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Abstract 
Online learning algorithms are very attractive, in which iterations are applied 
efficiently instead of solving some optimization problems. In this paper, on-
line learning with protecting privacy is considered. A perturbation term is 
added into the classical online algorithms to obtain the differential privacy 
property. Firstly the distribution for the perturbation term is deduced, and 
then an error analysis for the new algorithms is performed, which shows the 
convergence and learning rate. From the error analysis, a choice for the para-
meters for differential privacy can be found theoretically. 
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1. Introduction 

Online learning is widely used recently in computer sciences, due to its effi- 
ciency in calculation and well theoretical results. Compared with the classical 
batch learning in learning theory, online algorithms update the output only 
according to the last sample point. So such algorithms are very effective to 
handle the practical problems and have been studied in [1] [2] [3] [4] [5] and 
etc. However, as the technologic development of data analysis, there are risks for 
applying such algorithms on a big data set. A commonly used notion for mea- 
suring the risk is differential privacy [6]. Little references on this topic can be 
found except for [7]. There the authors conducted an analysis for online convex 
programming. Choice for the parameters of differential privacy and utilities ana- 
lysis are presented for algorithms such as implicit gradient descent and genera- 
lized infinitesimal gradient descent. In this paper, the line of work begins with 
[8] is considered which can be thought as a kernel online learning algorithm. 
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2. Fundamental Principles 

Our setting for online learning is introduced as follow. Let the input space X  
be a compact metric space, and output [ ],Y M M∈ −  for some 0M >  as a 
regression problem. Denote :Z X Y= ×  as the sample space. Assume there is a 
probability measure ρ  on Z , which can be decomposed to marginal dis- 
tribution Xρ  on X  and conditional distribution ( )y xρ  on Y  at x X∈ . 
Then the regression function is defined by  

( )d
Y

f y y xρ ρ= ∫                         (1) 

which is indeed the conditional expectation of y  given x . The regression fun- 
ction minimizes the least square generalization error (see [9] for more details)  

( ) ( )( )2
: d

Z
f f x y ρ= −∫                      (2) 

So learning algorithms always aim to approximate the regression function  
based on samples ( ){ } 0,1,2,

,t t t t
z x y

=
=



, which are drawn independently from  

distribution ρ . Let :K X X R× →  be a Mercer Kernel, and K  is the in- 
duced reproducing kernel Hilbert space (RKHS, [10]), i.e., the completion of  

{ }span :xK x X∈  where ( ) ( ),xK x K x x′ ′=  for any ,x x X′∈  with respect to  

the inner product ( ),,
Kx x K x xK K ′ ′= . The corresponding norm in K  is 

denoted as 
K⋅ . Now our online learning algorithm as  

( )( )1 , 0,1, 2,t t t t t t x t tt
f f f x y K f tη λ+

 = − − + =             (3) 

with 0 0f = . Here 0tη >  is the step size and 0tλ >  is the regularization 
parameter. 

When applying this online algorithm on private data set, it may leak some 
sensitive information. To deal with this privacy problem, Dwork et al. introdu- 
ced differential privacy in [11]. Which can be described as follow. For the sample 
space Z  introduced above, the Hamming distance between two sample sets 
{ }1 2, mz z Z∈  is  

( ) { }1 2 1, 2,d , # 1, , : i iz z i m z z= = ≠                 (4) 

Definition 1 A random algorithm ( ): RangemA Z A→  is  -differential pri- 
vate if for every two data sets 1 2,z z  satisfying ( )1 2d , 1z z = , and every set 

( )( ) ( )( )1 2Range RangeA z A z∈ ∩ , there holds  

( ){ } ( ){ }1 2Pr PrA z e A z∈ ≤ ⋅ ∈                 (5) 

To endow our online algorithm the differential privacy property, a perturba- 
tion term is added into the output of (3), that is,  

,t t tf f b= +                          (6) 

where tb  takes value in R  with distribution to be determined in following 
analysis. 

Differential private online learning has already been studied in [7], there the 
authors consider a differentially private online convex programming problem. 
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Here our algorithm is different, which is based on the Mercer kernels. Our pur- 
pose in this paper is to firstly provide the explicit density function for b  and 
then conduct an error analysis for (6), which reveals the learning rate. 

3. Differential Privacy Analysis 

In this section, a detail analysis for the perturbation term tb  in algorithm (6) 
will be conducted. Firstly recall the useful definition of sensitivity and lemma 
proposed in [11].  

Definition 2 denote tf∆  as the maximum infinite norm of difference betw- 
een the outputs when changing the last sample point in z . Let ( ){ } 0

,
t

i i i
z x y

=
=  

and ( ) ( ) ( ) ( ){ }1 1 2 2 1 1, , , , , , , ,t t t tz x y x y x y x y− −=  , tf  and tf  derived from (3) 
accordingly, it is clear that  

,
: supt t t

z z
f f f

∞
∆ = −                       (7) 

Then a similar result to [11] is:  
Lemma 1 Assume tf∆  is bounded by 0tC > , and tb  has density function  

proportion to exp
t

b
C

  − 
  


, then algorithm (6) provides  -differential privacy.  

Proof. For all possible output function r , and ,z z  differ in last element, 
then  

{ } { },Pr expPr
t

t
t t t

b t

r f
f r b r f

C
 −

= = = − ∝ − 
 




       (8) 

and  

{ } { },Pr expPr
t

t
t t t

b t

r f
f r b r f

C
 −

= = = − ∝ − 
 




       (9) 

So by triangle inequality,  

{ } { } { }, , ,Pr Pr Pr
f ft t
Ct

t t tf r f r e e f r
−

= ≤ = × ≤ =




        (10) 

Then the lemma is proved by a union bound.                           
It is obvious that if finding the upper bound for tf∆ , the distribution for tb  

can be derived. Set ( )01t t t θη = +  and ( )101t t t θλ −= +  for some 0 0t >  and  
0 1θ< < . Moreover, denote ( ), ,sup x x XK x xκ ′∈ ′=  (as K  is Mercer Kernel  

on compact metric space X ). The next lemma is taken from [1] to bound t Kf .  

Lemma 2 If 2
0 1tθ κ≥ + , then for all t∈ , there holds  

t K
t

Mf κ
λ

≤                        (11) 

Now the main result for differential privacy for algorithm (6) follows.  
Theorem 1 When choosing ( )01t t t θη = +  and ( )101t t t θλ −= +  for some 

1 1
2

θ< <  and 2
0 1tθ κ≥ + , let the density function of tb  is 1 exp

t

b
Cα

  
 
  


 with 

2 tCα =   and  



W. L. Nie, C. Wang 
 

31 

( )
( )

2

2 1
0

2 1

1
t

M
C

t t θ

κ κ
−

+
=

− +
                      (12) 

then the algorithm (6) provides  -differential privacy.  
Proof. From (3) there holds  

( )( )1 1 1 1 1 1 11t t t t t t x t tt
f f f x y K fη λ− − − − − − −−

 = − − +          (13) 

and  

( )( )1 1 1 1 1 1 11t t t t t t x t tt
f f f x y K fη λ− − − − − − −−

 = − − +         (14) 

Then  

( )( ) ( )( )1 1 1 1 1 1 11 1t t t t t t x t t t xt t
f f f x y K f x y Kη − − − − − − −− −

 − = − − −      (15) 

From the above lemma 1
1

t K
t

Mf κ
λ−

−

≤  for all t . By the reproducing proper- 

ty that ( ) , x xK KK Kf x f K f K fκ= ≤ ≤  (see [9]),  
2

1
1

2t t tK
t

Mf f Mκη κ
λ−

−

 
− ≤ + 

 
                (16) 

Therefore  

( )
( )

2 2

2 1
, 0

2 1
sup

1
t t t

z z

M
f f f

t t θ

κ κ
−∞

+
∆ = − ≤

− +
               (17) 

Set tB  to be the right hand side in lemma 1 then the theorem is proved.   

4. Error Analysis 

In this section, Kfρ ∈  is assumed for simplicity. It will be shown that tf  
obtained from (6) still converge to regression function fρ  by choosing appro- 
priate parameter   under the choice of tη  and tλ  as in the theorem in the 
last section. To this end, an error decomposition is needed. Denote operators 

:t K KL →   as ( ) ( )
tt t xL f f x K=  for 0,1,2,t =  , and I  as the identity 

operator. It is easy to verify that 2
tL κ≤ . Notice that Kfρ ∈ , the following 

decomposition can be deduced:  

( )( ) ( )1t t t t t t t t x t tt
f f I I L f f y K I L fρ ρ ρη λ η η λ+

 − = − − − + − +      (18) 

( ) ( )1 1 1t t t t t t t tA f f B A A f f B Bρ ρ− − −
 = − + = − + + =       (19) 

( ) [ ]1 0 0 1 1 1 0t t t t t t tA A A f f B A B A A A Bρ− − −= − + + + +       (20) 

Here t t t t tA I I Lη λ η= − −  and ( )t t t x t tt
B y K I L fρη λ = − +  . In the follow- 

ing the first term is called initial error and second one is sample error. The initial 
error is easy to bound from the analysis above. Since 0t  is such that  

2
0 1tθ κ≥ + , tA  is a positive operator with ( ) ( )0 01 1t t tA t t t tη λ≤ − = + − + .  

1 0 0 1 0 0

0
0 0

0

0

0

( )

1

.

t t t tK K

t
j K

K

A A A f f A A A f f

j t
f f

j t
t

f
t t

ρ ρ

ρ

ρ

− −

=

− ≤ ⋅ −

+ −
≤ Π −

+

=
+

 
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For the sample error, it is more difficult and the Pinelis-Bernstein inequality 
[4] will be applied.  

Lemma 3 Let iξ  be a martingale difference sequence in a Hilbert space. Sup- 
pose that almost surely i Bξ ≤  and 2 2

11
t

i i ti ξ σ−=
≤∑   for some constants  

, 0, 1, 2,tB tσ > =  . Then for any 0 1δ< < , with probability at least 1 δ− , 
there holds  

1

22 ln
3

t

i t
i

Bξ σ
δ=

   ≤ +   
   

∑                   (21) 

Now the error bounds for sample error can be derived. Notice that  

( ) ( )2 2 1t t t tK K K
B M f M fρ ρη κ κ λ η κ κ   ≤ + + ≤ + +    . Set  

1 1, 1, 2, ,i t t i iA A A B i tξ − −= =  , then  

( )20
1 1 1

0

1
1i t t i i iK K K

i t
A A A B M f

t t ρξ η κ κ− − −

+ −  ≤ ≤ + + +
    (22) 

( ) ( )2 2

0 1 0

1 1 1 11 1
K K

i t

M f M f
t t t tρ ρκ κ κ κ

λ λ−

   = + + ≤ + +   + +
    (23) 

( )2 1 .t K
M fρη κ κ = + +                   (24) 

And ( )2 2 2
11 1t

i i ti K K
X t M fρη κ κ−=

 ≤ + + ∑  . So for any 0 1δ< < , with 
probability at least 1 δ− ,  

( )

( )

2

1

2
1 2

8 21 ln
3

8 21 ln
3

t

i t K
i K

K

t M f

M f
t

ρ

ρθ

ξ η κ κ
δ

κ κ
δ

=

−

  ≤ + +     

  ≤ + +     

∑
       (25) 

Note that ( )2 1t tK K
B M fρη κ κ ≤ + +  , hence  

( )2
1 1 1 0 1 2

11 21 ln
3t t t t t K K

B A B A A A B M f
t ρθ κ κ

δ− − −
  + + + ≤ + +     

   (26) 

Combining the initial error, sample error bounds and applying Markov in- 
equality for the fact that 1 1t tb C+ +=  , the total error estimation is obtained.  

Theorem 2 Choose ,t tη λ  and tb  as in the theorem in the last section, with 
confidence ( )1 0 1δ δ− < < , there holds  

1, 1 2

1 4
t K

f f C
tρ θ δ+ −− ≤                 (27) 

where constant ( ) ( )( )2 2
0

114 1 1
3K K

C M t f M fρ ρκ κ κ κ= + + + + +  .  

5. Conclusion 

In this paper, analysis is performed for the differential privacy (Theorem 1) and 
generalization property (Theorem 2) for the online differential private learning 
algorithm (6). Under the choice of parameters in our theorems, the algorithm 
(6) can provide  -differential privacy and keep learning rate close to 1 2 , for 
any 0> . However, this error bound is not satisfactory enough. It might be an 
interesting problem to promote the error bound from 2 δ  to ( )ln 2 δ  in our 
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future work. 
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