ν as terminals.

M. T. Tchendji et al.

79

Case 3: node n labeled iA is an internal node of a subtree jt such that

()jnt t ⊆V and, there is some n’s children with labels not in V . As previously,
let’s termed

1 ml lA A labels of the m′ children of n in t. n has therefore been
developed using a production rule of the form 1i mA A A ′→  in which at least
one non-terminal belong to V and at least one other belong to V (Figure.
6). Let m be the number of non-terminals on the right-hand side of this
production belonging to V and named as

1 ml lA A . As before, there are m
sub-terms of t, which we call

1
, ,

ml lt t , having respectively
1 ml lA A as their

root labels nodes and such that ()il
nt t ∈V . Similarly, according to the 

V
’s

building process, we can partition the word 1 kA A in 2 1m + sub-words:

1 21 1 11 1 2 21 2 1 1mk l l m m ml mA A A A A A A A A A A Aν ν ν ν
+=    

  

 with

*

1 2 1 1

, 1 1i

m m

A i m

l l l A A k

ν

ν ν
+

 ∈ ≤ ≤ +


+ + + + + + =  

V
 and such that

()1 1, i.e. ,
j j j jl j jl j jl lA A A A A A

ν ν
+⇒ ∈  L . As ()1 ,

j jj jl lA A Aν∈ L ,

1 j m≤ ≤ , we have

()1 2 1 21 2 1 1 11 1 2 21 2 1 1 ,
m mi l l m l m l l m m ml m iA A A A A A A A A A A A A A A A A A Aν ν ν ν ν ν ν ν

+ +⇒ ⇒ ∈    

  

VL

and then, ()1 , .k iA A A∈ VL 

3.4. Illustration: Grammatical Structures for the Cooperative
Writing of a Small Phone Book

Some of the concepts and algorithms presented in the previous sections are
illustrated in this section by considering a simplified case of cooperative writing
of a small phone book.

Suppose that two employees of an organization want to cooperate in writing a
phone book for their organization. One entry of the book is given by the name
(Name), two first names (Fname1 and Fname2), the mails addresses (Emails)
and phones numbers (Phones).

A corresponding grammatical structure an describing this phone book is
given in the Figure 7. Let us assume that there are two views:

{ }1 , , , 1, 2, V phoneBook contact name fname fname num= and
{ }2 , , , ,V phoneBook contact name fnames phones= for each of the respective

employees. By applying the Algorithm 2, we have in Figure 8(a) (resp. Figure
8(b)), the grammatical structure

1V (resp.
2V) resulting from view 1V

(resp. view 2V) projection on an . Note that in
1V , phone’ is a structuring

symbol.

4. Conclusion

Asynchronous cooperative editing tools generally allows co-authors to edit
complete replicas of a document and perform a posteriori merging [8] [9] [10]
[11] [12] regardless if document is structured or not; It’s the case in many tools

M. T. Tchendji et al.

80

Figure 7. A grammatical Structure an of a phone book.

Figure 8. Two local models resulting from the projection on global model of Figure 7
according to view 1V (a) and view 2V (b).

of version managing like CVs for unstructured documents (textual merge) [13].

In the case of structured editing, all co-authors have the same document
model and the merging of complete replicas relies on this model (syntactic
merging software) [14] [15]. We were interested in this paper to an innovative
case—we did not find any study that was done in this direction—in which the
co-authors act on partial replicas of the overall document and each with a local
model allowing him to validate locally updates made on its (partial) local replica.

We proposed as a document model in this context, grammatical structures
allowing both to specify the model for the global document, and local models -
for partial replicas—dedicated to each co-author. Furthermore, we have defined
a projection operation to automatically derive the local models (grammatical
structures) of documents from the global one.

Stability and consistency are some of the major properties enjoyed by
grammatical structures. Consistency ensures that, every document validated
locally with the local grammatical structure is always the projection of at least
one valid document according to the overall grammatical structure: the gra-
mmatical structures thus offer to the different co-authors a suitable means of

M. T. Tchendji et al.

81

carrying out local syntactic validations of the asynchronously edited documents,
while ensuring consistency.

One can further this study by focusing on bottom-up construction of
grammatical structures. The goal is to propose a “grammatical structures merger”
similar to the “documents merger” presented in [4].

References
[1] Grudin, J. (1994) Computer-Supported Cooperative Work: History and Focus.

Computer, 27, 19-26. https://doi.org/10.1109/2.291294

[2] Baecker, R.M., Grudin, J., Buxton, W.A.S. and Greenberg, S. (1995) Readings in
Human-Computer Interaction: Towards the Year 2000. 2nd Edition, Morgan
Kaufmann Publishers, Inc., Burlington.

[3] Mens, T. (2002) A State-of-the-Art Survey on Software Merging. Journal of IEEE
Transactions on Software Engineering, 28, 449-462.
https://doi.org/10.1109/TSE.2002.1000449

[4] Badouel, E. and Tchoupé, M. (2008) Merging Hierarchically Structured Documents
in Workflow Systems, Proceedings of the Ninth Workshop on Coalgebraic Methods
in Computer Science (CMCS 2008), Budapest. Electronic Notes in Theoretical
Computer Science, 203, 3-24. https://doi.org/10.1016/j.entcs.2008.05.017

[5] Brüggemann-Klein, A. and Wood, D. (1998) One-Unambiguous Regular Languag-
es. Information and Computation, 142, 182-206.
https://doi.org/10.1006/inco.1997.2695

[6] Baecker R.M., Cristiana C. and Rosu, D. (2004) On Validation of XML Streams Us-
ing Finite State Machines. Proceedings of the Seventh International Workshop on
the Web and Databases, Paris, 17-18 June 2004, 85-90.

[7] Badouel, E. and Lamine, M. (2014) Opacité des artefacts d’un système workflow.
Revue ARIMA, 17, 177-196.

[8] Berlage, T. and Genau, A. (1993) A Framework for Shared Applications with Repli-
cated Architectures. Proceedings of the Conference User Interface Systems and
Technology, 17, 249-257.

[9] Balasubramaniam, S. and Pierce, B.C. (1998) What Is a File Synchronizer? Pro-
ceedings of the 4th Annual ACM/IEEE International Conference on Mobile Com-
puting and Networking (MOBICOM), Dallas, 25-30 October 1998, 98-108.
https://doi.org/10.1145/288235.288261

[10] Wilm, J. and Frebel, D. (2015) Real-World Challenges to Collaborative Text Crea-
tion. DChanges’14 Proceedings of the 2nd International Workshop on (Document)
Changes: Modeling, Detection, Storage and Visualization, Fort Collins, 16 Septem-
ber 2014, Article ID: No. 8.

[11] Decouchant, D., Quint, V., Riveill, M. and Vatton, I. (1993) Griffon: A Cooperative,
Structured, Distributed Document Editor. Bull-IMAG, Grenoble.

[12] Fish R.S., Kraut, R.E., Leland, M.D.P. and Cohen, M. (1988) Quilt: A Collaborative
Tool for Cooperative Writing. Proceedings of Conference on Office Information
Systems, Palo Alto, 23-25 March 1988, 30-37.
https://doi.org/10.1145/45410.45414

[13] Berliner, B. (1990) CVS II: Parallelizing Software Development. The Advanced
Computing Systems Professional and Technical Association (USENIX), Prisma,
Inc., Colorado Springs, 22-26.

[14] Buffenbarger, J. (1995) Syntactic Sofware Merging, Software Configuration Man-

https://doi.org/10.1109/2.291294
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1016/j.entcs.2008.05.017
https://doi.org/10.1006/inco.1997.2695
https://doi.org/10.1145/288235.288261
https://doi.org/10.1145/45410.45414

M. T. Tchendji et al.

82

agement: Selected Papers SCM-4 and SCM-5. In: Estublier, J., Ed., ACM, New York,
153-172.

[15] Fontaine, R.L. (2002) Merging Xml Files: A New Approach Providing Intelligent
Merge of Xml Data Sets. The Pennsylvania State University, Philadelphia.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jcc@scirp.org

http://papersubmission.scirp.org/
mailto:jcc@scirp.org

	A Stable and Consistent Document Model Suitable for Asynchronous Cooperative Edition
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	2.1. Extended Context Free Grammars, Documents and Compliances
	2.2. View, Projection, Partial Replica and Consistency

	2.3. Some Definitions and Notations

	3. A Document Model Stable by Projection Operation, for Cooperative Asynchronous Edition
	3.1. Defining (Abstract) Grammatical Structures
	3.2. Projection of a Grammatical Structure
	3.3. Grammatical Structures Properties
	3.4. Illustration: Grammatical Structures for the Cooperative Writing of a Small Phone Book

	4. Conclusion
	References

