
Journal of Computer and Communications, 2017, 5, 49-59
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2017.53006 March 13, 2017

Transforming Model Oriented Program
into Android Source Code Based on
Drools Rule Engine

Ei Ei Thu, Nwe Nwe

University of Computer Studies Mandalay, Mandalay, Myanmar

Abstract
Model transformation is one of the prominent features and the rising research
area of Model Driven Engineering (MDE). MDE promotes models to primary
artifacts that drive the whole development process. This paper presents the
model transformation approach for textual model oriented programs Umple
(UML Programming Language) to generate android applications (apps). The
proposed approach improved the generation of android source code by using
Drools transformation rules and introducing new concern in model driven
mobile engineering. The major objective of proposed transformation ap-
proach intends to address consistency between source and target model and
also intends to handle productivity issues in model driven software develop-
ment. The main results of model transformation approach are Java class for
model layer, XML file for view layer and android activity class for controller
layer. Results show that proposed approach achieves high consistency between
source and target model and also improves model transformation produc-
tivity.

Keywords
Model Driven Engineering, Transformation Rule, Model Oriented Program

1. Introduction

The mobile application development industry is increasingly growing up due to
the intensive use of applications in mobile devices. Most of these devices run on
Android operating system. Due to increasingly intensive use of mobile apps, the
development of mobile apps demands additional worries about the short time-
to-market and to improve the productivity [1]. Software engineering process
aims to help leading an IT project from the perspective of transforming design

How to cite this paper: Thu, E.E. and
New, N. (2017) Transforming Model
Oriented Program into Android Source
Code Based on Drools Rule Engine. Journal
of Computer and Communications, 5, 49-
59.
https://doi.org/10.4236/jcc.2017.53006

Received: February 17, 2017
Accepted: March 10, 2017
Published: March 13, 2017

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2017.53006
http://www.scirp.org
https://doi.org/10.4236/jcc.2017.53006

E. E. Thu, N. Nwe

50

model to code implementation in a specific platform. Indeed, the model driven
architecture (MDA) is a new discipline of software engineering that has emerged
to ensure the development of productive model [2].

Model transformation is considered as one of the key technologies in MDE.
The transformation rules map the input model to output model. These rules can
be specified in transformation language such as ATLAS, Acceleo, Drools [3], etc.
Moreover, the MDA allows the code generation from platform specific models
by means of generators that automatically transform models into source code for
chosen platform [4]. An infrastructure for model-driven development has a high
potential for accelerating the development of software applications. MDA does
not concentrate on technical detail but lifts software development to a higher
abstraction level. A high quality MDA infrastructure can considerably reduce the
time to market in consequence.

In this paper, we propose a model transformation framework based on drools
rule engine. In our approach, UMPLE’ class diagram considered as a primary
model artifact that used to generate android source code. UMPLE blurs the dis-
tinction between code and modeling, enabling modelers and coders to collabo-
rate on models in a way similar to code-based collaboration. The result of the
transformation considered as model layer, view layer, controller layer and per-
sistency layer. Model layer consists of plain old java object (POJO) class, view
layer includes XML for android user interfaces, controller layer comprises with
android activity classes and persistency layer considered as apps data manage-
ment. In summary, the proposed approach transforms Umple class diagram to
android mobile apps which contain create-retrieve-update-delete (CRUD) oper-
ations based on model-view-controller (MVC) architecture.

2. Related Work
Model Driven Mobile Apps Development

The authors [5] proposed a MDD approach for generating android applications
from UML class diagram using Acceleo transformation languages. But their ap-
proach generates only two screens for the given class diagram. Their code gener-
ation approach is in progress and still need to complete for other mobile plat-
forms. In literature [6], the authors proposed a model transformation approach
based code generator for state machine diagram. Their approach generates En-
terprise Java Bean (EJB) from model using ATLAS transformation language.
Although the authors argued that their approach improves the quality and
productivity of MDA concepts, they did not described the any measurements for
proposed transformation approach. In literature [7], they proposed code genera-
tion method from UML message sequence diagram based on Meta Object Facil-
ity (MOF). They proposed meta-model for message sequence diagram and six
model transformation rules written by Acceleo. They also described that MDE
absolutely needs automatic tools and methods to transform platform-indepen-
dent model into platform-specific model.

The researchers [8] described the model oriented programming as a new pa-

E. E. Thu, N. Nwe

51

radigm to reduce the ever-present tension between model-centric and code-
centric development styles. UMPLE is a model-oriented programming language
that supports modeling using a textual notation just like other high-level pro-
gramming languages. Therefore, Umple is a multi-faceted technology allowing
users to integrate modeling into software development straightforwardly.

Although there are already some approaches to model-driven development of
mobile apps, there is still gap in model transformation approach for mobile ap-
plications. Individual approaches are in moving target. In contrast to our pro-
posed approach, the previous approaches are focused on concrete syntax based
process and defined transformation rule specifications in template-based ap-
proach. In this paper, our approach will mainly focus on abstract syntax based
approach. It traverse and parse source model in visitor based approach instead
of defining concrete syntax grammar and specify transformation rules in object
pattern matching approach by using Drools rule language [3]. The technical
space of model transformations still needs to do 80% to get complete transfor-
mations [9].

From the perspective of evaluation, the authors [10] proposed the approach
for empirical evaluation of model driven engineering in multiple dimensions.
Their empirical studies included qualitative (expert judgments) and quantitative
data (metrics) evaluations. They supposed that the productivity and defect de-
tection rate are the effective metrics for measuring automation degree of model
driven development process. A cost estimation approach is therefore needed that
can incorporate characteristics of MDE that affect economies of scale and effort
in application development with the size computation of various artifacts in
MDE [11]. Therefore we measure our proposed model driven approach’s auto-
mation degree from productivity quality criteria. In order to estimate the code
generator effort, we use COCOMOII tool [12].

3. Model Transformation Approach Based on
Drools Rule Engine

3.1. Architecture

The main components of model transformation framework are parser, model
transformer and code generator. Figure 1 shows the architecture of the pro-
posed model transformation framework. Firstly, it takes Umple source code as
input file. The parser parses the Umple file and constructs the syntax tree model.
Syntax tree is a tree representation of the abstract syntactic structure of source

Figure 1. Model transformation framework architecture.

E. E. Thu, N. Nwe

52

code written in a programming language. The transformer transforms the re-
sulted source model syntax tokens into target model object pattern using Drools
mapping rules. And then the code generator generates the android source code
according to the MVC architecture.

3.2. Parser and Syntax Tree Model Constructor

The main architecture of parser is composed with visitor-based parser which use
for extracting abstract syntax tree (AST) from input model and code generator
which generate the respective android source code using extracted AST model of
input file [13]. AST traverse and collect the information of source code by using
the AST visitor method. Firstly, the AST parser creates the compilation unit
(CU) and it accepts the visitor node. The visitor node traverses the source code
to extract the package declaration, type declaration, field declaration and varia-
ble declaration. The input/output relationship of parser and syntax model con-
structor is shown in Figure 2.

3.3. Transformer

The transformer is composed with Drools inference engine that is able to scale
to a large number of rules and facts. The inference component matches facts and
data (syntax tree model). Facts may be modified, removed or added by execut-
ing rules or from external sources. The transformer receives the partial pieces of
source code (package declaration, type declaration, field declaration and variable
declaration) with syntax tree model. This model is transformed using predefined
set of mapping rules in Drools Rule engine. The rule engine interprets and ex-
ecutes the mapping rules on the source model and produce target model. The
relationships between transformer and Drools rule engine can be seen in Figure
3.

3.4. Code Generator

Code generation can be defined as the technique in which we write program
that create another programs. After the object pattern matching process, the
transformer fires the rules and generates corresponding model for code genera-
tor. The code generator receives the POJO model for model layer, XML model
for view layer and android model for controller layer. The generator use the java
development tool (JDT-core) to generate POJO class and android class source
code. It also uses the JDOM to generate XML user interface file. Figure 4 shows

Figure 2. Parser component.

E. E. Thu, N. Nwe

53

Figure 3. Transformer component.

Figure 4. Code generator structure.

the internal operation design of code generator. In order to generate java class
and android from AST fragment, the proposed generator creates new compila-
tion unit and construct the target language sentence structure by using Java
Language Specification (JLS8) application programming interface (API). That
API allows generator to create language statements such as Method Declaration,
Variable Declaration, Expression Statement declaration, Method Invocation,
Super Method Invocation, Field Access, Cast Expression, Class Instance Crea-
tion, etc.

E. E. Thu, N. Nwe

54

3.5. Drools Transformation Rules

A transformation rule is a description of how one or more constructs in the
source language can be transformed into one or more constructs in the target
language. A transformation rule is the smallest entity within a model transfor-
mation. A rule contains a source pattern and a target pattern. For each occur-
rence of the source pattern in the source model, a target pattern is created in the
target model.

In our proposed transformation approach, transformation rules are defined
on drools rule engine which is a production rule system and enhanced imple-
mentation of the Rete algorithm [3]. Drools rules are defined using Java-like
language. The main rules in our proposed rule engine are Umple2Model.drl,
Umple2View.drl and Umple2Controller.drl. Umple2Model.drl transforms in-
coming abstract syntax model (ASM) into plain old java object (POJO), Um-
ple2View.drl transforms ASM into android user interface XML file and Um-
ple2Controller.drl transforms ASM into android activity class. Table 1 illu-
strates the smallest entity of simple variable transformation process. The second
row in table shows the transformation rule that use to transform ASM into va-
riable declaration. The third row shows the resulted code for that variable dec-
laration, the fourth row shows the generated user interface in android screen
and the final row shows the generated SQL command that used to create data-
base in generated application.

Table 1. Drools transformation rule sample.

Umple String bookTitle;

Drools
Transformation Rule

Rule "VariableDeclaration"
Dialect "java"
when
$st : SyntaxTree(status==SyntaxTree.VAR_DECLARE)
then
TypeDeclaration type=AST2Android.Variable_Decl($st.getType());
CompilationUnit cu=$st.getCu();
$st.setStatus(SyntaxTree.ACTIVITY_CREATE);
$st.setType(type);
$st.setCu(cu);
update($st);
end

Generated Code

POJO (Model Layer) XML (View Layer) Android (Controller Layer)

String bookTitle;
PublicvoidsetBookTitle(String bt){
bookTitle=bt;}
public String getBookTitle(){
return bookTitle;}
}

<EditText android:id=
"@+id/ txtbookTitle"
android:layout_height=
"wrap_content"
android:layout_width=
"wrap_content"/>

private EditText txtbookTitle;
private String bookTitle;
txtbook-
Title=(EditText)findViewById(R.id.txtbook
Title);

Generated UI

Generated
Persistency Layer

db.execSQL("CREATE TABLE IF NOT EXISTS Books Table
(BooksID Integer PRIMARY KEY AUTOINCREMENT, book Title String);");

E. E. Thu, N. Nwe

55

4. Evaluation and Analysis
4.1. Parser Analysis

To illustrate the ability of proposed parser, we have conducted the parser statis-
tics with time efficiency and compare with Umple code analyzer [14]. As a case
study of transformation process, we choose a Library Management System as
Umple input source file. It contains number of 6 classes with 19 attributes. Fig-
ure 5 shows the implemented screen of proposed parser.

In order to measure the proposed parser performance, we extract the source
file metrics from the input Umple file. The measurable metrics include number
of classes, number of lines of code, number of variables and its data type. And
then, we also conducted the proposed parser precision and recall using the fol-
lowing equations. Figure 6 depicts the parser analysis for Library Management
System case study.

No.correct consituents identified by parserPrecision
Total no.consituents identified by parser

= (1)

No.correct consituents identified by parserRecall
Total no. consituents identified by Code Analyzer

= (2)

At this stage, we measured the proposed parser performance because of the
parser accuracy can improve the later transformation and code generation
processes. And also, this measurement can validate that whether the target
model’ attributes are consistent with source model’ attributes or not. Maintain-
ing consistency between documentation and the corresponding code is chal-
lenging task. Table 2 shows the proposed parser gets the average 100% of preci-

Figure 5. Umple to AST parser.

E. E. Thu, N. Nwe

56

Figure 6. Parser analysis.

Table 2. Parser analysis result.

Project Name–Library Management System

 Found Expected Precision Recall

No. Classes 6 6 100% 100%

No. Attributes 19 22 100% 86%

No. LOC 42 42 100% 100%

sion and 95.33% of recall rate. Therefore, we have the high consistent between
source documents and target code.

4.2. Code Generator Analysis

For practical use in model-driven engineering, the quality of model transforma-
tions is a key issue. In this paper, we also conducted the quantitative measure-
ment from the perspective of productivity criteria. Because of the productivity
criteria is the effective metrics to ensure the automation degree of model trans-
formation. The generated source code result for case study is show in Table 3.
Figure 7 shows the implemented screen of code generator.

In order to calculate the estimated value in time and effort, we use the
COCOMOII tool [12]. For this measurement, we set 616 SLOC and set the
product cost parameters settings with the default nominal value. The tool
showed a needed effort of 2 Person-months, a required 4months’ time frame for
616 SLOC. The proposed transformation approach can generate 616 SLOC
within 2 seconds. Therefore, by using our transformation approach we could
reduce time and effort in development process by 4 months and effort of 2 Per-
son-months.

E. E. Thu, N. Nwe

57

Figure 7. Code generator.

Table 3. Generated source code result.

Layer Type Files SLOC Generated Time (s)

Model Java 6 188 1.98126

View XML 6 99 0.14854

Controller Android 6 329 0.29673

Total Java + XML 18 616 2.42653

4.3. Results and Discussion

In order to ensure the quality of proposed model driven transformation ap-
proach, we have conducted relevant measurement with step by step. The pro-
posed transformation approach is developed and successfully tested over 20
UMPLE model projects. Firstly, we have measured the proposed parser effi-
ciency with precision and recall. The results show that the parser precision rate
from 99% to 100% and also the recall rate from 90% to 100%. Therefore, our
proposed parser achieves high consistency between source file and parsed syn-
tax. Table 4 shows the results analysis for parser efficiency, code generation ef-
ficiency and cost estimation value for each project. Secondly, we have conducted
the statistical analysis for code generation process with number of lines of code
metrics, number of files and code generation time for each phase. The main
purpose of our proposed approach is to achieve high productivity quality. Ac-
cording to the cost estimation tool results, our approach can significantly reduce
the time and developer effort. Therefore the proposed approach also reaches the
satisfactory in productivity measurement.

E. E. Thu, N. Nwe

58

Table 4. Results analysis.

No Project

Parser Efficiency
Code Generation Efficiency COCOMOII

Estimated Value Java + XML + Android

Precision Recall SLOC File Time (s)
Time

(Months)
Effort

(Person-Months)

1 Online Golf Store System 100% 90.67% 797 27 3.719197 4.8 2.3

2 Online Shopping System 100% 98.34% 853 21 2.058524 4.9 2.5

3 Banking Structure System 99.27% 100% 630 21 1.764526 4.4 1.8

4 Patient Information System 100% 97.85% 654 15 1.977318 4.5 1.8

5 Order & Payment System 100% 97.77% 611 24 1.846651 4.4 1.7

:

5. Conclusions

Model transformation can be used for different tasks throughout the develop-
ment process for manipulating models. The field of model transformation is an
active research field and it is necessary to exploit the model transformation ap-
proach for the development of mobile applications. In this paper, an approach
capable of generating MVC-based android source code from Umple class dia-
gram is developed. This approach involves Drools model transformation rules
that can address the technical space of MDE. Drools transformation rules make
the proposed approach efficient, simple and faster in implementation. The pars-
er analysis results show that the parsed source code is consistent with input Um-
ple file. The evaluation results with COCOMOII estimator show that the trans-
formation approach significantly reduces the effort and improves the productiv-
ity. Therefore, the proposed transformation approach is suitable for short time-
to-market software development environment.

In this paper, we address the proposed parser consistency and productivity
issues in model driven transformation process. As a future work, we plan to
address the internal transformation rule quality measurement. The measure-
ment of internal transformation rule quality is still challenging task in model
driven engineering process.

References
[1] Vaupel, S. and Taentzer, G. (2014) Model-Driven Development of Mobile Applica-

tions Allowing Role-Driven Variants, MODELS’2014, Philipps-University at Mar-
burg, Gernany.

[2] Poole, J.D. (2001) Model-Driven Architecture: Vision, Standards and Emerging
Technologies, ECOOP’ Workshop on Meta-modeling and Adaptive Object Models,
Hyperion Solutions Corporation.

[3] Browne, P. (2009) JBoss Drools Business Rules. Packt Publishing, 1847196063.

[4] Kriouile, A., Addamssiri, N. and Gadi, T. (2015) An MDA Method for Automatic
Transformation of Models from CIM to PIM. American Journal of Software Engi-
neering and Applications, 4, 1-14. https://doi.org/10.11648/j.ajsea.20150401.11

[5] Benouda, H., Essbai, R., Azizi, M. and Moussaoui, M. (2016) Modeling and Code

https://doi.org/10.11648/j.ajsea.20150401.11

E. E. Thu, N. Nwe

59

Generation of Android Applications Using Acceleo. International Journal of Soft-
ware Engineering and Its Applications, 10, 83-94.
https://doi.org/10.14257/ijseia.2016.10.3.08

[6] Bousetta, B., Beggar, O.E. and Gadi T. (2014) A Model Transformation Approach
for Code Generation From State Machine Diagram. IADIS International Journal on
Computer Science and Information Systems' 2014, 9, 1-15.

[7] Son, H., Kim, W. and Chul, R. (2013) MOF Based Code Generation Method for
Android Platform. International Journal of Software Engineering and Its Applica-
tion, 7, Hongik University, Sehong Campus, Korea.

[8] Omar, B. and Lethbridge, T. (2013) Model Oriented Programming: Bridging the
Code-Model Divide, ICSE Workshop on Modeling in Software Engineering, Mod-
eling in Software Engineering (MiSE), University of Ottawa, Canada, 69-75.

[9] Parada, A. and Marques, M. (2015) Automating Mobile Application Development:
UML-Based Code Generation for Android and Windows Phone. Journal of Theo-
retical and Applied Informatics (RITA), 22, Pelotas, Brazil.

[10] Mohaghegh, P. (2010) An Approach for Empirical Evaluation of Model Driven En-
gineering in Multiple Dimensions, MODELPLEX, Oslo, Norway.

[11] Sunkle, S. and Kullkarni, V. (2012) Cost Estimation for Model-Driven Engineering.
Proceedings of the 15th international conference on Model Driven Engineering
Languages and Systems. https://doi.org/10.1007/978-3-642-33666-9_42

[12] Abran, A., Deshnarnais, J. and Mohammand, Z. (2015) Productivity-Based Software
Estimation Models and Process Improvement: An Empirical Study. International
Journal on Advances in Software, 8.

[13] Eithu, E. and Nwe, N. (2017). Model Driven Engineering: Automatic Code Genera-
tion of Android from UMPLE, 15th International Conference on Computer Appli-
cation (in Press), Yangon, Myanmar.

[14] https://github.com/umple/umple

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jcc@scirp.org

https://doi.org/10.14257/ijseia.2016.10.3.08
https://doi.org/10.1007/978-3-642-33666-9_42
https://github.com/umple/umple
http://papersubmission.scirp.org/
mailto:jcc@scirp.org

	Transforming Model Oriented Program into Android Source Code Based on Drools Rule Engine
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	Model Driven Mobile Apps Development

	3. Model Transformation Approach Based on Drools Rule Engine
	3.1. Architecture
	3.2. Parser and Syntax Tree Model Constructor
	3.3. Transformer
	3.4. Code Generator
	3.5. Drools Transformation Rules

	4. Evaluation and Analysis
	4.1. Parser Analysis
	4.2. Code Generator Analysis
	4.3. Results and Discussion

	5. Conclusions
	References

