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Abstract 
Musical rhythms are represented as sequences of symbols. The sequences may be 
composed of binary symbols denoting either silent or monophonic sounded pulses, 
or ternary symbols denoting silent pulses and two types of sounded pulses made up 
of low-pitched (dum) and high-pitched (tak) sounds. Experiments are described that 
compare the effectiveness of the many-to-many minimum-weight matching between 
two sequences to serve as a measure of similarity that correlates well with human 
judgements of rhythm similarity. This measure is also compared to the often used 
edit distance and to the one-to-one minimum-weight matching. New results are re-
ported from experiments performed with three widely different datasets of real- 
world and artificially generated musical rhythms (including Afro-Cuban rhythms), 
and compared with results previously reported with a dataset of Middle Eastern 
dum-tak rhythms. 
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1. Introduction 

Measuring the similarity between musical rhythms is a problem of paramount relev-
ance in the areas of music information retrieval [1], musicology [2], phylogenetic anal-
ysis [3] [10], and music perception [4]. The approaches taken to modelling measures of 
rhythm similarity vary according to whether music is represented acoustically [5] or 

How to cite this paper: Toussaint, G.T. 
and Oh, S.M. (2016) Measuring Musical 
Rhythm Similarity: Further Experiments 
with the Many-to-Many Minimum-Weight 
Matching Distance. Journal of Computer 
and Communications, 4, 117-125. 
http://dx.doi.org/10.4236/jcc.2016.415011 
 
Received: September 24, 2016 
Accepted: November 25, 2016 
Published: November 28, 2016 

http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2016.415011
http://www.scirp.org
http://dx.doi.org/10.4236/jcc.2016.415011


G. T. Toussaint, S. M. Oh 
 

118 

symbolically [6] [9]. In the present study, musical rhythms are represented symbolically 
as 2-symbol sequences, in which each symbol denotes monophonic sounds (onsets) or 
silences (rests) of unit time duration. In this report experiments are described that 
compare the effectiveness of the many-to-many minimum-weight matching between 
two sequences to serve as a measure of similarity that correlates well with human 
judgements of rhythm similarity across widely different real-world and artificially gen-
erated datasets of rhythms, including Afro-Cuban and Middle Eastern rhythms. The 
many-to- many minimum-weight matching distance is also compared to the often used 
edit distance and the one-to-one minimum-weight matching distance. The present 
study extends previous work carried out with only one dataset consisting of Middle 
Eastern dum-tak rhythms [8], with the goal of testing the generalizability of those re-
sults to other widely different datasets. 

2. The Distance Measures Compared 
2.1. The Many-to-Many Minimum-Weight Matching Distance 

A powerful measure of the distance (dissimilarity) between two sequences of symbols 
(elements) is the many-to-many minimum-weight matching distance [7]. The calcula-
tion of this distance measure is illustrated using box notation in Figure 1, where se-
quence A has four sounded pulses (filled boxes) and sequence B has 5 sounded pulses. 
Empty boxes denote rests, and each box represents one unit of time. What distinguishes 
the many-to-many matching from other matching schemes such as the one-to-one 
matching or the many-to-one matching is that the many-to-many matching allows 
several sounded pulses to be assigned to a single sounded pulse from either sequence to 
the other. In the example of Figure 1 the sounded pulses numbered 1 and 3 in sequence 
A are assigned to sounded pulse number 2 of sequence B, and the three sounded pulses 
in sequence B (in positions 12, 14 and 16) are assigned to sounded pulse 14 in sequence 
A. The cost of each assignment is equal to the number of pulses that separate the source 
pulse from the target pulse, and the many-to-many distance is the sum of the individual 
costs. Thus in Figure 1 this distance equals 2 + 0 + 1 + 0 + 2 = 5. The many-to-many 
minimum-weight matching distance was computed with the Hungarian algorithm [15] 
as implemented by Munkres [16]. 
 

 
Figure 1. Illustration of the many-to-many minimum-weight matching distance. 
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2.2. The Edit Distance 

The edit distance between two sequences is defined as the minimum number of inser-
tions, deletions, and substitutions of symbols required to transform one sequence to the 
other [2] [4]. An insertion operation inserts one symbol (either silent or sounded pulse) 
resulting in a rhythm of longer duration. A deletion operation deletes one symbol, 
shortening the duration of the rhythm. A substitution operation substitutes one symbol 
for another, leaving the duration of the rhythm unaltered. Consider for example the 
calculation of the edit distance between the two 16-pulse sequences A and B in Figure 2. 
In the first edit operation A is converted to the 15-pulse sequence A* by deleting silent 
pulse number 5. In the second operation the 15-pulse sequence A* is converted into the 
15-pulse sequence A** by substituting the sounded pulse number 12 by a silent pulse. 
Finally, the 15-pulse sequence A** is converted to the 16-pulse sequence B by inserting 
a sounded pulse between pulses 13 and 14, for a total of 3 operations. No other set of 
operations to convert A to B uses less operations, and therefore the edit distance be-
tween A and B is equal to 3. The edit distance was computed using dynamic program-
ming [8]. 

2.3. The One-to-One Minimum-Weight Matching Distance 

The one-to-one minimum-weight matching distance between two rhythms that contain 
an unequal number of sounded pulses assigns every sounded pulse of the denser 
rhythm to a unique sounded pulse of the sparser rhythm, thus leaving some sounded 
pulses in the denser rhythm unassigned, in such a way that the resulting overall weight 
(cost) is minimized over all such possible assignments [14]. For example, the two 
rhythms illustrated in Figure 3 contain unequal numbers of pulses (8 versus 7) and 
sounded pulses (5 versus 3). Therefore, two sounded pulses in the denser upper rhythm 
(2 and 7) are left unassigned, and three of them are selected that yield a minimum cost  
 

 
Figure 2. Illustration of the calculation of the edit distance. 
 

 
Figure 3. Illustration of the one-to-one minimum-weight matching distance. 
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matching distance equal to 1 (the distance between pulse 4 in the upper rhythm and 
pulse 3 in the lower rhythm). Like the many-to-many minimum-weight matching dis-
tance, the one-to-one version was computed with the Hungarian algorithm [15]. 

3. Datasets Used 

Three datasets of rhythms were used in the experiments reported here. The first dataset 
comprises a group of Afro-Cuban rhythms studied by Rey [12] in an evolutionary con-
text, for which a phylogenetic analysis subsequently carried out failed to support Rey’s 
ethnographic account [13]. These rhythms are shown in box notation in Figure 4. The 
rhythms used by Rey comprise the first seven in the list. The second rhythm called tre-
sillo in Cuba has Inter-Onset-Intervals 3-3-2, and is used all over the world. Its two ro-
tations 2-3-2 and 3-2-3 (appended at the bottom of the list) were also included in this 
dataset, since they are also used in many cultures around the world. 

The second dataset consists of 17 rhythms, one of which is the clave son [17], and the 
remaining 16 are mutations of the clave son obtained by either substituting one of its 5 
sounded pulses with a silent pulse(rest) or replacing one of its 11 silent pulses with a 
sounded one [4]. This dataset is shown in Figure 5. The labels indicate the type of mu-
tation made to the clave son. The notation D-i indicates that the sounded pulse at posi-
tion i was replaced by a silent pulse (deletion of a sound). The notation I-i indicates that 
the silent pulse at position i was replaced by a sounded pulse (insertion of a sound). 
Although this is an artificially generated set, since the rhythms consist of minimal dele-
tions and insertions of sounded pulses, some of the rhythms are actually heard in prac-
tice. In particular, it is not uncommon to hear the rhythm D-13, with the last sounded 
pulse of the clave son missing, resulting in a more syncopated rhythm, and the rhythms 
I-5 and I-6, in which the second and third sounded pulses of the clave son are embel-
lished with an additional sounded pulses either just before or just after a sounded pulse, 
respectively. 

The third dataset, shown in Figure 6, is made up of the clave son rhythm and 12 
permutations of its inter-onset intervals (IOIs) that were selected at random from all 
possible permutations [4]. The IOI is standard terminology for the distance between 
two adjacent sounded pulses. This artificially generated dataset also happens to include 
one rhythm frequently heard in practice, namely, 43,234 common in rap music [8]. 
 

 
Figure 4. The Afro-Cuban rhythms studied by Rey [12] plus two rotations of the tresillo. 
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Figure 5. The clave son and 16 mutations obtained by substitutions of sounded and silent pulses. 
 

 
Figure 6. The clave son and 12 permutations of its IOIs 33424. 
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The results with the three preceding datasets were compared with the results ob-
tained previously with the dataset consisting of the nine Middle Eastern dum-tak 
rhythms [11] shown in Figure 7. 

4. Results 

The results of the experiments are listed in Table 1, which lists the Spearman rank cor-
relation coefficients (with significance tests in the form of p-values) for the many-to- 
many minimum-weight matching distance, compared with the edit distance and the 
one-to-one minimum-weight matching distance, for all four datasets. The listening 
tests with human subjects for all four datasets were carried out at Harvard University 
[4] [11] [13]. A description of the experiments will not be duplicated here, and the 
reader is referred to those references for more detailed information. The correlations 
for the dum-tak rhythms between the many-to-many matching distance and the human 
subjects and edit distance were reported in the recent paper by Toussaint and Oh [8]. 
 

 
Figure 7. The Middle Eastern dum-tak rhythms [11]. 
 
Table 1. Spearman rank correlations for the many-to-many minimum-weight matching. 

Correlation with Human Subjects 

Rey Rhythms 17 Son Mutations 13 Son IOI Permutations Dum-Tak Rhythms [8] 

0.322 
p = 0.0196 

0.349 
p = 0.0011 

0.389 
p = 0.0013 

0.661 
p = 0.0006 

 
Correlation with Edit Distance 

Rey Rhythms 17 Son Mutations 13 Son IOI Permutations Dum-Tak Rhythms [8] 

0.766 
p = 0.0001 

0.378 
p = 0.0598 

0.384 
p = 0.0009 

0.566 
p = 0.0076 

 
Correlation with One-to-One Matching Distance 

Rey Rhythms 17 Son Mutations 13 Son IOI Permutations Dum-Tak Rhythms 

−0.142 
p = 0.2352 

0.839 
p = 0.0001 

1.000 
p = 0.0001 

0.758 
p = 0.0001 



G. T. Toussaint, S. M. Oh 
 

123 

5. Discussion and Conclusion 

The main goals of the experiments carried out in this research project were to deter-
mine how the many-to-many minimum-weight matching distance predicts human 
judgments of rhythm similarity across groups of rhythms that differ greatly from each 
other in terms of genre, cycle length (duration), and the distribution of sounded pulses 
within the rhythmic cycles, as well as to ascertain how similar the many-to-many 
matching distance measure is to two other popular measures of rhythm dissimilarity, 
the edit distance and the one-to-one minimum-weight matching distance. 

Regarding how well the many-to-many distance predicts human judgements, al-
though the correlations with the three new data sets are lower than that obtained for the 
dum-tak rhythms (0.322, 0.349, and 0.389 for the first three datasets versus 0.661for the 
dum-tak rhythms, as shown in Table 1) all are moderately correlated and highly statis-
tically significant. However, previously published results show that the edit distance 
significantly outperforms the many-to-many distance for these three datasets as evi-
denced by the results in Table 2. The correlations between the many-to-many distance 
and the human judgments in Table 1, averaged over the four datasets, is 0.430 with 
standard deviation 0.156, whereas for the edit distance in Table 2 the average correla-
tion is 0.741 with standard deviation 0.127. Thus although the many-to-many distance 
is robust across these four datasets, so is the edit distance. Furthermore, the edit dis-
tance appears to be a more consistent and accurate predictor of human judgements of 
perceived rhythm similarity than the many-to-many matching distance. 

Concerning the similarity between the many-to-many matching distance and the edit 
distance, the four datasets may be categorized into two distinct groups: real-world 
rhythms (Afro-Cuban and Middle Eastern) and artificially generated rhythms (muta-
tions of sounded pulses and permutations of IOIs of the clave son). These two groups of 
datasets can be distinguished mainly by two features: their total number of pulses, and 
the variability in their number of sounded pulses. The real-world rhythms have lengths 
that vary from 6 to 9 pulses, whereas the artificial rhythms all have 16 pulses. Further-
more, the number of sounded pulses in the real-world rhythms varies between 2 and 6 
(out of a maximum of 9 pulses), whereas the artificial rhythms all have between 4 and 6 
sounded pulses (out of a maximum of 16 pulses). The results in Table 1 show that the 
two measures correlate more highly with each other for the real-world datasets than for 
the artificial datasets. The correlations for the Rey Rhythms and the dum-tak rhythms 
are 0.766 and 0.566, respectively, whereas for the 17 son mutations and 13 son IOI 
permutations the correlations are 0.378 and 0.384, respectively. The fraction of the 
pulses that are sounded for the real-world rhythms is 62.6%, whereas the corresponding 
fraction for the artificially generated rhythms is 32.5%. Therefore, in these datasets the  
 
Table 2. Correlations between the edit distance and human judgments. 

Rey Rhythms [13] 17 Son Mutations [4] 13 Son IOI Permutations [4] Dum-Tak Rhythms [8] 

0.594 
p = 0.0002 

0.866 
p = 0.0001 

0.828 
p = 0.0001 

0.677 
p = 0.001 
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real-world rhythms are about twice as dense as the artificially generated rhythms. This 
suggests the hypothesis that the many-to-many matching and edit distances tend to 
behave in a similar manner for dense rhythms, and tend to differ from each other for 
sparse rhythms. It would be interesting to test this hypothesis further with other data 
sets. 

With respect to the one-to-one minimum-weight matching distance [14], the corre-
lations between it and the many-to-many matching distance differ widely across the 
four datasets, as evidenced in Table 1. For two rhythms that have the same number of 
sounded pulses the many-to-many matching distance is equivalent to the one-to-one 
matching distance. Therefore, for such rhythms the correlation between the two meas-
ures should be 1.0. This is confirmed with the dataset consisting of the IOI permuta-
tions of the clave son since they all have 5 onsets. Thus, for rhythms that contain an 
almost equal number of sounded pulses the correlation between the measures is ex-
pected to be high. This is also confirmed with the dataset consisting of mutations which 
delete or insert only one sounded pulse, as well as the Middle Eastern dum-tak 
rhythms, almost all of which have five sounded pulses. The dataset for which the two 
measures do not correlate at all consists of the Afro-Cuban rhythms in Rey’s dataset. 
This may be explained by the fact that these rhythms exhibit a high variability in their 
number of sounded pulses ranging from 2 to 6. This variability creates significant dif-
ferences in the scores obtained with each measure. For example, the conga and contra-
danza rhythms have 2 and 6 sounded pulses, respectively. These two rhythms are con-
siderably different from each other, and the many-to-many matching distance is 7, re-
flecting this difference. On the other hand, the one-to-one matching distance between 
them is 0, and completely ignores the difference. 

Returning to the goal of predicting accurately the human judgements of rhythm si-
milarity, the many-to-many matching distance is not able to compete with the edit dis-
tance for these four datasets (see Table 1 and Table 2). However, discarding the former 
distance outright based on the experiments reported here is premature. It may be poss-
ible, at least for the case of rhythms that contain polyphonic sounded pulses such as 
dum-tak rhythms, to obtain better results with a modification of the many-to-many 
matching distance that restricts the assignments between the sounded pulses of two 
rhythms in such a way that only sounds of the same type are assigned to each other. 
Thus the resulting bipartite graph between two dum-tak rhythms would not contain 
edges between a dum of the first rhythm and a tak of the second rhythm. Experiments 
with such a modification of the many-to-many minimum-weight matching distance are 
planned for future investigation. 
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